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Preface

Identi�cation and authentication using biometric information, especially �ngerprints, has
become increasingly popular during the last years. Typical applications are for instance
smartphones and internet banking on the commercial side and in border control or foren-
sics on the governmental side. A �ngerprint is a pa�ern of interleaved ridge lines following
an undirected orientation �eld (OF). Ridges vary in width, inducing a moderately varying
ridge frequency (RF). Points in which ridge lines end or fork are called minutiae. �ese
points are used in modern algorithms for identi�cation and authentication.

Geometrically, minutiae can occur due to diverging ridge lines with a nearly constant RF
or by widening of parallel ridges making space for new ridge lines originating at minutiae
(and, indeed, combinations of both). We call these the geometrically necessary minutiae.
In this thesis, we provide a mathematical framework based on vector �elds in which ori-
entation �elds, ridge frequency as well as the number of geometrically necessary minutiae
become tangible and easily computable. As a result, we obtain, given a �ngerprint, its in-
tensity µ of geometrically necessary minutiae whose value µ(z0) in a point z0 predicts the
number of minutiae necessary within an small region around that point z0. We provide al-
gorithms and so�ware to compute µ and point out corresponding notorious computational
issues. It turns out that �ngerprints feature additional minutiae which occur at rather ar-
bitrary locations. We call these the random minutiae.

�e presence of necessary and random minutiae gives rise to a point pa�ern separation
problem:

Consider a point pa�ern ζ = {z1, z2, . . . , zn} and suppose ζ = ξ ∪̇ η is a sample
from the superposition Z = Ξ ∪̇H of two point processes Ξ and H. Determine an
allocation vector W ∈ {0, 1}n with Wi = 1 (zi ∈ η) indicating the separation
of ζ into ξ ∼ Ξ and η ∼ H.

For our application, we assume the minutiae point pa�ern to be a realisation of the superpo-
sition Ξ ∪̇H of two point processes Ξ and H modelling the random and necessary minutiae,
respectively. A statistical model analysis suggests to model the process H as a Strauss pro-
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cess with an activity function given by the intensity �eld µ and an additional hard core to
incorporate that ridges have a certain minimal distance between each other. �e random
minutiae are modelled by a homogeneous Poisson point process. Given a minutiae pa�ern
we strive for a method allowing for separation of minutiae and inference for the model
parameters. Repulsion between the points leads to intractabilities in the model likelihood
(due to the Strauss density) prohibiting to apply classical approaches such as maximum
likelihood estimation. Hence we have to apply more sophisticated methods and consider
the problem from two view points.

From a frequentist point of view we �rst solely aim on estimating the model parameters
(without separating the processes). To this end, we lay the foundations for parametric
inference by deriving the density of the superimposed process and provide an identi�ability
result. We propose an approach for the computation of a maximum pseudo-likelihood
estimator and highlight bene�ts and drawbacks of this estimator on real and simulated
data. Having in mind only the estimation of the model parameters, naturally, this approach
is unable to perform point process separation.

Following a Bayesian approach we are able to separate Ξ and H in a probabilistic sense.
We propose an MCMC-based minutiae separating algorithm, MiSeal, allowing for explor-
ing the distribution of necessary and random minutiae of a given �ngerprint as well as
the model parameters. �e intractabilities in the Strauss density require the application of
the auxiliary variable method to compute the transition probabilities of the Markov chain.
We propose a speci�c choice of the distribution of the auxiliary variable which empiri-
cally leads to a good mixing of the resulting algorithm eliminating a major drawback of
the method proposed by Redenbach et al. (2015). �e algorithm is provided as a publicly
available so�ware package and ready-to-use also for application to separation problems
beyond �ngerprint recognition.

We analyse the performance of MiSeal for simulated and real data. In general, we ob-
serve good estimation of the underlying model parameters. Moreover, MiSeal provides for
inference methods on the underlying assignment distribution of the minutiae to the two
processes. �is allows for the separation of minutiae pa�erns in a probabilistic sense. In
an example of two di�erent prints with similar OF and RF we can verify, using the pos-
terior distribution of the minutiae being necessary, that random minutiae indeed convey
�ngerprint individuality giving rise to calling them also characteristic minutiae.
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Chapter 1

Introduction

A �ngerprint is the reproduction of the exterior appearance of the �ngertip dermis. Finger-
prints feature a ridge line pa�ern inducing an undirected orientation �eld usually exhibiting
some singularities called cores (where neighbouring ridge lines go around an ending ridge)
and deltas (where three ridge lines meet). �ese ridge line pa�erns and its induced features
are the subject of investigation in �ngerprint recognition and forensics.

�e relevance of �ngerprints has strongly increased since automatic authentication and
identi�cation by �ngerprints has become increasingly popular in a wide variety of appli-
cations such as smartphones and internet banking on the commercial side and in border
control on the governmental side. Also in the �eld of forensics �ngerprints gain undimin-
ished a�ention.

1.1 Motivation

For identi�cation purposes, a �ngerprint is usually reduced to a minutiae pa�ern consisting
of points where the �ngerprint’s ridges end or fork. �ese point pa�erns have turned out
to be su�cient to identify individuals with high accuracy and allowing for compression of
an image to a 40–100 element point pa�ern, see e.g. Figure 1.1. Concerning the biological
formation process of ridge lines and minutiae there is, to the best of our knowledge, yet
only li�le known. Since the formation takes place during early gestational weeks, data
acquisition is di�cult and biological data is therefore scarce.

Kücken (2007) considered a model for the formation of the orientation �eld with its singu-
larities and the ridge frequency, varying only within a small interval by expanding pa�erns
satisfying suitable partial di�erential equations. �e author notices, that in simulations
minutiae mostly occur in two circumstances: when ridge lines diverge with new ridges in-
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2 Chapter 1 Introduction

serted and when almost parallel ridge lines meet. He further observes that minutiae posi-
tions were quite sensitive to initial conditions and Kücken & Champod (2013) explained this
biologically by small di�erences in the Merkel cell distribution. �ese (random) di�erences
can be very subtle as Newman (1930) noted much earlier: �ere are, however, numerous in-
stances in which the prints of two of more homologous �ngers are so nearly identical as to be
indistinguishable to the naked eye. […] it is possible only by using considerable magni�cation
to discover di�erences in the branching of ridges and breaks in ridge continuity. Di�erences of
this sort, however, are certain to be found, and a�ord an easy means of identi�cation.

Figure 1.1: Two �ngerprints from monozygotic twins and marked minutiae pa�erns (red)
containing 44 minutiae each. Images from Newman (1930), labelled 14 a and 14 b.

Inspired by this, we focus theoretically and empirically on the interaction of minutiae, ori-
entation �eld (OF) and ridge frequency (RF), and argue that orientation �eld divergence and
ridge frequency changes geometrically necessitate minutiae which we hence call necessary
minutiae. Statistical analysis endorses the above mentioned observations of additional ran-
dom minutiae which are independent of the underlying smoothed OF and RF, cf. Figure 1.1
which shows prints of monozygotic twins from Newman (1930). For imprints with similar
OF and RF leading to similar necessary minutiae point pa�erns, these random minutiae
may (as it turns out) carry individuality information and for this reason, we also call them
characteristic minutiae.
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�e theory of spatial point processes provides suitable tools to capture the complex inter-
action structure of minutiae pa�erns which is in�uenced by the OF and RF (leading to an
inhomogeneous spatial distribution) and the discrete structure of the epidermis (leading to
repulsion of points). Within this framework, minutiae pa�erns are assumed to consist of
two sub-pa�erns η ∼ H and ξ ∼ Ξ where η models the minutiae we can explain using OF
and RF information and ξ captures the additional noise minutiae. Both are assumed to be
random to include also external in�uences during the acquisition process such as manner
of imprinting, dryness/ wetness of the �nger, acquisition medium/ resolution or distortion
of the �nger.

�e usage of this model comes along with certain challenges since classical approaches,
both from frequentist and Bayesian statistical analysis, cannot be applied without further
ado. Intractable normalising constants in the density and the lack of knowledge of the allo-
cation of the points to the two processes require the application of Monte Carlo methods.
We provide algorithms which solve for a proposed model the parameter estimation prob-
lem in a classical se�ing and in a Bayesian sense, the la�er meaning that we estimate the
posterior distribution of the model parameters given an observed minutiae pa�ern. �is
includes parameters of the distribution of Ξ and H. Moreover, estimating the distribution
of a label vector encoding the assignment of the minutiae to the two sub-processes can
be obtained following the Bayesian framework, however is not possible with the proposed
frequentist method.

In application to manually (re-)marked �ngerprints our minutiae separating algorithm
(MiSeal) �nds the presence of random minutiae. Furthermore, in an exemplary analysis
of the two imprints of the twins from Figure 1.1 featuring similar OF and RF, we �nd that
these minutiae are indeed characteristic: Without them the minutiae pa�erns become more
similar.

1.2 Literature overview

�e analysis of �ngerprints has a long history, cf. (Scienti�c Working Group on Friction
Ridge Analysis et al., 2011, Chapter 1). �e interest in �ngerprint data, especially for usage
in modern authentication procedures, arose due to the consensus that �ngerprints are dis-
tinct1 and persistent for every individual, are easily collectible and can hence be used for
identi�cation purposes, cf. Galton (1892).

1so far there have never been observed �ngerprints of di�erent �ngers exhibiting the same minutiae pa�ern
and it is very unlikely to occur, cf. Pakanti et al. (2002); Page et al. (2011)



4 Chapter 1 Introduction

Fingerprint image processing and matching �e procedure of comparing two im-
prints of �ngers is called matching and is even nowadays still occasionally done by hand
(e.g. when �ngerprints are used as piece of evidence in a penal process). Automated match-
ing algorithms launched in the late 1990s and 2000s. Most methods, however, are well kept
proprietary secrets of commercial �rms. A publicly available matching scheme based on the
minutiae pa�ern’s geometry was proposed by Cappelli et al. (2010a,b, 2011). Forbes et al.
(2014) presented a Monte-Carlo based algorithm for computing the marginal likelihood ra-
tio for the hypothesis that two observed prints originate from the same �nger against the
hypothesis that they originate from di�erent �ngers using marked point processes. Al-
berink et al. (2014); Neumann & Ausdemore (2019, 2020) critically discuss likelihood-ratio
based matching methods and their applications in forensics.

Modern matching algorithms typically rely on minutiae templates marked by a minutiae
extractor beforehand from digital �ngerprint images, cf. Bansal et al. (2011). �ese images
have to be of su�ciently good quality to produce reasonable results. Hence, preprocessing
techniques are usually applied. �e literature to this is rich; renowned approaches have
been proposed by Hong et al. (1998); Chikkerur et al. (2007); Go�schlich (2011); �ai et al.
(2016) to name just a few. However, hardly any of these papers provide corresponding
so�ware which was hence developed independently for this thesis. More recent algorithms
o�en rely on machine learning based techniques, see e.g. Nixon & Aguado (2019); Zhao et al.
(2020) for an overview. To produce good results, these algorithms, however, require to be
trained on large data bases which are in the se�ing of �ngerprints typically not available
due to privacy constraints. Moreover, Tams et al. (2015) point out an application of minutiae
templates in cryptography called fuzzy vaults.

Formation and individuality As already mentioned in Section 1.1, the biological for-
mation process of minutiae, although already researched cf. e.g. Babler (1991); Kücken &
Newell (2005); Kücken (2007); Kücken & Champod (2013); Burger et al. (2018); Düring et al.
(2019), is still widely an open question. As a starting point, minutiae pa�erns of very sim-
ilar �ngerprints were studied in the literature to identify common features. Fingerprint
similarity is expected to be largest amongst persons with close genetic information, hence
twins’ �ngerprints (especially monozygotic) are o�en considered to this end, see e.g. New-
man (1930); Cummins & Midlo (1976). Indeed, similarity has been established concerning
�ngerprint class/ type. Regarding the minutiae con�gurations, Jain et al. (2002) state that
even �ngerprints of identical twins can be distinguished using a minutiae-based matching
algorithm with only slightly lower accuracy than non-twins, suggesting that also further
factors play a role during formation of minutiae.
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Relation of minutiae to fingerprint features �e connection between minutiae lo-
cations and other �ngerprint features, however, has gained only li�le a�ention in the lit-
erature. �e observation that minutiae cause high local divergence of the ridge �ow �eld
has been used in Nikodémusz-Székely & Székely (1993) to locate them. To the best of our
knowledge, including divergence information in minutiae matching has not been consid-
ered in the literature so far.

Point pa�ern separation Point pa�ern separation problems were previously consid-
ered in Cressie & Lawson (2000); Walsh & Ra�ery (2002) for separating two Poisson pro-
cesses. Redenbach et al. (2015); Rajala et al. (2016) consider a separation problem for sep-
arating a homogeneous Strauss point process from a homogeneous Poisson point process
using Markov-Chain-Monte-Carlo (MCMC) and variational Bayes methods, respectively.
�ese algorithms served as a starting point for a more advanced method that enjoys be�er
mixing and is able to deal with inhomogeneities in the Strauss process.

Fingerprint generation �e development of algorithms to generate arti�cial, realisti-
cally looking �ngerprints has experienced a sharp rise in popularity recently especially
since machine learning based methods became very powerful. First steps have been made
by Cappelli et al. (2002, 2004) which Go�schlich & Huckemann (2014) proved to be well
separable from real �ngerprints. Imdahl et al. (2015) propose a method based on Gabor
�lters, however makes the non-realistic assumption of a constant ridge frequency. More
recent methods rely on variational autoencoders or generative adversarial networks, see
e.g. Bontrager et al. (2018); Cao & Jain (2018); Minaee & Abdolrashidi (2018); Sadegh Riazi
et al. (2020); Wyzykowski et al. (2020). �e literature to this is evolving quickly. For a com-
parison of recent algorithms we refer to Mistry et al. (2019). A major bo�leneck, however,
seems to be the formalisation of realness and its implementation in the cost function of
the networks. Moreover, Mistry et al. (2019) mentions that all models exhibit weak perfor-
mance concerning realistic minutiae distributions. �e analysis of the distribution of real
minutiae point pa�erns is subject of this thesis.

1.3 Outline

�is thesis is structured as follows. In Chapter 2 we introduce the terminology required for
�ngerprint recognition. We outline important features of a �ngerprint and assess notorious
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issues with the considered data. Moreover, we have a look at minutiae pa�erns which are
a central part of this work.

�e main results of this thesis are discussed in Chapter 3. Here, we provide mathemati-
cal essentials on vector analysis and propose a mathematical model for the emergence of
minutiae based on a �ngerprint’s orientation �eld and ridge frequency. A statistical analy-
sis reveals that this model does not capture all the minutiae, but there is a certain amount of
minutiae in a �ngerprint not explained just by its orientation �eld and ridge frequency. We
show later in Chapter 7 that the minutiae “excess” bear the potential of improving match-
ing algorithms and give rise to a certain characteristicness of a �ngerprint making them
more typical for a certain individual. We aim on identifying these minutiae in a separation
model, provide an algorithmic scheme to do so and analyse the ��ed model on some high
quality data.

Chapter 4 provides the mathematical framework for modelling the minutiae pa�erns as
random point pa�erns. We introduce basic concepts for descriptive statistics of point pro-
cesses and provide algorithms for simulation from ��ed models. Moreover, we lay the
mathematical foundation for parameter inference for superpositions of point processes.
To be highlighted should be the algorithm discussed in Section 4.5 for computing a maxi-
mum pseudo-likelihood estimate of the model parameters. To the best of our knowledge,
this is the �rst algorithm to solve parameter inference problems in the superimposed model
from a frequentist point of view.

In Chapter 5 we introduce the reader to Bayesian inference and applications to point pat-
terns. We point out issues arising when we consider Gibbs point processes whose density
includes a normalising constant which is typically not available in practice. A central part
of this chapter will be Markov Chain Monte Carlo (MCMC) algorithms which are employed
to estimate a so-called posterior distribution of the model parameters, i.e. the distribution
of these parameters a�er observing some data and including some prior knowledge which
we have before observing the data.

�e algorithms used for this work are presented in Chapter 6. Here we discuss all methods,
issues and parameter choices for feature extraction of a �ngerprint image. Moreover, we
point out implementation details for the MCMC algorithm used for separation and link to
our published so�ware. �e application of our algorithms to simulated and real �ngerprint
data is subject of Chapter 7.

To conclude, Chapter 8 summarises our achievements, still existing challenges and provides
an outlook for further research.
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Note, that the introduction of certain basics is outsourced to the Appendix A. �ere, we
provide terminology of concepts which are not in the centre of our work, however are
used and might be unfamiliar to the reader. We also like to remark that parts of Section 3.3,
Section 3.4, Section 4.4, Section 6.4 and Chapter 7 have been submi�ed for publication in
Wieditz et al. (2021) and are presented with minor changes.
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Chapter 2

Fingerprint recognition and image
processing

Biometric authentication and identi�cation systems nowadays o�en rely on �ngerprint
information. A major reason for this is that �ngerprints are regarded to be unique for every
individual, they are easily collectable and provide a good level of security. In this chapter,
we will introduce the reader to the thesis-relevant terminology and features considered in
�ngerprint recognition. For a more detailed overview see Maltoni et al. (2009).

2.1 Fingerprint images and global features

A �ngerprint is the reproduction of the exterior appearance of the �ngertip epidermis.
�e most evident structural characteristic of a �ngerprint is a pa�ern of interleaved ridges
and valleys. Fingerprints are usually available to us in the form of digital images. From a
mathematical point of view one can see a �ngerprint image as a function from a two dimen-
sional grid to a pixel space or as a matrix with entries of the pixel space. We assume this
pixel space to be either {0, 1, . . . , 255} (8-bit grey-value images) or {0, 1} (binary images),
cf. Figure 2.1a and 2.1b. In a �ngerprint image ridges are usually dark whereas valleys are
bright, cf. Maltoni et al. (2009).

Fingerprint images can be acquired in several ways. In law enforcement applications one
o�en uses digitised inked imprints where the subject’s �nger is either pressed or rolled on
a paper card which is then scanned using a general purpose scanner. �e possibility of
rolling the �ngerprint allows to capture the �ngerprint in its entirety. Nowadays, �nger-
prints images are usually obtained as live images using a digital scanner; no ink is required.
Depending on the technique, the individual has to e.g. touch a surface (e.g. a glass prism),

9



10 Chapter 2 Fingerprint recognition and image processing

sweep its �nger over a sensor or the �nger is photographed by a digital camera from a
short distance (direct reading). We refer to (Maltoni et al., 2009, Chapter 2) for a detailed
discussion about �ngerprint sensing technologies.

(a) (b) (c) (d)

Figure 2.1: From le� to right: Example of an 8-bit grey-valued �ngerprint image (a) (imprint
7 6 of DB2 in FVC2002 from Maio et al. (2002)) and its binarised version (b). �e area not
belonging to the region of interest (ROI) is indicated in turquoise. Although looking di�erent,
image (c) (imprint 7 5) corresponds to the same �nger as (a) (intra-class variability) whereas
(d) is an image from a di�erent �nger (imprint 101 5) looking similarly to (a) (inter-class
similarity).

�e most typical application of �ngerprint images is for the purpose of veri�cation or iden-
ti�cation of an individual. Here, veri�cation means that we compare a �ngerprint image of
an individual with one (or several) previously captured reference images. In contrast, an
identi�cation system recognises an individual by searching an entire database for a match
between the captured image and a stored one. �e process of comparing two �ngerprint
images with the aim of computing a similarity score is referred to as �ngerprint matching.

Images of �ngerprints can exhibit the problem of small di�erences between impressions of
di�erent �ngers (low inter-class variance, see Figure 2.1a and 2.1d) and large di�erences
between images of the same �nger (large intra-class variance, see Figure 2.1a and 2.1c).
Hence, beneath the actual image additional features are used to make �ngerprints more
distinguishable. �ese features can be ordered hierarchically into three levels depending
on the scale at which the �ngerprint is considered. Hereby the robustness of the features
decreases and their distinctiveness increases with the level. Level 1 (or global) features
can be extracted even from noisy images and they are mostly used to align or classify
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�ngerprints. Level 2 (or local) features can be reliably extracted as long as the quality of
the image is not too bad. �ese features, especially minutiae point pa�erns (cf. Section 2.2),
are mainly used for matching, since they have a good trade-o� between robustness and
distinctiveness. Level 3 features are hard to extract and are easily contaminated by noise,
however, they are highly distinctive and can already be used for matching, if an image only
contains a rather small part of the whole �ngerprint.

Typical global features induced by the overall global ridge �ow pa�ern are the orientation
�eld and the ridge frequency. �e orientation �eld (OF) assigns at each point (x, y) the angle
θ(x, y) that the �ngerprint ridges, crossing through an arbitrarily small neighbourhood
around that point, form with the horizontal axis. Since this is only possible on a scale large
enough to identify the ridges, this is clearly a global feature. Note, that since �ngerprint
ridges are not directed, this angle is only well-de�ned up to rotation by 180◦ and is hence
is an element of, say, [−π

2
, π

2
). We store the local orientation of a �ngerprint image on a

la�ice induced by the pixel grid in a matrix O = (θ(i, j))i,j and refer to this matrix as the
orientation image. An example is depicted in Figure 2.2a.

(a)

0.08

0.11

0.14

0.17

0.20
ϕ

(b) (c)

Figure 2.2: Global and local features of a loop-type �ngerprint from (Maio et al., 2002, DB2,
image 105 2). Le�: Orientation image (violet) and estimated singularities (green and red).
� denotes a core, ∆ a delta. Middle: Ridge frequency image as heat map (red indicates high
values whereas blue means low ridge frequency). Right: Minutiae pa�ern (red).

�e orientation �eld usually features discontinuities, i.e. points at which a direction cannot
be assigned in the manner described above. �ese discontinuities, so-called singularities,
are classi�ed into cores and deltas. Penrose (1969), de�nes them as follows. A core (or loop)
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is formed when the parallel �eld turns through 180◦, i.e. the �eld turns around and meets
itself, cf. the diamond (�) in Figure 2.2a. A delta (or triradius) is a point where three ridges
meet, cf. the triangle (∆) in Figure 2.2a. We will formalise this using the Poincaré index in
Chapter 3. If not explicitly stated otherwise, we will adhere to the notation that cores and
deltas are indicated with diamonds (�) and triangles (∆) for the rest of this thesis.

Using singularities, �ngerprints are classi�ed into classes, cf. Figure 2.3, such as loops
(making up about 65.5% of the population’s �ngerprint pa�erns), whorls (about 27.9%) and
arches (only about 6.6%); numbers from Wilson et al. (1994) which analysed the data base
Watson & Wilson (1992). A typical application of this classi�cation in �ngerprint matching
is to reduce the size of the database to be searched.

Orientation �elds have been widely researched for a long time. Global mathematical mod-
els go back at least to Sherlock & Monro (1993). �ey introduced the zero-pole model, which
uses just the position of the singularities to synthesise a �ngerprint’s orientation image.
Improvements of this model were made by Vizcaya & Gerhardt (1996) by using piecewise
linear approximations around singularities to adjust the zero and pole’s behaviour. A non-
linear model based on quadratic di�erentials was proposed by Huckemann et al. (2008),
extending the zero-pole model and introducing control parameters with clear geometrical
meaning such as e.g. singularity positions, cf. also Remark 3.5. Apart from these, there exist
a variety of further approaches for modelling orientation �elds. We refer to (Maltoni et al.,
2009, Section 3.2) for a more detailed overview.

�e local ridge frequency (RF) ϕ(x, y) in a point (x, y) is the number of ridges per unit
length (for this thesis we measure lengths in pixels) along a hypothetical line segment
centred at (x, y) and orthogonal to the local ridge orientation θ(x, y) in (x, y), cf. (Maltoni
et al., 2009, Section 3.3). It varies not only across di�erent �ngers but may also do so on
the same �nger, cf. Figure 2.2b or Gutiérrez-Redomero et al. (2008); Nayak et al. (2010) for
an analysis on larger data bases. Closely related is the inter-ridge distance which is the
distance from a given ridge to a neighbouring one. It is locally de�ned as the length of the
segment connecting the centres of the two ridges along the line perpendicular to the �rst
one, cf. Kovacs-Vajna et al. (2000), and is hence the reciprocal of the ridge frequency. As
the local orientation is in practice only available on a digital la�ice, so is the local ridge
frequency. It is stored in a matrix, called the frequency image F = (ϕ(i, j))i,j .

Whereas the extraction of global features of good quality images is already largely resolved,
it is still an open issue for medium and low-quality �ngerprint images. An overview about
the literature of algorithms for the computation of orientation images, singularities, and
ridge frequency images is provided in (Maltoni et al., 2009, Sections 3.2, 3.3 and 3.5). �e
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Figure 2.3: Fingerprint classes (from le� to right): arch, le� loop, right loop (top); tented arch,
whorl, twin-loop (bo�om). Note that there is an invisible delta further to the le� of the last
image. Original images taken from Maio et al. (2002).

algorithms used for our purposes require su�ciently good image quality and are presented
in Chapter 6.

In practice, it is moreover o�en useful to separate the �ngerprint image into the foreground
or region of interest (ROI), cf. Figure 2.1b, containing �ngerprint information, and the back-
ground (not containing �ngerprint information), to avoid feature extraction from noisy
areas which o�en belong to the background. �is procedure is called segmentation. Some
authors use this term for the transformation of a greyscale image into a black and white
image. We will refer to that procedure to as binarisation to distinguish between the two
terms. For further details on segmentation and binarisation we refer to (Maltoni et al., 2009,
Section 3.4), �ai et al. (2016) and the references therein.

2.2 Local features and fingerprint matching

For identi�cation purposes global features are o�en not distinctive enough. Modern auto-
matic systems for �ngerprint comparison use hence also local features such as minutiae.
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Minutiae (from the Latin word minutus meaning minute detail) are referred to discontinu-
ities of the ridge lines such as ridge endings or bifurcations, cf. Figure 2.2c. �e analysis of
minutiae goes back at least to Galton (1892). In forensics, they are further distinguished but
for our work we will adhere to the two types (endings and forks) mentioned above. A good
quality �ngerprint typically contains about 40–100 minutiae whereas in latent or partial
prints, e.g. taken from crime scenes, the number is much less (approximately 20 to 30), cf.
Zaeri (2011). However, the spatial and angular coincidence or correspondence of only a
small number of minutiae (e.g. 12–15) is o�en su�cient to claim with high con�dence that
two imprints originate from the same �nger.

To obtain good matching results a reliable extraction of �ngerprint minutiae is vital. Com-
mon so�ware for this purpose are for example Veri�nger or Innovatrics on the commer-
cial side or open source algorithms such as Mindtct (short for minutiae detector), cf. Garris
et al. (2001), and FingerJetFX OSE2. Minutiae detection has already been widely researched,
however, is still an open issue for medium and bad quality imprints. For an overview of
the literature we refer to (Maltoni et al., 2009, Section 3.7) and Bansal et al. (2011). �e
minutiae pa�erns used for our work are hand-marked to extract all true minutiae and to
avoid extraction of spurious minutiae, i.e. minutiae which have been automatically marked
but erroneously.

�e aim of �ngerprint matching is, given two �ngerprint images, to determine whether
they belong to the same �nger (binary decision) or to return a degree of similarity (e.g.
a score between 0 and 1). Matching algorithms usually work with an extracted minutiae
template, sometimes augmented with various features from the �ngerprint such as the class
or a local direction (pointing into the direction of the newly inserted ridge or newly inserted
valley as per ISO/IEC 19794–2:2011), cf. Figure 1.1 or Figure 2.2c, where the direction of
the minutiae is indicated with a bar. Hence a reliable preprocessing algorithm is required.
Even for good quality images, matching has turned out to be quite challenging due to the
high intra-class variance (see Figure 2.1) caused e.g. by displacement, rotation, distortion or
partial observation of the �nger. In the literature, a large number of algorithms have been
proposed. For an overview, we refer to (Maltoni et al., 2009, Section 4.1). For our work we
use the minutiae cylinder code, a matching algorithm proposed by Cappelli et al. (2010a)
and enhanced by Cappelli et al. (2011) which turned out to perform reasonably well for our
purposes.

It turns out that there is a relation between orientation image, ridge frequency image
and minutiae. In Feng & Jain (2011) and Cao & Jain (2015) it was shown that the origi-

2https://github.com/FingerJetFXOSE/FingerJetFXOSE

https://github.com/FingerJetFXOSE/FingerJetFXOSE
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nal greyscale image, and hence also orientation and ridge frequency image, can be recon-
structed to large extent just from the minutiae template (i.e. minutiae locations and orien-
tation). A central question of this thesis will be whether the minutiae pa�ern can be fully
explained by the orientation and frequency image. �is will be the subject of Section 3.3.
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Chapter 3

Necessary and random minutiae

�is chapter is dedicated to the derivation of an analytical relation between the estimated
number of minutiae in a subregion of a �ngerprint’s region of interest, its orientation �eld
and its ridge frequency. We like to outline this connection with a motivating example.

(a) (b) (c)

Figure 3.1: Divergence of orientation �eld (a) and ridge frequency (b) resulting in minutiae
(green circles). Panel (c) shows a case of minutiae not captured by divergence of ridges on the
scale considered. Image sections obtained from Figure 2.1b.

Example 3.1. Figure 3.1 shows three typical situations in which minutiae occur. On a
small scale, one can determine the number of minutiae via ridge counts. In Figure 3.1a
for instance, we have 7 ridges “entering” the patch on the lower and le� side and 9 ridges
“leaving” the patch on the upper and right side, resulting in |9−7| = 2 minutiae. Similarly,
in Figure 3.1b we have 6 ridges “entering” the patch on the upper and le� side and 7 ridges
“leaving” the patch on the lower and right side, resulting in |6− 7| = 1 minutia. While in
Figure 3.1a the occurrence of new ridges can be mainly reduced to the divergence of the
ridge lines, the reason in Figure 3.1b seems to be the thinning (or widening) of the ridges.

17
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�ese phenomena can be mathematically described via the divergence of the orientation
�eld and the ridge frequency, respectively, leading to the model proposed in this chapter.

On the given scale of observation, the minutiae in Figure 3.1c cannot be captured with the
ridge counting approach; they carry information beyond the orientation �eld and ridge
frequency. �ese minutiae o�en belong to one of the rare types (e.g. lakes, islands, spurs,
crossovers or like here, an independent ridge), see also (Maltoni et al., 2009, p. 99), and are
highly distinctive, making them very interesting from a forensic point of view.

Our aim is hence not only to estimate the number of minutiae in a certain part of the �nger-
print explained by orientation �eld and ridge frequency information, but also to identify
minutiae which exist beyond these two quantities. �e la�er will be part of Chapter 4 and
Chapter 7.

In Section 3.2 we model the orientation �eld (OF) and ridge frequency (RF) in the context
of two-dimensional vector �elds; we highlight a link between the divergence of OF and RF
and the occurrence of minutiae of a �ngerprint induced by this model in Section 3.3. In
Section 3.4 we validate the model for a number of high quality �ngerprints. In the following
Section 3.1 we recall some important preliminaries on vector analysis.

3.1 Preliminaries on vector analysis

In the following, let X ⊆ R2 be a compact set that models the region of interest (i.e. the
part of the image containing the �ngerprint), and assume that A ⊆ X is a subset of X with
piecewise smooth boundary, i.e. ∂A is the image of a piecewise smooth curve γ : [a, b]→ R2

for −∞ < a < b <∞. For this thesis, all vectors are assumed to be column vectors.

De�nition 3.2 (Vector �eld, divergence). A (vector-valued) mapping

~F : R2 → R2,

(
x

y

)
7→
(
F1(x, y)

F2(x, y)

)

with Fi(x, y) : R2 → R, i = 1, 2 is called vector �eld . It is referred to as k-times di�eren-
tiable, Ck or smooth on A ⊆ R2 if its components Fi : A→ R are k-times di�erentiable, Ck
or smooth, respectively. For a di�erentiable vector �eld ~F : A→ R2 we de�ne via

div ~F : A→ R,

(
x

y

)
7→ ∂F1

∂x
(x, y) +

∂F2

∂y
(x, y)

its divergence. Denoting by J ~F the Jacobian of ~F , we have div ~F (x, y) = tr J ~F (x, y).
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Remark 3.3 (Product rule). �e divergence operator

div : C1(R2 → R2)→ C(R2 → R), ~F 7→ div ~F

is linear and satis�es for di�erentiable functions ~F : A→ R2 and ϕ : A→ R the following
product rule:

div
(
ϕ~F
)

= ϕ div ~F +
〈
∇ϕ, ~F

〉
(3.1)

where ∇ϕ denotes the gradient of ϕ, 〈·, ·〉 is the Euclidean scalar product and (3.1) is to be
understood point-wise.

For a di�erentiable vector �eld, the total divergence within A can be computed via a line
integral over the boundary ∂A. Recall, that for an integrable function f : A → R the line
integral (of �rst kind) of f along a positively oriented3 boundary curve γ : [a, b] → ∂A is
de�ned as ∫

∂A

f(z) dz :=

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))‖γ̇(t)‖ dt.

�e divergence theorem provides now the following relation between the integrated diver-
gence of a vector �eld ~F within a set A and a line integral over the boundary ∂A.

�eorem 3.4 (Gauss’ divergence theorem). Let A ⊆ R2 be a bounded, closed region with
piecewise smooth boundary ∂A and denote by ~n the (piecewise well-de�ned) outwards point-
ing4 unit normal vector ~n : ∂A → S1. �en, for a di�erentiable vector �eld ~F : A → R2

holds ∫∫
A

div ~F (z) dz =

∫
∂A

〈
~F (z), ~n(z)

〉
dz. (3.2)

Physically speaking, the volume integral over all the sources and sinks within A is equal to
the net �ow through the boundary ∂A.

Proof. For a proof we refer to (Amann & Escher, 2009, �eorem XII.3.15 and Remark XII.
3.16 (c)) or (Adams & Essex, 2018, �eorem 16.7) for a more direct formulation. �

3when travelling along γ, the interior of A is always to the le�
4i.e. for a parametrisation γ of ∂A holds 〈γ̇(t), ~n(γ(t))〉 = 0 for all t and ~n points towards the comple-

ment Ac; in points of discontinuity of γ, ~n can be arbitrarily chosen
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3.2 A model for global features of fingerprints

3.2.1 Orientation fields

For a �ngerprint, we model the orientation �eld induced by its ridge line pa�ern by a map-
ping θ : A → RP 1 from A to the real projective line, i.e. the space of orientations of lines
in R2. In fact, RP 1 contains angles between −π

2
and π

2
. Topologically, RP 1 is a circle. We

assume that θ is well-de�ned, non-vanishing and C2 apart from a �nite number of isolated
singularities.

For every orientation θ0 ∈
[
−π

2
, π

2

)
there are two well-de�ned directions, namely the orig-

inal orientation θ0 ∈
[
−π

2
, π

2

)
interpreted as direction and the direction θ0 + π. In simply

connected regions A ⊆ X not containing any of the singularities, we can select directions
from θ such that the vector �eld ~F := ~FA with

~F : A→ S1, z 7→
(

cos θ(z)

sin θ(z)

)

is twice di�erentiable, see Section 6.3. In presence of singularities the assignment of a
continuous direction ~F = ~FX globally, however, is not possible, cf. (Sherlock, 2004, �eo-
rem 5.3.3.1).

Remark 3.5 (�adratic di�erentials). Huckemann et al. (2008) presents a low-dimensional
parametric model for orientation �elds based on quadratic di�erentials (QD), i.e. trajectories
z : R→ C of the initial value problem

Q(z(t))ż(t)2 = α(t), z(0) = z0 (3.3)

for a smooth, positive function α : R→ R++ and a rational functionQ : C→ R+∪{+∞}.
Here, the ridge pa�ern is formed by considering solution curves to di�erent initial values
z0 ∈ C. More precisely, for a given di�erential equation Q(z)ż2 = α, Q 6= 0,+∞, the
orientation �eld is given via the solution curves as{(

z(t),
ż(t)2

|ż(t)2|

)
∈ C× RP 1 : Q(z(t))ż(t)2 = α(t), Q(z(t)) 6= 0,∞, t ∈ R

}
.

�e authors state, that α only changes the parametrisation of the solution curves, however
not their qualitative behaviour. Remarkably, in the QD model the singularities of the ori-
entation �eld have a clear meaning with respect to Q: zeroes of Q result in deltas in the
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ridge pa�ern, poles result in cores and whorls. �is gives rise to an alternative proof of
Penrose’s formula, cf. Penrose (1969):

no. of deltas + 1 = no. of loops + no. of �ngers. (3.4)

In particular, for one considered �ngerprint the number of deltas equals the number of
cores, even though in applications some singularities may not be observed within the cap-
tured �ngerprint region.

Fi�ing a QD to a given �ngerprint is possible provided the singularities are given. However,
QDs o�en deviate from the ground-truth ridge �ow on a local scale due to the small number
of model parameters. An extended version of the QD model introducing local correction
points is presented in Go�schlich et al. (2016). Both approaches, however, rely on a reliable
extraction of singular points. Without knowledge about the OF this approach can hence
only be applied by le�ing an expert mark the singularities by hand; automation is thus only
possible to a limited extent. We will discuss the computation of OF and its singularities in
Chapter 6 and present a fully-automated method there.

For the rest of this section, assume the orientation �eld to be known. �en, the presence of
singularities of an OF is indicated by the Poincaré index, cf. e.g. (Fulton, 2013, Chapter 7).

De�nition 3.6 (Poincaré index). Let θ : A →
[
−π

2
, π

2

)
be an orientation �eld which is

di�erentiable except possibly in z0 ∈ A. Moreover, let γ : [0, 2π] → ∂A be a positively
oriented, piecewise smooth, closed curve such that z0 is always to the le� of γ. �en, the
Poincaré index of θ in z0 is de�ned as

indexθ(z0) :=
1

2π

∫ 2π

0

〈∇θ(γ(t)), γ̇(t)〉 dt.

Note, that the Poincaré index does not depend on the particular choice of the curve γ but
only on the orientation �eld θ, cf. (Fulton, 2013, Lemma 7.1).

Henceforth, we de�ne for a vector z = (x, y)> ∈ R2 its argument arg z := ∠(z, (1, 0)>)

as the angle z encloses with the x-axis which can be computed e.g. via the arctan2(y, x)

function, see Section 6.1.

Example 3.7 (Poincaré index of orientation �eld singularities). We consider orientation
�elds θ : A →

[
−π

2
, π

2

)
on A = [−1, 1]2 and are interested in the singularities of the

induced vector �eld ~F : A→ S1, ~F (z) = (cos θ(z), sin θ(z))>.
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(a) (Regular �eld) Let θ ≡ 0 for z ∈ A. �en, ~F ≡ (1, 0)> features a constant direction,
cf. Figure 3.2a. Clearly, indexθ(z) = 0 for all z ∈ A, i.e. every point is a regular point.

(b) (Core) �e �eld θ(z) = 1
2

arg z models an orientation �eld with a core in the origin
z0 = 0. �e corresponding vector �eld ~F (z) =

(
cos
(

1
2

arg z
)
, sin

(
1
2

arg z
))> is

depicted in Figure 3.2b. Note also the discontinuity of ~F on the negative real line.
�e derivative of θ is given as

∇θ(z) =

(
∂
∂x

1
2

arctan
(
y
x

)
∂
∂y

1
2

arctan
(
y
x

)) =
1

2

1

x2 + y2

(
−y
x

)
=

1

2‖z‖2

(
−y
x

)
. (3.5)

(a) (b)

(c) (d)

Figure 3.2: Vector �elds featuring no singularity (a) and singularities in the origin of core-
type (b), delta-type (c) and whorl-type (d), respectively.
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Let γ(t) = (cos(t), sin(t))> which is a positively oriented, smooth, closed curve
enclosing z0 = 0 and velocity γ̇(t) = (− sin(t), cos(t))>. From (3.5) now follows
with ‖γ(t)‖ = 1 that

〈∇θ(γ(t)), γ̇(t)〉 =
1

2
((− sin(t))(− sin(t)) + cos(t) cos(t)) =

1

2
(3.6)

and hence, indexθ(0) = 1
2π

∫ 2π

0
1
2

dt = 1
2
.

(c) (Delta) �e orientation �eld θ(z) = −1
2

arg z exhibits a delta-type singularity in z0 =

0. Figure 3.2c shows the corresponding vector �eld

~F (z) =

(
cos
(
−1

2
arg z

)
sin
(
−1

2
arg z

)) =

(
cos
(

1
2

arg z
)

− sin
(

1
2

arg z
)) .

Note that θ is the negative of (b); ~F , however, changes only its sign in the second
component, leading to the di�erent directional behaviour.

�e linearity of ∇θ and the scalar product implies that in the calculations (3.5) and
(3.6) only the sign changes yielding indexθ(0) = −1

2
.

(d) (Whorl) Let θ(z) = arg z. �en, θ has a whorl-type singularity in z0 = 0. �e
corresponding vector �eld ~F (z) = (cos (arg z) , sin (arg z))> circulates around the
origin, see Figure 3.2d. Since∇θ(z) = 1

‖z‖2 (−y, x) we obtain, analogously to (b) that
indexθ(0) = 1.

In fact, the Poincaré index is always an integer multiple of 1
2

and the following relation to
singularities of orientation �elds hold, cf. Sherlock & Monro (1993):

�eorem 3.8. For an orientation �eld θ : A→
[
−π

2
, π

2

)
which is di�erentiable except possi-

bly in z0 ∈ A holds:

z0 is a


regular point

delta
core

whorl

 of θ ⇐⇒



indexθ(z0) = 0,

indexθ(z0) = −1
2
,

indexθ(z0) = 1
2
,

indexθ(z0) = 1.

Moreover, Kawagoe & Tojo (1984) note that in a �ngerprint Poincaré indices of higher order
do not occur.
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Bazen & Gerez (2002) pointed out, that, using Green’s theorem, cf. �eorem A.1, the Poincaré
index can be computed as a surface integral over the curl of the derivative of the orientation
�eld. A mathematically rigorous proof is provided in the following �eorem 3.9. Recall,
that the curl of a di�erentiable vector �eld ~F : A→ R2 is de�ned as

curl ~F : A→ R,

(
x

y

)
7→ ∂F2

∂x
(x, y)− ∂F1

∂y
(x, y).

�eorem 3.9. Let A ⊆ R2 be a closed, compact set with piecewise smooth boundary and θ
be twice di�erentiable except possibly in z0 ∈ A. �en,

indexθ(z0) =
1

2π

∫∫
A

curl∇θ(z) dz. (3.7)

Proof. Let γ : [0, 2π]→ A be a positively oriented, piecewise smooth, closed curve enclos-
ing z0 as in De�nition 3.6. Under the given assumptions, Green’s theorem, see �eorem A.1
on p. 151, applied to∇θ yields

indexθ(z0) =
1

2π

∫ 2π

0

〈∇θ(γ(t)), γ̇(t)〉 dt

=
1

2π

∫∫
A

∂∇θ2

∂x
(x, y)− ∂∇θ1

∂y
(x, y) d(x, y). (3.8)

Rewriting (3.8) we obtain

indexθ(z0) =
1

2π

∫∫
A

∂

∂x

∂

∂y
θ(x, y)− ∂

∂y

∂

∂x
θ(x, y) d(x, y) (3.9)

and hence the claim follows. Notice, that ifA contains no singular point and θ is C2 onA, we
can interchange the order of the derivatives in (3.9) yielding indexθ(z0) = 0 immediately.
However, if z0 is a singularity, this is in general not true anymore. �

3.2.2 Local ridge frequency

�e �ngerprint ridge pa�ern features moreover a ridge frequency which in a point z ∈ X

is the number of ridges per unit length along a hypothetical segment centred at z and
orthogonal to θ(z), cf. Section 2.1. �is frequency varies across di�erent �ngers and may
also noticeably vary across di�erent regions of the same �ngerprint. Notably, women tend
to have a slightly higher ridge frequency on average than men, see e.g. Gutiérrez-Redomero
et al. (2008) for a study on 200 Caucasian men and women.
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d

` = 1

d

d

Figure 3.3: Bu�on’s needle problem for a parallel grid of lines with distance d apart from
each other. �e centre (×) of the needles (blue) are thrown on the plane uniformly at random
such that the needles land orthogonal to the grid. A needle crosses the line pa�ern if the centre
lands in a band of width 1 centred around the grid lines (grey shaded for the middle grid line).
�e do�ed lines indicate a strip of width d around the middle grid line.

For our model, let d : A ⊆ X → (1,∞) be a C2-function. Intuitively, d models the inter-
ridge distance in a regular region. Note that d is bounded from below by one (unit) which
is reasonable regarding the fact that two di�erent ridge lines have at least a distance of one
unit (e.g. pixels; otherwise they would be regarded as the same).

Consider now for z ∈ A a la�ice of parallel grid lines5 with spacing d(z) to both sides. �en,
we de�ne ϕ(z) as the probability that a needle of unit length ` = 1 thrown uniformly at
random upon the grid such that the needle is orthogonal to the la�ice cuts a grid line, see
Figure 3.3. We call the function ϕ : A → [0, 1] induced in this way the ridge frequency
(RF). �is is a variation of the classical Bu�on needle problem with preferred orientation of
the needles. For an analysis of variations of the Bu�on needle problem we refer to Watson
(1978), Chung (1981) and the references therein.

As a ma�er of fact we have ϕ(z) = 1
d(z)

for all z ∈ X and hence ϕ is likewise C2 on X

apart from isolated singularities. To see this, we �rst note that, since the length of needle
` = 1 < d(z) is strictly smaller than the spacing of the grid, a needle can cut at most one
line. Hence, we can restrict our analysis on a strip of width d(z) around one grid line, cf.
the do�ed strip around the middle grid line in Figure 3.3. Looking on this illustration it
becomes apparent that a needle crosses the middle line if and only if its centre is within 1

2

units of either side of the strip. Adding 1
2

+ 1
2

from both sides and dividing it by the total
width d(z) of the strip yields ϕ(z) = 1

d(z)
.

5later on, these will be the �ngerprint’s ridge lines and the needle has to be thrown orthogonal to the local
orientation
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Note that for practical purposes, the grid is already given by the ridge lines. �us, the
orientation of the needles changes according to the local ridge orientation θ such that it
is always orthogonal to θ. Moreover, if we assume a constant inter-ridge distance d(z) ≡
d > 1 on X and thus ϕ(z) ≡ 1

d
, then for a curve γ of length L(γ) ∈ (0,∞) we have that

1

L(γ)

∫
γ

ϕ(z) dz =
1

L(γ)

(
L(γ)

d

)
=

1

d

is the number of ridges crossing a curve orthogonal to the local ridge orientation at unit
length, i.e. our model coincides with the intuitive de�nition from Chapter 2 in this case. A
method for computing the ridge frequency in practice is presented in Section 6.2.

�e mathematical concepts of orientation �eld θ and local ridge frequency ϕmotivate now
the following de�nition. �is is further illustrated in the Examples 3.11 and 3.12 further
below.

3.3 A formula for necessary minutiae

De�nition 3.10 (Necessary minutiae number). Let A ⊆ X be simply connected, compact
with piecewise smooth boundary ∂Awith (piecewise well-de�ned) outwards pointing nor-
mal ~n : ∂A → S1. Assume that A does not contain any of the singularities of ~F and let
ϕ : A→ (0, 1) twice di�erentiable. We call

m(A) :=

∣∣∣∣∫
∂A

ϕ(z)
〈
~F (z), ~n(z)

〉
dz

∣∣∣∣ (3.10)

the (usually non integer-valued) number of geometrically necessary minutiae inA, for short
the necessary minutiae number .

As A contains no singularities, ridges near A carry a common directional �ow induced by
~F = ~FA, cf. Section 3.2.1. �en, the necessary minutiae number m(A) counts the absolute
di�erence of numbers of ridges entering A and leaving A, each weighted by the cosine
of the angle between ridge and outwards pointing normal (counted fully if they intersect
the boundary of A perpendicularly). Taking the absolute value of the di�erence provides
independence of the particular �ow direction ~F . �usm(A) counts the number of minutiae
necessary due to the geometry of the OF and the RF, see also Figure 3.4. Minutiae in A

annihilating each other, e.g. due to a ridge beginning and ending in A, are not counted.
Hence, De�nition 3.10 is a mathematically tangible generalisation of the ridge counting
approach presented in Example 3.1.
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Example 3.11 (Orientation �eld divergence). Let ε > 0 and consider X = {z = (x, y) ∈
R2 : ‖z‖ ≥ ε} and ~F : X → S1, z 7→ z

‖z‖ pointing radially away from the origin. For
z0 ∈ X and ε < r < R consider an annular sector

A :=
{
z ∈ R2 :

∣∣∠(z, z0)
∣∣ ≤ α, r ≤ ‖z‖ ≤ R

}
(3.11)

of opening angle α ∈ [0, π
2
].

z00 r R

A

γ2

γ3

γ4

γ1
α

α

~F

d
♦ ♦

♦

♦

(a)

0 r Rz0

A

γ2

γ3

γ4

γ1
α

α

~F
d

♦

(b)

Figure 3.4: Ridge pa�ern within an annular sector A (green) around z0 (on the �rst axis
between r and R) generated by the OF ~F : z = (x, y) 7→ (x,y)

‖z‖ (le�) and the �eld ~F : z =

(x, y) 7→ (y,−x)
‖z‖ (right), which is orthogonal to the �eld on the le�. �e number of minutiae in

A is given by the number of new ridges emerging in A (♦).

Figure 3.4 shows the situation for a nearly constant inter-ridge distance d(z) ≈ d, thus
ϕ(z) ≈ 1

d
, where one ridge line enters from the le� and �ve ridge lines leave on the right,

giving rise to four minutiae (marked with ♦) inside A. Along the circular arcs γ1 (of length
2αr) and γ3 (of length 2αR) the outwards pointing normal ~n of ∂A is �rst antiparallel and
then parallel to the �eld, while on the radial arcs γ2 and γ4 the outwards pointing normal
~n of ∂A is orthogonal to the �eld. With ϕ(z) = 1

d
, this gives

m(A) = 2α
R− r
d

.
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Indeed, with

∂F1

∂x
(x, y) =

∂

∂x

(
x√

x2 + y2

)
=

y2

(x2 + y2)3/2
,

∂F2

∂y
(x, y) =

∂

∂y

(
y√

x2 + y2

)
=

x2

(x2 + y2)3/2
,

we have simply div ~F (z) = 1
‖z‖ , and in the presence of OF divergence only, introducing

polar coordinates, we obtain

∫∫
A

ϕ(z) div ~F (z) dz =
1

d

∫∫
A

1

‖z‖ dz =
1

d

∫ R

r

∫ α

−α

1

ρ

∣∣∣∣∣det

(
cosψ sinψ

− sinψ cosψ

)∣∣∣∣∣ dψ dρ

= 2α
R− r
d

.

Assuming that there were fewer than four minutiae observed in Figure 3.4a, then fewer
than �ve ridge lines would cross γ3. �is would necessitate a lower ridge frequency on γ3

than on γ1, yielding 〈∇ϕ(z), ~F (z)〉 < 0 < div ~F (z), so that the OF divergence would be
cancelled partially (or in total) by the RF divergence.

Example 3.12 (Ridge frequency divergence). With X and A from Example 3.11, consider
now the �eld ~F : X → S1, z = (x, y) 7→ (y,−x)

‖z‖ , which is perpendicular to the �eld from
Example 3.11, cf. Figure 3.4b. Since

∂F1

∂x
(x, y) =

−xy
(x2 + y2)3/2

= −∂F2

∂y
(x, y),

this �eld is divergence free and for constant ridge frequency ϕ(z) = 1
d

we do not observe
any minutiae in A, i.e.

m(A) =

∣∣∣∣∫
γ4

ϕ(z) dz −
∫
γ2

ϕ(z) dz

∣∣∣∣ = 0. (3.12)

Indeed, now the �eld is orthogonal to the outwards pointing normals of ∂A along the
circular arcs γ1 and γ3 while it is parallel and antiparallel, respectively, on the radial arcs
γ2 and γ4, which are of equal lengths, so their contributions to ϕ(z)〈~F (z), ~n(z)〉 cancel.

If a minutia was observed within A, then it would be due to the RF divergence of the non-
constant RF, namely of RF higher on γ2 than on γ4, as depicted with the do�ed ridge in
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Figure 3.4b. Assume for instance ϕ|γ4 ≡
1
d

and ϕ|γ2 ≡
2
d

i.e. the distance between ridges
on γ4 is d (cf. Figure 3.4b) but only d

2
on γ2. �en, similarly to (3.12), we obtain

m(A) =
2

d

∫
γ4

dz − 1

d

∫
γ2

dz =
R− r
d

.

Hence, by doubling the ridge frequency, we obtain 1
d
(R − r) new minutiae which corre-

sponds to one minutiae for every new line inserted.

For a general case we can split the integral from (3.17) in the following way. Applying the
divergence theorem, cf. �eorem 3.4 and the product rule (3.1), we obtain∫

∂A

〈
ϕ(z)~F (z), ~n(z)

〉
dz =

∫∫
A

div
(
ϕ~F
)

(z) dz

=

∫∫
A

ϕ(z) div ~F (z) dz +

∫∫
A

〈
∇ϕ(z), ~F (z)

〉
dz, (3.13)

yielding

m(A) =

∣∣∣∣∫∫
A

ϕ(z) div ~F (z) dz +

∫∫
A

〈
∇ϕ(z), ~F (z)

〉
dz

∣∣∣∣ . (3.14)

�e �rst term, ∫∫
A

ϕ(z) div ~F (z) dz, (3.15)

captures the e�ect of the OF divergence, whereas the second term,∫∫
A

〈
∇ϕ(z), ~F (z)

〉
dz, (3.16)

captures the RF divergence.

It may happen that, following the �eld in one direction, the inter-ridge distances decrease
as the �eld lines converge (e.g. lines and the spaces between them get thinner). �en, RF
divergence and OF divergence have di�erent signs, nearly cancelling each other, yielding
m(A) ≈ 0. �e minutiae number is always non-negative due to the absolute values taken
in (3.10) and (3.14), in particular making the sum of divergences in (3.14) independent of
the speci�c direction ~F of θ chosen, cf. Section 3.2.1.

In practice, the OF and RF are only available to us on a digital la�ice. Hence, an approxima-
tion formula for the necessary minutiae number would be desirable. �is will be derived



30 Chapter 3 Necessary and random minutiae

in the following. To this end, recall that a set A ⊆ R2 is called star-shaped with respect
to z0 ∈ R2 if tz0 + (1 − t)z ∈ A for all z ∈ A and t ∈ [0, 1], cf. (Amann & Escher, 2008,
p. 314 �.). We write r(A) := rz0(A) := supz∈A ‖z− z0‖ for the radius of such a set and |A|
for its area (if it is measurable).

�eorem 3.13 (Minutiae divergence formula). Let z0 ∈ X be �xed. Suppose that A ⊆ X is
a compact set that is star-shaped w.r.t. z0, does not contain any of the singularities of ~F and
has piecewise smooth boundary ∂A. �en,

m(A) =
∣∣∣ϕ(z0) div ~F (z0) +

〈
∇ϕ(z0), ~F (z0)

〉∣∣∣ · |A|+ o(|A|) as r(A)→ 0. (3.17)

Proof. We de�ne f : A → R, f(z) := div(ϕ~F )(z) which, cf. (3.13) and (3.14), satis�es
m(A) =

∣∣∫∫
A
f(z) dz

∣∣. �e �rst term on right hand side of Equation (3.17) equals |f(z0)|.
�us, we can reformulate the assertion to∣∣∣∣∫∫

A
f(z) dz

∣∣− |f(z0)||A|
∣∣

|A| −→ 0

as r(A) → 0. Since ϕ ∈ C2(A, (0, 1)) and ~F ∈ C2(A,R2), we have f ∈ C1(A,R) (where
the derivatives of f in the boundary points have to interpreted appropriately). Since A is
compact and does not contain any of the singularities of ~F , we have supξ∈A ‖∇f(ξ)‖ <∞.
By the multivariate mean value theorem, we have for any z ∈ A that

f(z) = f(z0) +∇f(ξz)
>(z0 − z)

for some ξz = z + tz(z − z0) ∈ A (since A is star-shaped w.r.t. z0) and tz ∈ [0, 1]. Hence,
we have∣∣∣∣∣∣∣∣∫∫

A

f(z) dz

∣∣∣∣− |f(z0)||A|
∣∣∣∣ ≤ ∣∣∣∣∫∫

A

f(z) dz − f(z0)|A|
∣∣∣∣

=

∣∣∣∣∫∫
A

f(z0) +∇f(ξz)
>(z − z0)− f(z0) dz

∣∣∣∣
=

∣∣∣∣∫∫
A

∇f(ξz)
>(z − z0) dz

∣∣∣∣
≤ sup

ξ∈A
‖∇f(ξ)‖ sup

z∈A
‖z − z0‖ |A|,

where the inequalities follow from the reverse triangle inequality6 and the triangle inequal-
ity, respectively. Above, ξz is a measurable selection from the measurable set {ξ ∈ A : 0 =

6for x, y ∈ R holds ||x| − |y|| ≤ |x− y|
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f(z)−f(z0)−∇f(ξ)>(z− z0)}, for instance one with minimal �rst and, if necessary, also
with minimal second component. Note, that the �rst term is also bounded for r(A) → 0

due to the monotonicity of the supremum. Now, dividing by |A| and le�ing r(A) → 0

yields the assertion. �

�is theorem motivates the de�nition of the necessary minutiae intensity governed by the
sum of local OF divergence and local RF divergence.

De�nition 3.14 (Intensity of necessary minutiae). For z0 ∈ X outside the set of singular-
ities of ~F , call

µ(z0) =
∣∣∣ϕ(z0) div ~F (z0) +

〈
∇ϕ(z0), ~F (z0)

〉∣∣∣ (3.18)

the intensity of necessary minutiae at z0.

Example 3.15. An example for the OF divergence and RF divergence as well as the re-
sulting intensity of necessary minutiae of Fingerprint 1 1 from (Maio et al., 2002, DB1) is
shown in Figure 3.5d. �e computation is based on the approximation in �eorem 3.13
using ϕ,∇ϕ, ~F , div ~F which, in turn, are obtained by smoothing with a Gaussian kernel.
Recall that we can assign a meaningful C2 direction �eld within patches not containing a
singularity. Patches too close to a singularity (closer than 10 pixels, i.e. approx. one inter-
ridge distance; singularity detection according to the Poincaré index, cf. �eorem 3.8) are
excluded from further consideration (marked violet in Figure 3.5a), because due to large
derivatives of these quantities the approximations are typically bad; see the proof of �eo-
rem 3.13. For details concerning algorithms to compute the intensity we refer to Chapter 6.

Notably, in regions close to minutiae locations, we usually observe a large intensity of nec-
essary minutiae due to the OF divergence, see Figure 3.5b or RF divergence, see Figure 3.5c.
�is was already mentioned in Nikodémusz-Székely & Székely (1993) which used the di-
vergence to locate minutiae. �e question whether there are minutiae beyond the ones
explained by OF and RF divergence as well as a corresponding quantitative analysis has,
to the best of our knowledge, not been considered in the literature so far. �is gives rise to
the study in the following Section 3.4.
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Figure 3.5: OF divergence (b) and RF divergence (c) of Fingerprint 1 1 (a) from DB1 of Maio
et al. (2002). �e corresponding intensity image in (d). Minutiae have been marked as circles
in red (a) and black (b–d), respectively. Note that regions too close to singularities (marked
violet in (a)) have been excluded from the computations.
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3.4 The existence of random minutiae

Having found a formula predicting the number of necessary minutiae given the OF and
the RF divergence, we investigate in this section whether there are additional minutiae in
�ngerprint pa�erns not explained by OF and RF divergence.

To this end, we preprocess 20 high quality �ngerprints, cf. Figure 3.6, from the database
(Maio et al., 2002, DB1) using the algorithm from �ai et al. (2016) in order to obtain en-
hanced and binarised versions of the images and the regions of interest. We then manually
mark the minutiae, subdivide each image into approx. 100 rectangular patches A (aspect
ratio taken from the images), cf. Figure 3.7, and count the number of minutiae in these
patches.

�e intensity of necessary minutiae is computed as described in Example 3.15, cf. also
Figure 7.9 or Chapter 6 for a more detailed discussion. Patches too close to a singularity
(closer than 10 pixels) are again discarded. An example for Fingerprint 1 1 is shown in
Figure 3.7. Clearly, one can see that for most patches A the minutiae count is at least
as large as our estimated minutiae intensity m(A). Sometimes, however, the result is a
li�le o�set, see e.g. the orange patch on the upper right corner where the corresponding
minutia is already assigned to the blue patch below. Overall, we observe many low intensity
patches (blue), some of which still containing minutiae. Indeed, the sum

∑100
i=1m(Ai) over

all 100 patches Ai (except the ones close to singularities) is 39, however 44 minutiae are
observed in the considered patches, i.e. we actually observe 5 minutiae more than expected
(or necessary) due OF and RF divergence. �at this is not only an e�ect for this particular
�ngerprint is shown by a study over all �ngerprints from Figure 3.6.

Figure 3.8 displays actual minutiae counts over all 20 imprints. At the height of every
integer valued count observation k (on the y-axis) we have horizontally placed black dots
at corresponding necessary minutiae numbers m(A), i.e. at the not necessarily integer
valued number of minutiae we expect in patches A (that actually feature k minutiae) if
there were only necessary minutiae. We apply a Poisson regression with identity link, i.e.
we �t the expected number of actual minutiae µ(A) in A as µ(A) = β0 + β1m(A) and
determine β̂0, β̂1 using maximum likelihood estimation (MLE). As a word of caution, the
di�erence of the data to its regression line re�ects a Poisson regression for count data, it
does not re�ect an ordinary least squares regression, see e.g. Cameron & Trivedi (2013).

�e Poisson regression line in Figure 3.8 (red line), which �ts surprisingly well the means of
the massive histograms (based on bins with more than 100 elements which cover more than
87% of all patches). �is con�rms that on average the actual minutiae count increases with
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Figure 3.6: Database of 20 high quality �ngerprints from (Maio et al., 2002, DB1) labelled
1 1, 2 8, 7 1, 9 8, 13 4, 22 4, 25 2, 26 2, 28 4, 31 5, 34 1, 35 6, 53 6, 57 3, 59 2, 65 4, 66 2, 76 6,
89 5 and 100 6 (row-wise). �ese images form the basis of our analysis. �e images depicted
images are already preprocessed and binarised by the algorithm of �ai et al. (2016).
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Figure 3.7: Le�: Intensity image µ of Fingerprint 1 1 from (Maio et al., 2002, DB1). Patches
containing singularities are discarded (white). Pixel grid coordinates as axis labels. Actual
minutiae positions are indicated with circles. Right: Integrated minutiae intensity m(A)
within patches A.

a slope close to one (95% con�dence interval [0.903, 1.175]) with a signi�cant intercept
of 0.14 (95% con�dence interval [0.106, 0.184]; p < 10−12) and suggests that the actual
number of minutiae is larger than the number of minutiae necessary based on OF and RF
divergence (do�ed black line). We refer to the additional minutiae as random minutiae.

Remark 3.16 (Intensity of random minutiae). Comparing the intercept of 0.14 random
minutiae per patch to the average number of 0.50 total minutiae per patch, we obtain the
rule of thumb that, out of 7 minutiae, 5 are necessary and 2 are random (i.e. approx. 28% of
the total number of minutiae are random).
�e images in FVC2002 DB1 have size 388× 374 pixels (at a resolution of 500 dpi). Using
the area of one pixel as our spatial unit (each pixel is a 0.0508 × 0.0508 mm2 square) we
conclude from the fact that the average patch size is approximately 388

10
× 374

10
≈ 1451 pixels

that we may use
λ0 = 0.14 / 1451 ≈ 10−4 (3.19)

as an initial estimate for the random minutiae intensity.

Remark 3.17 (Discretisation e�ects). At this point, the reader might wonder whether the
proposed minutiae divergence formula would be exact (and hence the number of random
minutiae being zero) if we just consider small enough patches A (i.e. for small r(A)). We
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Figure 3.8: Poisson regression (red line) for actual minutiae count (black dots) in patches A
(of approx. 1451 pixels, cf. Figure 3.7 and Remark 3.16) versus necessary minutiae number
m(A) computed by Formula 3.14. �e do�ed black line (identity function) shows the relation
we would expect if there were no random minutiae. �e probability mass function of the counts
within bins of width 0.25 is depicted in blue; their mean as red diamond (�) in the centre of the
bin. �e number of observations within the bins is wri�en on top. Based on 20 high quality
�ngerprints from FVC2002 DB1.

are convinced of our model, however, cannot provide empirical evidence neither for nor
against this theory. Since minutiae are only visible on a scale large enough to identify
ridge lines we cannot zoom in arbitrarily far into the image, thus prohibiting us to make
an analysis for arbitrarily small patches. However, we like to remark that the chosen patch
size was just large enough to cover on average three neighbouring ridge lines which is the
smallest size to discern divergence of ridge lines and thinning/ widening of spaces between
ridges.

One possibility for going into this direction would be to consider the dependency of the
amount of random minutiae depending on the patch size and check where there is a de-
crease of random minutiae for smaller patch size. To this end, the bandwidths of the
smoothing �lters and the unwrapping routine to compute the minutiae intensity and cor-
responding ingredients has to be adapted according to the considered scale, requiring a
considerable additional e�ort. �us, this approach is le� for future investigations.

�e study in this chapter, cf. Figure 3.8, shows that in general we observe more minutiae
than are explained by OF and RF information. However, it does not give indication of
which of the observed minutiae are (likely to be) random. In the following chapter, we
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investigate the separation of the minutiae pa�ern using a statistical model from the �eld of
spatial point processes. In Section 7.3 we show that random minutiae can be characteristic
in the sense that they can provide valuable information for distinguishing �ngerprints with
similar OFs and RFs.
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Chapter 4

Spatial point processes

�e aim of this chapter is to set up a mathematical model which allows for separation of
a given minutiae pa�ern into necessary and random minutiae. To do so, we assume the
minutiae pa�ern to be a realisation of the disjoint union of two independent point-pa�ern-
valued random variables, so-called spatial point processes (or point processes for short).

Modern point process theory has been a major area of research in spatial statistics (i.e.
statistics of spatial data) since the mid 20th century, its roots however have a long history
at least up to Poisson (1837). In practical applications the considered point pa�erns o�en
exhibit a complex interaction structure (i.e. the points a�ract or repel each other and are
not independently distributed in space) and, moreover, we usually face small sample sizes
(such as only a single point pa�ern of 40–100 points) introducing di�culties beyond the
theory of classical statistics. Regarding the considered �ngerprint se�ing we usually have
only one minutiae pa�ern at hand. Moreover, the minutiae exhibit a certain inhibition
between each other due to the discrete structure of the �ngerprint ridges and the digital
la�ice of the image the �ngerprint is captured on.

Modelling the interaction between points is conveniently possible using densities w.r.t. to
a certain reference measure7. In the context of spatial point processes, this has to be a
measure on the space of point pa�erns. Commonly used is the probability distribution of a
stationary process with no interaction structure, the homogeneous Poisson (point) process.
�is process is, moreover, in practice a popular choice to model noise points because apart
from the noise intensity it does not include any further information. In Sections 4.1–4.3, we
provide the theoretical background for Poisson processes and point processes exhibiting
interaction as well as some details about simulation. Assuming we know which minu-
tiae are necessary and random, we analyse a model �t approach in Section 4.4. Dropping

7like a density on Rd is usually w.r.t. the Lebesgue measure on Rd

39
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this assumption we analyse a superposition model and a possible approach on parameter
inference in Section 4.5. Proofs of this section have been outsourced in part to Section 4.6.

4.1 Poisson point processes

Let X ⊆ R2 be a compact subset of the Euclidean plane with positive Lebesgue measure
(modelling the �ngerprint’s region of interest) and B = σ(X) be the Borel σ-algebra of X.

In a nutshell, a �nite point process on X is a random �nite point pa�ern on X in which
both the number of points as well as their locations are random. �e mathematically rig-
orous de�nition is based on counting measures. Recall, that a measure ξ on (X,B) is called
counting measure, if ξ : B → N0 ∪ {+∞}, i.e. if it only assigns non-negative integers or
in�nity. It is �nite if ξ(X) <∞. We denote by N the set of all �nite counting measures and
equip it with the smallest σ-algebra N such that the mappings ξ 7→ ξ(A) are measurable
for all A ∈ B.

De�nition 4.1 (Point process, (Daley & Vere-Jones, 2008, De�nition 9.1.VI.)). A (�nite)
point process on (X,B) is a measurable mapping Ξ from a probability space (Ω,A,P) to
(N,N ). Indeed, for every ω ∈ Ω the realisation Ξ(ω, ·) is a �nite counting measure on
(X,B). Hence one could also call Ξ a random �nite counting measure.

�e following characterisation of point processes is o�en more convenient to work with.

�eorem4.2. Let Ξ be a point process on (X,B). �en, there are random elementsX1, X2, . . .

on (X,B) and an N0-valued random variable N such that

Ξ =
N∑
i=1

δXi
(4.1)

Conversely, the right hand side of (4.1) for corresponding (Xi)i∈N and N always de�nes a
point process.

Proof. �is result follows from (Daley & Vere-Jones, 2008, Proposition 9.1.III. & Proposition
9.1.X.). �

Let us make a few remarks on point process terminology and notation before we proceed.
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Remark 4.3. (a) If for a point process Ξ =
∑N

i=1 δXi
, the Xi are almost surely distinct,

the point process is also referred to as simple. In the context of this thesis, we will
only consider simple point processes and therefore tacitly assume that every point
process is simple.

(b) A point pa�ern is a realisation ξ = Ξ(ω, ·) ∈ N of Ξ for some ω ∈ Ω. For a simple
process, we can interpret a point pa�ern ξ both as a �nite counting measure ξ =∑n

i=1 δxi and as a �nite set {x1, x2, . . . , xn} coinciding with the support of ξ. Hence,
using set-notation, we also write

ξ ∪ η := ξ + η, ξ \ η := ξ − η, x ∈ ξ :⇐⇒ x ∈ supp(ξ)

etc. for ξ, η ∈ N and x ∈ X. Note that for well-de�nedness of ξ \η we need η ≤ ξ (in
measure-theoretical sense, i.e. η(B) ≤ ξ(B) for allB ∈ B). We will use this notation
whenever it is more convenient.

(c) A realisation Ξ(ω, ·) takes the value Ξ(ω,B) on any Borel setB ∈ B, i.e. the number
of points in B. Fixing B ∈ B, the function Ξ(·, B) : Ω → R+, ω 7→ Ξ(ω,B) is
indeed a random variable, cf. (Daley & Vere-Jones, 2008, Proposition 9.1.VIII.). We
write, suppressing the dependence of ω,

Ξ(B) := Ξ(·, B) =
N∑
i=1

1 (Xi ∈ B)

for the random number of points falling in B ∈ B.

(d) �e distribution of a point process Ξ is the probability measure it induces on (N,N ),
i.e. PΞ(A) := P(Ξ ∈ A) := P(Ξ−1(A)) for A ∈ N . It is completely determined
by its �nite dimensional distributions, i.e. the joint distributions of the random vari-
ables Ξ(A1),Ξ(A2), . . . ,Ξ(Ak) for any �nite family of Borel setsA1, A2, . . . , Ak ∈ B,
k ∈ N, cf. (Daley & Vere-Jones, 2008, Corollary 9.2.IV).

(e) �e measure

EΞ : B → R+, B 7→ EΞ(B) (4.2)

is called the intensity measure or expectation measure of Ξ. For a given set B ⊆ X

we have that EΞ(B) is the expected number of points of Ξ falling in B. If EΞ has a
density λ w.r.t. the Lebesgue measure, then λ is called the intensity function.
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(f) For two point processes Ξ =
∑N

i=1 δXi
,H =

∑M
j=1 δYj we can de�ne their superposi-

tion Ξ ∪ H as

Ξ ∪ H :=
N∑
i=1

δXi
+

M∑
j=1

δYj .

If Ξ and H are independent and Ξ∩H = ∅ almost surely (i.e. theXi and Yj are almost
surely distinct), we also write Ξ ∪̇H (in analogy to a disjoint union) to emphasise the
independence and (a.s.) disjoint union.

One of the most prominent examples for a point process is given by the so-called Poisson
point process.

De�nition 4.4 (Poisson point process). Let λ : X → R+ be a Lebesgue-integrable func-
tion and denote for B ∈ B by Λ(B) :=

∫
B
λ(x) dx the measure induced by λ. Let

N ∼ Poi(Λ(X)) be Poisson distributed with parameter Λ(X) and X1, X2, . . . be inde-
pendent and identically distributed with density 1

Λ(X)
λ. �en, the point process

Ξ =
N∑
i=1

δXi
(4.3)

is called Poisson (point) process with intensity λ. We write Ξ ∼ Pop(X, λ) or Ξ ∼ Pop(λ)

for short if there is no confusion of X possible. If λ is constant, we call Ξ homogeneous (or
stationary), otherwise inhomogeneous (or non-stationary).

Some realisations of Poisson processes can be seen in Figure 4.1. Whereas in the homoge-
neous case the points appear to be relatively evenly distributed over the region of interest,
in the inhomogeneous case it is very apparent that points tend to lie in regions of larger in-
tensity. Note that for a Poisson process the variance of the number of points is equally large
as the intensity. �us, for an inhomogeneous Poisson process with the minutiae intensity
as underlying intensity function, the variance in the number of points is in regions close to
the �ngerprint’s singularities very high. �ere, points can apparently get arbitrarily close
to each other, cf. the bo�om row Figure 4.1.

Remark 4.5. A Poisson process Ξ ∼ Pop(λ) satis�es the following properties, cf. for
instance (Daley & Vere-Jones, 2003, Chapter 2):

(a) Ξ(B) ∼ Poi
(∫

B
λ(x) dx

)
, i.e. the one-dimensional distributions of Ξ(B) are in fact

Poisson distributions, hence the name.
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Figure 4.1: Top: Di�erent realisations of a homogeneous Poisson process with intensity λ =
3.5× 10−4 (leading to an expected number of 48 points); bo�om: an inhomogeneous Poisson
process with intensity λ (scaled necessary minutiae intensity µ from Fingerprint 7 6 of (Maio
et al., 2002, DB2), see Section 3.3) as heat map in the background (leading to the same number
of expected points). Pixels outside the ROI are shaded in grey. �e grid in the background
indicates squares of side length 50 pixels.



44 Chapter 4 Spatial point processes

(b) In particular, we have EΞ(B) = Λ(B), i.e. the expected number of points of Ξ in B
is Λ(B). �us, Λ is the expectation measure and λ is the intensity (function) of Ξ.

(c) More generally, the �nite distributions are given by

P (Ξ(B1) = k1,Ξ(B2) = k2, . . . ,Ξ(Br) = kr) =
r∏
i=1

(Λ(Bi))
ki

ki!
e−λ(Bi) (4.4)

with r ∈ N disjoint sets B1, B2, . . . , Br ∈ B and k1, k2, . . . , kr ∈ N0. In particular,
(4.4) implies that point counts on disjoints sets are independent.

(d) A homogeneous Poisson process is also referred to model complete spatial random-
ness, i.e. the points occur in a completely random fashion and exhibit no interaction
between each other. Moreover, one can show that the Poisson process is the only
simple process without �xed atoms8 having this property, cf. (Daley & Vere-Jones,
2003, Section 2.3).

A very convenient way of dealing with distributions of random variables is via describing
them with their density w.r.t. to a reference measure, for instance the Lebesgue measure
on Rd. For point processes a similar approach is possible but the reference measure is now
not longer given by the Lebesgue measure but by the distribution of the standard Poisson
process, i.e. the unit Poisson process Π1 := Pop(X, 1). Here, by 1 we mean the function
x 7→ 1 which is constantly one on X.

De�nition 4.6 (Density). For a spatial point process Ξ we call a measurable function f :

N→ R+ with

P(Ξ ∈ A) =

∫
A

f(ξ) Π1(dξ) (4.5)

for any A ∈ N , a density of Ξ (w.r.t. Π1). Due to the Radon-Nikodym theorem, cf. (Klenke,
2020, Corollary 7.34), the density f exists if and only if the distribution of Ξ is absolutely
continuous w.r.t. Π1, i.e. for every Π1-null set A we have P(Ξ ∈ A) = 0. In this case, f is
almost surely unique, cf. (Klenke, 2020, �eorem 7.29).

Remark 4.7. �e integral in (4.5) can be computed as∫
A

f(ξ) Π1(dξ) (4.6)

=
∞∑
n=0

exp (−|X|)
n!

∫
X

· · ·
∫
X

1 ({x1, x2, . . . , xn} ∈ A) f ({x1, . . . , xn}) dx1 . . . dxn,

8a point x ∈ X is called �xed atom of a point process Ξ if P(Ξ({x}) > 0) > 0
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cf. (Møller & Waagepetersen, 2003, Section 6.1). However, the integral (4.6) has in general
no explicit representation and its computation is o�en intractable.

For Poisson processes we can explicitly compute the density using the following result
from (Møller & Waagepetersen, 2003, Proposition 3.8).

Lemma 4.8 (Density of Poisson processes). Let Ξ ∼ Pop(λ) for some integrable λ : X →
R+. �en Ξ is absolutely continuous w.r.t. Π1 with density

f : N→ R+, f(ξ) = e
∫
X 1−λ(u) du

∏
x∈ξ

λ(x). (4.7)

Note, that in (4.7) we can explicitly compute not only the density, but also its normalising
constant – a property which cannot be taken for granted as we will see in the next section.

4.2 Interaction processes

�e Poisson processes considered in Section 4.1 have the property that there is no interac-
tion between points. For Poisson processes using the minutiae intensity �eld as underlying
intensity function, simulations show that in regions of high intensity (e.g. close to singu-
larities, cf. Figure 4.1) points can lie arbitrarily close to each other. For minutiae pa�erns,
however, we observe in practice a certain minimal distance between each other and, more-
over, a bounded variance in the number of points also near singularities. We elaborate this
in greater detail in Section 4.4. Henceforth, we consider a point process model which also
takes interaction into account, more precisely repulsion, between pairs of points.

De�nition 4.9 (Strauss process, Strauss (1975)). Let β : X→ R+ be a Lebesgue-integrable
function. A Strauss process on X with trend (or activity) function β, hard core r ≥ 0,
interaction parameter γ ∈ [0, 1] and interaction range R > r is a point process H with
density

g : N→ R+, η 7→ α
∏
x∈η

β(x) γsR(η) 1 (dmin(η) > r)

with respect to the unit Poisson process Π1, where

sR(η) :=
∑
{x,y}⊆η

1(‖x− y‖ ≤ R) (4.8)
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is the number ofR-close pairs in η (by convention {x, y} ⊆ η shall always exclude the case
x = y),

dmin(η) := min {‖x− y‖ : {x, y} ⊆ η} (4.9)

is the minimum inter-point distance (or hard core distance) in η and

α =

(
∞∑
n=0

exp (−|X|)
n!

∫
X

· · ·
∫
X

n∏
i=1

β(xi)γ
sR({x1,...,xn}) 1 (dmin ({x1, . . . , xn}) > r) dx1 . . . dxn

)−1

is the normalising constant. If β is constant, the process is called homogeneous (or station-
ary), otherwise inhomogeneous (or non-stationary).

We write H ∼ StraussHard(X, β, γ, r, R) or H ∼ StraussHard(β, γ, r, R) for short. For
processes with r = 0, i.e. without hard core we simply write H ∼ Strauss(X, β, γ, R) or
H ∼ Strauss(β, γ, R) if there is no confusion about X possible.

Strauss processes belong to the class of Gibbs processes. For a more detailed view into the
literature we refer to (Møller & Waagepetersen, 2003, Chapter 6).

At this point, the reader might wonder why we propose a model with even two scales of
repulsion (r and R). We will elaborate this in greater detail in Section 4.4, but like to give a
brief answer also already here. Regarding the �ngerprint se�ing we like to choose the hard
core r depending on the inter-ridge distance (minutiae can only be observed on ridges).
�is distance, however, varies over the �ngerprint. Since the model requires a constant
hard core, we have to decide for a representative quantity, e.g. the minimal or average
inter-ridge distance. By doing so, the above mentioned regularisation of the variance of
point numbers in regions of high divergence could not be reached to a satisfying level,
hence, an additional interaction scale was introduced.

Remark 4.10. To understand the in�uences of the model parameters, let us at �rst con-
sider a Strauss process H ∼ Strauss(β, γ, R). Examples for simulated point pa�erns from
homogeneous and inhomogeneous Strauss processes can be seen in Figure 4.2.

(a) For γ = 1, we obtain a Poisson process with intensity β, i.e. Strauss(β, 1, R) =

Pop(β) for any R > 0. Hence, the Strauss process is a generalisation of the Poisson
process including interaction between points, where γ = 1 means no interaction at
all and γ = 0 means total repulsion, see also (b).
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Figure 4.2: Top and bo�om show two di�erent realisations of three Strauss processes (from
le� to right), respectively, in the region of interest of �ngerprint 7 6 of FVC2002 DB2. Le�:
homogeneous Strauss with β = 5 × 10−4, γ = 0.4. Middle: homogeneous hard core process
with β = 5×10−4. Right: inhomogeneous Strauss with β(z) = 4×µ(z), with µ from (3.18) as
heat map for Fingerprint 7 6 from (Maio et al., 2002, DB2), γ = 0.1. �e interaction distance
is given as the diameterR = 30 of the dashed circles. Again, pixels outside the ROI are shaded
in grey. �e grid in the background indicates squares of side length 50 pixels.
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(b) For γ = 0, the density of the Strauss(β, 0, R) process w.r.t. Π1 is

g(η) = α

(∏
x∈η

β(x)

)
1 (dmin(η) > R) . (4.10)

�is process is called hard core process with hard core distance R. A hard-core process
does not allow R-close points at all. We write also H ∼ Hardcore(β,R).

(c) For every R-close pair in a point pa�ern the “likeliness” of the whole pa�ern de-
creases by a factor γ.

(d) In contrast to the Poisson process, the parameter β is for γ < 1 not the intensity
of the process H ∼ Strauss(β, γ, R) but EH(B) <

∫
B
β(x) dx, cf. Baddeley et al.

(2012); Stucki & Schuhmacher (2014), i.e. the expected number of points expected in
a set is smaller than the integrated trend.

(e) In general, the normalising constant α = α(β, γ, r, R) is unknown and cannot be
computed explicitely, see e.g. Kelly & Ripley (1976), (Møller & Waagepetersen, 2003,
Section 6.2), Berthelsen & Møller (2006). Even in the homogeneous case and for
known r, R it is not clear, how α, β and γ interact. Baddeley et al. (2012); Coeurjolly
& Lavancier (2018) give some approximations.

To omit the intractable normalisation constant we also write

g(η) ∝
∏
x∈η

β(x)γsR(η),

where ∝ means proportional and the constant of proportionality does not depend
on η. Gibbs processes originated in statistical physics where α−1 is also called the
partition function.

Remark 4.11 (Edge e�ects). �e interaction between pairs of points becomes particularly
apparent in regions of large activity β of inhomogeneous Strauss processes as in the right
column of Figure 4.2. In regions near the boundary, this e�ect o�en results in points oc-
curring close to an edge since there is no repulsion due to points outside the observation
window (which are not observed), cf. also (Baddeley & Nair, 2012, Figure 1). �is a�ects
also statistical inference methods. Note that edge e�ects do not occur for Poisson processes
since there is no interaction between points.

To deal with edge e�ects, two di�erent scenarios have to be distinguished: either we as-
sume that no points exist beyond the observation window or the point pa�ern exists on a
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larger window and the point pa�ern originates from clipping a larger point pa�ern to the
observed area. For the application in �ngerprint recognition, we face rather the la�er case
(restriction of the minutiae pa�ern of the entire �ngerprint to the region captured by the
�ngerprint sensor) although it is not always justi�ed to assume the existence of points be-
yond the observation window (e.g. in regions close to the �ngernail on which no minutiae
exist).

For point processes with a homogeneous trend edge correction procedures expand the ac-
tivity function accordingly to the larger window. For inhomogeneous processes this is
approach requires knowledge about the activity function outside the observation window
which is typically not available in practice. Common workarounds are re�ection of the
activity at the boundary or periodic continuation, however neither of these seem to be
very realistic concerning the �ngerprint application. Since edge e�ects seem to have only
li�le in�uence for the data considered in this thesis we do not use edge correction except
automatically applied by statistical methods in R, R Core Team (2021), (we note this at
the corresponding places). Edge correction procedures are discussed in more detail e.g. in
(Baddeley et al., 2015, Section 6.5) or (Ripley, 1988, Chapter 3).

�e interaction structure of Strauss processes �nds expression in their second moments.

De�nition 4.12 (Second moments, pair correlation). Let H be a �nite point process on
(X,B) with EH(X)2 <∞.

(a) �e second factorial moment measure is de�ned as

α(2) : B(X× X)→ R+, B 7→ E

∑
x,y∈H
x 6=y

1 ((x, y) ∈ B)

 . (4.11)

(b) If for a point process H, the intensity λ exists and α(2) has a density a w.r.t. the
Lebesgue measure, then

ρ(2) : X× X→ R+, (x, y) 7→ a(x, y)

λ(x)λ(y)
(4.12)

is called the pair correlation function (PCF) of H where we take a
0

:= 0 for all a ≥ 0.

(c) �e point process is said to be correlation isotropic, if ρ(2)(x, y) = ρ(‖x − y‖) for
some function ρ : R+ → R+, i.e. the pair correlation is isotropic—its value in (x, y)

depends only on the distance between the points x, y ∈ X.
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For a Poisson process we obtain a(x, y) = λ(x)λ(y) and hence ρ(2)(x, y) = 1. If ρ(2)(x, y) <

1 this indicates that pairs of points are less likely to occur (inhibition) at the locations x, y
than for a Poisson process with the same intensity as H whereas ρ(2)(x, y) > 1 suggests
they are more likely to occur (clustering), see also (Illian et al., 2008, Section 4.3.4). Notably,
Poisson processes and homogeneous Strauss processes are correlation isotropic, see also
Baddeley & Nair (2012).

�e interaction between pairs of points in Strauss processes is particularly easy to see
by considering the pair correlation function, cf. (4.12), even though ρ is in general not
explicitly available. Nevertheless, we can estimate the PCF for a given point pa�ern ζ =

{z1, z2, . . . , zn} where we will derive an estimator in the following.

Example 4.13 (Pair correlation function for stationary processes). Assume for the moment
that Z is a stationary process and let r ≥ 0. �en,

n∑
j=1
j 6=i

1 (‖zi − zj‖ ≤ r)

is the number of r-neighbours of zi, i ∈ {1, 2, . . . , n}, i.e. the number of other data points
in a ball of radius r around zi, cf. Figure 4.3a (where we have 12 r-neighbours around +).
�us,

1

n

n∑
i=1

n∑
j=1
j 6=i

1 (‖zi − zj‖ ≤ r) (4.13)

yields an estimate for the average number of r-neighbours per data point. �is quantity
will typically depend on the overall average density of points in the dataset. �us, for
comparability, this number is divided by the intensity λ of Z in the considered region X. As
λ is typically not available explicitly in practice, it is substituted with an estimate λ̂ = n−1

|X| .
Note, that we use here n− 1 instead of n, such that we obtain an unbiased estimator in the
case of complete spatial randomness, i.e. for a homogeneous Poisson process. Moreover, in
practice edge correction weights are introduced. �e resulting estimator

K̂(r) =
|X|

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1 (‖zi − zj‖ ≤ r) eij(r), (4.14)

where eij(r) is an edge-correction weight, cf. (Baddeley et al., 2015, Section 7.6.2), now
estimates the (cumulative) average number of points in a ball of radius r around a typical
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r

(a)

r + h h

(b)

Figure 4.3: Geometry of (a) Ripley’s K-function and (b) the pair correlation function.
Whereas for the K-function we count all points around a typical point (+) within a disk
of radius r we count for the PCF only points in the annular ring around (+) between two
concentric circles of radius r and r + h, respectively, for small h > 0.

random point of Z, corrected by edge e�ects and in comparison to a homogeneous Poisson
process with the same intensity. �is standardisation allows for comparison between point
pa�erns with di�erent numbers of points and observed in di�erent windows.

In the literature the estimator (4.14) is known as an estimator for Ripley’sK-function, (Bad-
deley et al., 2015, Section 7.3):

K : R+ → R+, r 7→ K(r) =
1

λ|X|E
[∑
zi∈Z

∑
zj∈Z
j 6=i

1(‖zi − zj‖ ≤ r)

]
. (4.15)

Geometrically, for the PCF ρ(r) we draw two concentric circles of radius r and r + h,
respectively, where h > 0 is a small increment, and count the number of points falling
in the annulus between the two circles, see Figure 4.3b. �is now captures the interpoint
distances that lie in the range between r and r + h (where there are 20 points in the red
annulus around +). �eir expected count is λK(r+h)−λK(r). Standardising this quantity
by dividing by the expected value for a homogeneous Poisson process leads to

ρh(r) =
λK(r + h)− λK(r)

λπ(r + h)2 − λπr2
=
K(r + h)−K(r)

2πrh+ πh2
−→ K ′(r)

2πr
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as h → 0. In fact, the PCF and the K-function (in the two-dimensional Euclidean plane)
are related by

ρ(r) =
K ′(r)

2πr
,

cf. (Illian et al., 2008, Section 4.3). Hence, (4.14) leads to an estimator ρ̂ for the pair correla-
tion function as follows:

ρ̂ : R+ → R+, r 7→ ρ̂(r) =
|X|

2πn(n− 1)r

n∑
i=1

n∑
j=1
j 6=i

κb(r − ‖zi − zj‖) eij(r), (4.16)

where κb(t) = 1
b
κ( t

b
) is a scaled version of a (e.g. Gaussian) smoothing kernel κ : R→ R+

with smoothing bandwidth b > 0 chosen suitably in order to estimate the derivative K ′(r)
as discussed in (Illian et al., 2008, Section 4.3.3).

�e estimator from (4.16) o�en tends to overestimate the PCF for radii r close to zero due
to the factor 1

r
in (4.16). An alternative estimator which o�en exhibits be�er performance

is

ρ̂ : R+ → R+, r 7→ ρ̂(r) =
|X|

2πn(n− 1)

n∑
i=1

n∑
j=1
j 6=i

κb(r − ‖zi − zj‖)
‖zi − zj‖

eij(r), (4.17)

in which the contribution of an observed interpoint distance ‖zi−zj‖ is 1
‖zi−zj‖ rather than

1
r
, cf. (Baddeley et al., 2015, Section 7.6.2). We use the estimator (4.17) for our analyses in

the following.

Let us now consider a Strauss(β, γ, R), a Hardcore(β,R) and a StraussHard(β, γ, r, R)

process with β = 5 × 10−4, γ = 0.4, r = 10 and R = 30 from which we sampled 20
point pa�erns each. For each point pa�ern we then compute the estimate ρ̂ for the corre-
sponding pair correlation function ρ as in (4.17) using the pcf function of the spatstat

package by Baddeley & Turner (2005) in R. Note that for the eij(r) by default a translation
edge correction9 is implemented, see (Baddeley et al., 2015, Section 7.4.5). �e resulting
estimated PCFs are then pooled (taking the pointwise average, see (Baddeley et al., 2015,
Section 16.8.2)) for each process to obtain a typical PCF for each process. �e result can be
seen in Figure 4.4.

9the edge correction weight eij is chosen as |X|/|X ∩ (|X| − zi − zj)|, i.e. the reciprocal of the window
area in which the �rst point zi could be placed such that both zi, zj would be observable, assuming their
relative positions were held �xed.
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Figure 4.4: Pooled pair correlation function for a Strauss(β, γ, R), Hardcore(β,R) and
StraussHard(β, γ, r, R) process, respectively with β = 5 × 10−4, γ = 0.4, r = 10 and
R = 30. �e interaction radii r < R as vertical do�ed lines. For the computation a Gaussian
smoothing kernel with bandwidth b = 2 was chosen.

For the Strauss process, we see at a distance less than approx. R = 30 pixels less points of
pairs compared to a Poisson process with intensity β (horizontal line at 1). �is indicates
the repulsion of points at a distance of less thanR. Shortly a�erR, the curve overshoots the
horizontal line at 1 before se�ling down a�erwards around one, since there is no interaction
at a distance larger than R. For the hard core process the inhibition is even stronger since
we do not observe any points at a distance smaller than R. When considering a Strauss
process with hard core, we can observe two regimes of inhibition: total repulsion up to a
distance r and moderate repulsion at distance (r, R].

Remark 4.14 (PCF for inhomogeneous processes). In general, inhomogeneous Strauss
processes are not correlation isotropic anymore, not even correlation stationary10, i.e. the
PCF being a function ρ(2)(x, y) = ρ(x− y) depending only on the relative position of the
points x, y. Hence the PCF carries more information than provided by the estimator ρ̂ in
Example 4.13. To account for inhomogeneities of correlation stationary processes, usually
one applies a �rst order correction where the factor |X|

n(n−1)
in (4.16) is substituted by the

10also called second-order intensity reweighted stationary (soirs) in the literature
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product λ̂(zi)λ̂(zj) of the estimated intensities in the considered data points such that we
obtain the estimator

ρ̂inhom : R+ → R+, r 7→ ρ̂inhom(r) =
1

2πr

n∑
i=1

n∑
j=1
j 6=i

κb(r − ‖zi − zj‖)
λ̂(zi)λ̂(zj)

eij(r),

see (Baddeley et al., 2015, Section 7.10). �e estimator (4.17) adjusts accordingly. Even
though we are con�dent that this estimator does not provide the full information about the
PCF (due to the lack of correlation stationarity of the inhomogeneous Strauss processes in
general) we use this estimator as a heuristic to gain information about the true PCF and
the interaction behaviour of a given point pa�ern. �e R package spatstat provides a
ready-to-use implementation called pcfinhom for the estimation of the PCF that accounts
for inhomogeneities, cf. (Baddeley et al., 2015, Section 7.10.2) for details.

4.3 Simulation

At this point, let us say a few words about simulation of point pa�erns, i.e. how to draw
samples from the two point process models proposed. Simulation of Poisson processes is
usually easy.

Algorithm 4.15 (Simulation of Poisson processes). We consider at �rst the case that we
want to simulate a homogeneous Poisson process Ξ ∼ Pop(X, λ) for some λ > 0.

• Suppose X is a box B = [a1, b1] × [a2, b2] ⊆ R2. �en, cf. Ripley (1987), we �rst
generate the number of points Ξ(B) ∼ Poi(λ(b1−a1)(b2−a2)) and then the locations
of the Ξ(B) points independently and uniformly distributed on B.

• If X is not a box but can be inscribed in a box B, we simulate Ξ on B and discard all
the points in B \ X.

Simulation of inhomogeneous Poisson processes is based on independent thinning.

De�nition 4.16 (�inning). Let p : X → [0, 1] be a function, Ξ a point process on X

and U(x) ∼ U [0, 1] be mutually independent for x ∈ X and independent of Ξ. �en, the
process

Ξthin := {x ∈ Ξ : U(x) ≤ p(x)}
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is called independent thinning of Ξ with retention probabilities p(x), x ∈ X. In words, we
obtain Ξthin from Ξ by including x ∈ ξ with probability p(x) and the points are included/
excluded independently of each other.

Suppose now we want to sample from an inhomogeneous Poisson process Ξ ∼ Pop(λ)

where λ : X→ R+ is supposed to be bounded, supx∈X λ(x) < λ0, say. �en we simulate at
�rst Ξ0 ∼ Pop(λ0) and obtain Ξ via thinning of Ξ0 with retention probabilities p(x) = λ(x)

λ0
,

x ∈ X, cf. (Møller & Waagepetersen, 2003, Proposition 3.7).

In contrast, simulation of Strauss processes is in general non-trivial. Approximation based
methods require running a Markov chain with corresponding invariant distribution. For a
reminder on Markov chains, see Section A.2

Algorithm 4.17 (Simulation of Strauss processes). A second method of simulating Strauss
processes in addition to Markov chain-based simulations is based on construction by means
of spatial birth-death processes (perfect sampling via dominated coupling from the past).
�e simulation using perfect sampling of homogeneous Strauss processes is possible in R,
R Core Team (2021), using the procedure rStrauss, however, can be very time-consuming
for processes exhibiting strong interaction of points. For a more detailed explanation of
simulation of Gibbs processes we refer to (Chiu et al., 2013, Section 5.5.5) and the references
therein.

A ready-to-use implementation for simulating inhomogeneous Strauss processes using per-
fect sampling does not yet exist. Instead, we use the rmh procedure of R (cf. (Baddeley et al.,
2015, Section 13.9)) to simulate point pa�erns by running a Metropolis-Hastings algorithm
(cf. Chapter 5). �is method can also be applied to all other processes introduced in this
chapter. In a nutshell, the idea is to run a Markov chain with the desired distribution as
stationary distribution. A�er running the algorithm for a very long time, the state of the
Markov chain may be regarded as a realisation of the desired distribution. However, it is
not clear in practice how long is long enough and the choice of the number of iterations is
usually more a ma�er of computational resources than of actual convergence. We elaborate
details about such algorithms in Chapter 5 and refer to the literature for further discussions
Cli�ord & Nicholls (1994); Møller & Waagepetersen (2003); Baddeley et al. (2015).

Using the provided theory we can now formulate and analyse a statistical model for minu-
tiae pa�erns which allows for separation into necessary and random minutiae.
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4.4 A superposition model for necessary and random
minutiae

We consider a minutiae pa�ern ζ = {z1, z2, . . . , zn} ⊆ X which we assume to be a sample
of the superposition of two independent point processes Ξ and H modelling the random
and the necessary minutiae, respectively. It is well known, see e.g. Stoney (1988); Chen &
Moon (2006); Go�schlich & Huckemann (2014), that minutiae cannot be arbitrarily close
to one another; they repel each other on a local scale. Indeed, due to the discrete nature of
the ridge pa�ern, we cannot observe minutiae pairs at distance smaller than the inter-ridge
distance. Although on good quality �ngerprints, upon close inspection, occasionally closer
minutiae pairs can be seen, e.g. bifurcations with one very short ridge, as these cannot be
well discriminated from noise, they are usually removed as false minutiae, cf. (Maltoni
et al., 2009, p. 157–158). �is e�ect is well visible in Figure 4.5 showing the estimated
(inhomogeneous) pair correlation function (similarly to Example 4.13) from the 20 hand-
marked �ngerprints considered in Figure 3.8 with approximate point-wise 95% con�dence
intervals (based on replications using the 20 �ngerprints, see (Baddeley et al., 2015, Section
16.8.2) for details on this approach).

Figure 4.5 shows roughly two regimes of interaction. A regime of very strong inhibition
in the range up to about 5–10 pixels and a regime of moderate inhibition up to 35–40
pixels. �is suggests modelling the bulk of the minutiae by a Strauss process with hard
core, see Section 4.2. For comparison, the pooled PCF estimate based on 20 simulated
Strauss processes with hard core having activation functions β µk(z), 1 ≤ k ≤ 20, is shown
in Figure 4.5 (dash-do�ed grey line), where µk is the necessary minutiae intensity (3.17)
obtained from the k-th �ngerprint image. �e hard core distance r = 8 was chosen as
the average inter-ridge distance (see Section 3.3). A pilot study on FVC2002 DB1 revealed
that a Strauss interaction distance R of approximately three times the average inter-ridge
distance seems to be a reasonable choice since only about 6% of all minutiae pairs of the
considered �ngerprints have a smaller distance. �e parameters β = 1.9 and γ = 0.37

are reasonable choices in view of the simulations considered later in Chapter 7. Note that
the real minutiae pa�erns also contain the random minutiae, which essentially explains the
smaller PCF values of the grey curve (compared to the black one) for distances smaller than
approx. 35 pixels. �e local minimum of the grey curve at approx. 25 pixels indicates the
distance from a typical point to regions with a small number of points beyond the nearest
neighbours, cf. (Illian et al., 2008, Section 4.3.4). �is could be due to the missing random
minutiae or due to a random e�ect not included in the model. �e red curve originates
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Figure 4.5: Pooled pair correlation function (PCF) based on the 20 high quality �ngerprint
images from FVC2002 DB1 with hand marked minutiae (solid black). Do�ed blue shaded:
approximate pointwise 95% con�dence intervals based on sample variances. Do�ed green:
theoretical PCF under the hypothesis of no interaction. Dash-do�ed grey: pooled PCF based on
simulated Strauss processes with hard core. Dashed red: pooled PCF for the 20 ��ed models
using the posterior mean from Section 7.2. �e intensities are based on the necessary minutiae
intensities of the same 20 prints; parameter choices are given in the main text.

from a computed model �t from Chapter 7. �e fact that this PCF is at distance approx.
25–30 pixels outside of the con�dence band indicates a slightly too small choice of R. We
will discuss this in further detail in Section 7.2.

Bearing the analysis of the PCF of the data in mind we come to the following modelling. As
a model for the random minutiae process Ξ, we choose a homogeneous Poisson process, cf.
Section 3.4 and Section 4.1, with unknown intensity λ ≥ 0 and denote the density of Ξ w.r.t.
Π1 by fλ. Ignoring that in practice random minutiae cannot be closer than the inter-ridge
distance is harmless as their intensity is rather low, both in absolute terms and compared
to the intensity of necessary minutiae (see Remark 3.16), but still visible in Figure 4.5.

If we also assumed that the necessary minutiae process H was a Poisson process, but inho-
mogeneous with intensity proportional to (3.10), then the independent superposition Ξ ∪̇H

would also be Poisson distributed, cf. Corollary 4.19. Under this assumption the theoretical
pair correlation function would be one (cf. De�nition 4.12) which, with regard to Figure 4.5,
contrasts reality.

Last but not least, modelling the necessary minutiae as a point process with substantial
inhibition of points is also advantageous from a conceptual point of view: up to certain
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errors arising from the discretisation of the OF and RF into minutiae information as well as
from data acquisition and processing, the necessary minutiae counts should be determined
by the underlying necessary minutiae intensity. Some inhibition between points is required
to keep the variances of minutiae counts in regions with high necessary minutiae intensity
small enough to be compatible with the data. Simulations we performed, cf. Figure 4.1 and
the discussion in De�nition 4.4, indicate that inhomogeneous Poisson processes based on
the same intensity have too high variances.

As a result, we model the necessary minutiae by H ∼ StraussHard(β, γ, r, R) and denote
the density of H w.r.t. Π1 by gβ,γ . Based on formula (3.10), we assume

β(z) = β · µ(z) with µ(z) =
∣∣∣ϕ(z) div ~F (z) +

〈
∇ϕ(z), ~F (z)

〉∣∣∣ (4.18)

for some factor β ≈ 1. We expect that β is in fact quite a bit larger than one because
the presence of repulsion requires an activation larger than a Poisson intensity yielding
comparable number of observed points, see Remark 4.10 (d) or Baddeley et al. (2012).

�e hard core distance r > 0 and the interaction distance R > r are assumed to be known
in advance, since joint estimation of γ, r, R is notoriously di�cult. �is is on the one hand
due to strong negative correlation of γ, r, R, cf. Redenbach et al. (2015). On the other hand
and maybe more importantly, common procedures such as maximum (pseudo-) likelihood
estimation o�en fail due to the lack of di�erentiability and non-concavity of the (pseudo-)
likelihood (with respect to r, R) which may even be multimodal, see (Baddeley et al., 2015,
Section 13.6.3). We choose the hard core distance r as the average inter-ridge distance of
the �nger – which seems to be be fairly realistic – and the interaction distance R to be
three times as large, see above.

�e observed minutiae pa�ern ζ = {z1, z2, . . . , zn} can then be wri�en as ζ = ξ ∪̇ η where
ξ and η are samples from Ξ and H, respectively. We introduce a latent variableW ∈ {0, 1}n
where Wi = 1 (zi ∈ η), so that Wi = 1 means that minutia zi is necessary. We combine
the parameters into a vector θ = (λ, β, γ) ∈ Θ := R+ × R+ × [0, 1]. �en, due to the
independence of Ξ and H, the density11 of ξ ∪̇ η for known W is given as

fλ(ξ) gβ,γ(η). (4.19)

�e question arises how to �nd suitable values of θ and an assignment W of the minutiae
to ξ and η. Although we primarily focus on Bayesian inference, we would like to brie�y

11�is can be interpreted as the density of the marked point pa�ern ζ =
∑n

i=1 δ(zi,Wi) given W w.r.t.
a Poisson process with intensity measure Leb2(X) ⊗ (δ0 + δ1). For an overview about marked point
processes see e.g. (Daley & Vere-Jones, 2003, Sections 6.4 and 7.3).
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highlight a few aspects of frequentist inference for point pa�erns. From a frequentist point
of view, a maximum likelihood estimator would be desirable. �e computation of such
an estimator for the parameters is notoriously di�cult due to the intractable normalising
constant. A common workaround for point processes is hence to consider maximum pseu-
dolikelihood estimators. �e mathematical fundamentals and computational details are
presented in the following Section 4.5.

�e approach presented there has turned out to be computationally considerably expensive
and, additionally, does not provide information about W12. Even more importantly, it is
questionable whether there is only one single choice of (θ,W) that �ts best. Our view
is that there likely are several choices which all �t reasonably well, particularly for W.
Bearing this in mind, we adopt a Bayesian approach. �e mathematical essentials to this
end are presented in Chapter 5. We explore the posterior distribution of (θ,W) given the
minutiae point pa�ern ξ ∪̇ η in Chapter 7. Not only does this yield information about the
parameter values, it also provides a quanti�cation of the uncertainty of the assignment to
the classes of necessary and random minutiae.

4.5 Maximum pseudolikelihood estimation for
superpositions of point processes

�e rest of this chapter is dedicated to a frequentist parameter estimation approach. Within
the proposed model we are in the position to make inference on the model parameters
θ, however not on the latent variable W. �is can be seen either as a disadvantage as
we do not gain insights about the distribution of necessary and random minutiae or as
an advantage as θ estimation does not rely on the unknown quantity W. We compare
the results from this frequentist method with the ones from the Bayesian approach from
Section 6.4 in Chapter 7.

We consider the superposition Z = Ξ ∪̇H of two a.s. disjoint independent point processes
Ξ and H. Given that we know their density, the density of the superimposed process is
as presented in Lemma 4.18. To the best of the author’s knowledge, this has not been
considered in the literature so far. Note, that auxiliary results for the proof have been
moved to Section 4.6.

12Indeed, one could also includeW as another parameter into the model. However, this would likely result in
the (pseudo-) likelihood having several local maxima and thus leading to performance issues of algorithms
in computing these maxima.
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Lemma 4.18 (Density of the superposition of point processes). Let Ξ, H be two independent
spatial point processes on X with densities f and g w.r.t. Π1, respectively. �en, the function

h : N→ R+, h (ζ) = e−|X|
∑
ξ⊆ζ

f(ξ)g(ζ \ ξ)

is a density of the superposition Z = Ξ ∪̇H w.r.t. Π1.

Proof. Let

Φ : N×N→ N×N,

(
N∑
n=1

δxn ,

M∑
m=1

δym

)
7→
(

N∑
n=1

δxn ,

N∑
n=1

δxn +
M∑
m=1

δym

)
.

�e mapping Φ is injective with inverse

Φ−1 :

{(
N∑
n=1

δxn ,
L∑
`=1

δz`

)
∈ N×N : |{n | xn = x}| ≤ |{` | z` = x}| , x ∈ X

}
→ N×N,(

N∑
n=1

δxn ,
L∑
`=1

δz`

)
7→
(

N∑
n=1

δxn ,
L∑
`=1

δz` −
N∑
n=1

δxn

)
.

and for any (N ⊗N ,B(R+))-measurable function h̃ : N×N→ R+ we have∫∫
N×N

h̃(ξ, ζ) (Π1 ⊗ Π1) Φ−1(dξ, dζ) =

∫
N

e−|X|
∑
ξ⊆ζ

h̃(ξ, ζ),Π1(dζ), (4.20)

cf. Lemma 4.33 on p. 75. Let now A ∈ N . �en,

P(Z ∈ A) = P(Ξ ∪̇H ∈ A) = P ((Ξ,Ξ ∪̇H) ∈ N× A)

= P (Φ(Ξ,H) ∈ N× A) = P
(
(Ξ,H) ∈ Φ−1(N× A)

)
=

∫
Φ−1(N×A)

f(ξ)g(η) (Π1 ⊗ Π1) (dξ, dη) .

Now, let (f ·g)(ξ, η) := f(ξ)g(η). �en, with the transformation theorem (Bogachev, 2007,
�eorem 3.6.1) follows∫

Φ−1(N×A)

f(ξ)g(η) (Π1 ⊗ Π1) (dξ, dη)

=

∫
Φ−1(N×A)

((f · g) ◦ Φ−1 ◦ Φ)(ξ, η) (Π1 ⊗ Π1) (dξ, dη) =
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=

∫
N×A

((f · g) ◦ Φ−1)(ξ, η) (Π1 ⊗ Π1) Φ−1 (dξ, dη)

=

∫
N×A

f(ξ)g(η \ ξ) (Π1 ⊗ Π1) Φ−1 (dξ, dη) .

Now, we apply (4.20) for h̃(ξ, ζ) = f(ξ)g(ζ \ ξ)1A(ζ) and obtain∫
N×A

f(ξ)g(ζ \ ξ) (Π1 ⊗ Π1) Φ−1 (dξ, dζ) =

∫
A

e−|X|
∑
ξ⊆ζ

f(ξ)g(ζ \ ξ)Π1(dζ),

which concludes the proof. �

�e application of Lemma 4.18 to Poisson processes leads to a well-known result, see (Møller
& Waagepetersen, 2003, Proposition 3.6).

Corollary 4.19. �e superposition of two independent Poisson processes Ξ ∼ Pop(X, λ) and
H ∼ Pop(X, µ) is again a Poisson process, namely Ξ ∪̇H ∼ Pop(X, λ+ µ).

Proof. From Lemma 4.18 follows that

h(ζ) = e−|X|−
∫
X(λ+µ)(x) dx

∑
ξ⊆ζ

∏
x∈ξ

λ(x)
∏
y∈ζ\ξ

µ(y)

 = e−|X|−
∫
X(λ+µ)(x) dx

∏
z∈ζ

(λ(z) + µ(z)) .

�e la�er equality follows by induction on n = |ζ| as follows. �e claim is obviously true
for n = 0, 1. Assume now ζ = {z1, . . . , zn} for n ≥ 2. �en,

∑
ξ⊆ζ

∏
x∈ξ

λ(x)
∏
y∈ζ\ξ

µ(y)

 =
∑

ξ⊆(ζ\{zn})

λ(zn)

∏
x∈ξ

λ(x)
∏

y∈(ζ\{zn})\ξ

µ(y)

+

+
∑

ξ⊆(ζ\{zn})

µ(zn)

∏
x∈ξ

λ(x)
∏

y∈(ζ\{zn})\ξ

µ(y)


= λ(zn)

∏
z∈ζ\{zn}

(λ(z) + µ(z)) + µ(zn)
∏

z∈ζ\{zn}

(λ(z) + µ(z))

=
∏
z∈ζ

(λ(z) + µ(z)) ,

which yields the claim. �

Corollary 4.19 provides another argument that modelling both the necessary and the ran-
dom minutiae by a Poisson process is, at least concerning parameter estimation, not a good
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idea—in this model only the sum of the parameters is identi�able, however the parameter
themselves are not. Recall, that a family of probability distributions (Pθ)θ∈Θ is said to be
identi�able if the mapping θ 7→ Pθ is injective. In other words, di�erent parameters lead
to di�erent probability distributions.

Immediately the question arises whether inference using the superposition model from
above is meaningful in terms of identi�ability. We will consider this in the following. For
the superposition of a homogeneous Poisson process Ξ ∼ Pop(λ) and a Strauss process
with hard core H ∼ StraussHard(βµ, γ, r, R) with known interaction radii r < R, inter-
action parameter γ < 1 (non-Poisson case) and trend function µ : X → R++, we obtain
an identi�ability result as follows. Here we show only the case for µ = 1. �e proof for
general µ can be found in Section 4.6. Note, that identi�ability in the superposition model
above has, to the best of the author’s knowledge, not been considered in the literature so
far.

Lemma 4.20 (Identi�ability). Let Ξ ∼ Pop(λ), H ∼ StraussHard(β, γ, r, R) be indepen-
dent with λ > 0, β > 0 and γ ∈ [0, 1) and assume the parameters 0 < r < R to be known.
Moreover, suppose that cR > r for some c ∈ (1

2
, 1) and that diam(X) > 2cR. Consider

Z = Ξ ∪̇H with density hθ : N→ R+ w.r.t. the unit Poisson process Π1 where θ = (λ, β, γ).
�en, the parameters (λ, β, γ) are identi�able.

Proof. (a) Let A = {∅, ζ1, ζ2, ζ3} with

ζ1 = δx1 ,

ζ2 = δx2 + δy2 , with r < ‖x2 − y2‖ < R and

ζ3 = δx3 + δy3 + δz3 , with r < ‖x3 − y3‖, ‖x3 − z3‖ < R and ‖y3 − z3‖ > R

for x1, x2, x3, y2, y3, z3 ∈ X; existence of ζ3 is ensured with diam(X) > R. We show
at �rst that hθ(ζ) = hθ̃(ζ) for ζ ∈ A implies θ = θ̃.

(b) Suppose hθ(ζ) = hθ̃(ζ) for ζ ∈ A. Since hθ(∅) = hθ̃(∅), we know that the normal-
ising constants of hθ and hθ̃ are the same. Hence, we may base our computations on
equality on the unnormalised densities h̆θ, h̆θ̃.

h̆θ(ζ1) = λ+ β, (4.21)

h̆θ(ζ2) = λ2 + 2λβ + β2γ

= (λ+ β)2 + β2(γ − 1), (4.22)
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h̆θ(ζ3) = λ3 + 3λ2β + (1 + 2γ)λβ2 + β3γ2

= (λ+ β)3 + β2(γ − 1)(2λ+ β(γ + 1)). (4.23)

Hence, if hθ(ζ) = hθ̃(ζ) for all ζ ∈ A, the equations (4.21), (4.22) and (4.23) lead to

λ+ β = λ̃+ β̃, (4.24)

β2(γ − 1) = β̃2(γ̃ − 1), (4.25)

2λ+ β(γ + 1) = 2λ̃+ β̃(γ̃ + 1). (4.26)

If we subtract two times (4.24) from (4.26) we obtain

β(γ − 1) = β̃(γ̃ − 1),

yielding ββ̃(γ − 1) = β̃2(γ̃ − 1) = β2(γ − 1) where the la�er equality originates
from (4.25). Since β > 0 and γ < 1, we obtain β = β̃ and thus immediately also
γ = γ̃ and λ = λ̃, which shows (a).

(c) Let θ 6= θ̃. �en we have to show that there is an A with Π1(A) > 0 s. t. hθ(ζ) 6=
hθ̃(ζ) for all ζ ∈ A. Assume the opposite, i.e. that for all A with Π1(A) > 0 we have
an ζ ∈ A such that hθ(ζ) = hθ̃(ζ). Choose three pairwise di�erent points x, y, z s. t.
‖x− y‖ = ‖x− z‖ = cR and ‖y − z‖ = 2cR. For

ε =
1

4
min

{
R(1− c), 2(cR− r), R(2c− 1)

}
(4.27)

let

A1 =
{
δx̃
∣∣ x̃ ∈ Bε(x)

}
,

A2 =
{
δx̃ + δỹ

∣∣ x̃ ∈ Bε(x), ỹ ∈ Bε(y)
}
,

A3 =
{
δx̃ + δỹ + δz̃

∣∣ x̃ ∈ Bε(x), ỹ ∈ Bε(y), z̃ ∈ Bε(z)
}
.

�en Π1({∅}), Π1(Ai) > 0 for i = 1, 2, 3. Hence, according to our assumption,
hθ(∅) = hθ̃(∅) and, moreover, there are x1, x2, x3 ∈ Bε(x), y2, y3 ∈ Bε(y), z3 ∈
Bε(z), such that for

ζ1 := δx1 , ζ2 := δx2 + δy2 ζ3 := δx3 + δy3 + δz3

we have hθ(ζi) = hθ̃(ζi) for i = 1, 2, 3. Furthermore, due to the triangle inequality
and Equation (4.27) we have
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‖x2 − y2‖ ≤ ‖x2 − x‖+ ‖x− y‖+ ‖y − y2‖ < ε+ cR + ε

≤ R

2
(1− c) + cR =

R

2
(1 + c) < R

as c < 1. Similarly it follows that ‖x3 − y3‖ < R, ‖x3 − z3‖ < R. Additionally, we
have

‖x− y‖ ≤ ‖x− x2‖+ ‖x2 − y2‖+ ‖y2 − y‖ < 2ε+ ‖x2 − y2‖.

�us, it follows with Equation (4.27) hat

‖x2 − y2‖ > ‖x− y‖ − 2ε = cR− 2ε ≥ cR− (cR− r) = r

and similarly we have ‖x3 − y3‖ > r, ‖x3 − z3‖ > r. Moreover,

‖y − z‖ ≤ ‖y − y3‖+ ‖y3 − z3‖+ ‖z3 − z‖ < 2ε+ ‖y3 − z3‖.

Using again Equation (4.27) we obtain

‖y3 − z3‖ > ‖y − z‖ − 2ε = 2cR− 2ε

≥ 2cR− R

2
(2c− 1) = R

(
c+

1

2

)
> R

as c > 1
2
. �en, using (a), it follows that θ = θ̃, in contradiction to our assumption.

�us, the model is identi�able.

�

Knowing that, if X is large enough, the model parameters in the superposition model are
identi�able, we set out to estimate them for a given point pa�ern. For most point processes,
such as the interaction processes considered in Section 4.2, maximum likelihood estimates
(MLE) are analytically not feasible and computationally expensive due to the unknown nor-
malising constant. Notably, even the evaluation of the unnormalised likelihood is already
very time consuming (approximately of the same order as the conditional intensity, see the
discussion below), making the computation of MLEs via Monte Carlo methods appear only
li�le a�ractive.

Moreover, MLEs for spatial point processes in general do not exhibit the usual asymptotic
properties, making them less popular than other methods. It is, nevertheless, worth point-
ing out that for point processes in a small neighbourhood around the Poisson process, i.e. if
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we observe only li�le interaction, there are results for consistency and asymptotic normal-
ity, see Dereudre et al. (2017) (where also Strauss processes with hard core are discussed)
or Jensen (1993). For a more general discussion about MLE on point processes we refer to
Møller & Waagepetersen (2003, 2007) and the references therein.

For processes with a likelihood containing an intractable normalising constant, pseudo-
likelihood methods are o�en employed since they remove the need of estimating the nor-
malising constant. �ese methods use the conditional intensity de�ned as follows:

De�nition 4.21 (Conditional intensity). For a point process Z with density hθ w.r.t. Π1

depending on some parameter θ ∈ Θ we de�ne

cθ(· | ζ) : X→ R+, z 7→ hθ(ζ ∪ {z})
hθ(ζ \ {z})

(4.28)

as the (Papangelou) conditional intensity of Z given ζ . Roughly speaking, cθ(z | ζ) dz is the
conditional probability of �nding a point in an in�nitesimal neighbourhood around z given
that the rest of the point process coincides with ζ . Notably, the normalising constants of
hθ cancel out in (4.28).

Remark 4.22. It is su�cient to compute cθ(u | ζ) for u /∈ ζ because for z ∈ ζ we have

cθ(z | ζ) =
hθ(ζ)

hθ(ζ \ {z})
=
hθ((ζ \ {z}) ∪̇ {z})

hθ(ζ \ {z})
= cθ(z | ζ \ {z}), (4.29)

and the right hand side (4.29) can then be computed using the formula for u /∈ ζ .

For densities which are log-linear in the parameters, the conditional intensity o�en has a
very simple form.

Example 4.23. Let ζ ∈ N be a point pa�ern and let u ∈ X \ ζ . Note that the results below
also apply to z ∈ ζ , cf. Remark 4.22.

(a) For Ξ ∼ Pop(λ) with λ : X→ R+ we have

cλ(u | ζ) =

∏
x∈ζ∪{u} λ(x)∏
x∈ζ λ(x)

= λ(u),

i.e. the conditional intensity coincides with the intensity of a Poisson process and
does only depend on the location considered but not on the surrounding point pat-
tern ζ . �is again re�ects the spatial independence property of the Poisson process.
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(b) Let θ = (β, γ). For H ∼ Strauss(β, γ, R) holds

cθ(u | ζ) =

∏
x∈ζ∪{u} β(x)γsR(ζ∪{u})∏

x∈ζ β(x)γsR(ζ)
= β(u)γtR(u|ζ),

where

tR(u | ζ) := sR(ζ ∪ {u})− sR(ζ) =
∑
v∈ζ

1 (‖u− v‖ ≤ R) (4.30)

is the number of R-close points of u in ζ .

(c) In general, the superposition Z = Ξ ∪̇H of two independent point processes Ξ,H

does not have a log-linear density anymore, even if Ξ and H do. Let Ξ ∼ Pop(λ), H ∼
StraussHard(β, γ, r, R) and θ = (λ, β, γ). �en, cf. Lemma 4.18, the conditional
intensity of Z is

cθ(u | ζ) =

∑
η⊆ζ∪{u} 1(dmin(η) > r)

∏
x∈η β(x)γsR(η)λ|(ζ∪{u})\η|∑

η⊆ζ 1(dmin(η) > r)
∏

x∈η β(x)γsR(η)λ|ζ\η|
. (4.31)

De�nition 4.24 (Maximum pseudolikelihood). For a sample ζ = {z1, z2, . . . , zn} of a point
process Z which has density hθ w.r.t. Π1 depending on some parameter vector θ ∈ Θ we
call the function

p`(· | ζ) : Θ→ R+, θ 7→ p`(θ | ζ) = exp

(
−
∫
X

cθ(u | ζ) du

) n∏
i=1

cθ(zi | ζ) (4.32)

with cθ the conditional intensity (depending on θ), the pseudolikelihood of θ given ζ , PL
for short. A vector θ∗ ∈ Θ with

θ∗ ∈ argmax
θ∈Θ

p`(θ | ζ) = argmax
θ∈Θ

(
n∏
i=1

cθ(zi | ζ)

)
exp

(
−
∫
X

cθ(u | ζ) du

)
(4.33)

= argmax
θ∈Θ

n∑
i=1

log cθ(zi | ζ)−
∫
X

cθ(u | ζ) du (4.34)

is referred to as maximum pseudolikelihood estimator for θ, MPLE for short. As the con-
ditional intensity does not contain the normalising constant of hθ anymore, neither does
(4.33). For Gibbs processes with a log-linear density like in Example 4.23 (a) and (b), the
point process model can then o�en be wri�en as a generalised linear model and �t using a
Berman-Turner device, cf. Berman & Turner (1992); Baddeley & Turner (2000). For models
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in which the density belongs to such a family MPLEs are consistent (converging to the true
parameter) and asymptotically normal13 under suitable conditions as noted in Baddeley &
Turner (2000); Ba & Coeurjolly (2020). Generalisations beyond exponential families are
still part of on-going research. Coeurjolly & Drouilhet (2010) considered consistency and
asymptotic normality in models which do not-necessarily belong to an exponential family,
however, they assume the process to be stationary which is concerning �ngerprints no re-
alistic assumption. Apart from that, in regard to �ngerprint applications, the meaning of
asymptotic results is in so far limited as the observed minutiae pa�erns are restricted to a
region of interest which is at the most the size of a human �nger.

Alternatively, one could think of extending the observation window by combining the ROIs
of several �ngerprints. By doing so, the data has to be assumed to exist in an unbounded
window. In this case, (Baddeley & Turner, 2000, Section 9) mention that MPLEs feature
edge e�ects. While for homogeneous processes, Baddeley & Turner (2000) propose some
remedies for edge e�ects, an approach for inhomogeneous processes seems to be far more
di�cult, see also the discussion in Remark 4.11. Moreover, for this approach parameter
inference methods would rather aim for parameter estimation of a “mean �ngerprint” than
of the individual �ngerprints. �e data analysis in Chapter 7 suggests that this approach
yields potential for further research, however, a large variance in the posterior distribution
of the model parameters might introduce major challenges.

Beyond that, concerning asymptotic inference for replicated point pa�erns, i.e. several in-
dependent point pa�erns from the same process (possibly depending on external factors
or covariates such as the intensity �eld which might be di�erent for each point pa�ern),
to the best of our knowledge only li�le is known; especially if the point pa�erns are only
assumed to be independent but not identically distributed. See e.g. (Baddeley et al., 2015,
Chapter 16) for methods of explorative data analysis and descriptive statistics of replicated
point pa�erns.

Remark 4.25 (Relation between MLE and MPLE). Intuitively, as the pseudolikelihood only
depends on the local dependence structure, global information may be�er be taken into
account using the likelihood function. Optimality of the MLE and ine�ciency (i.e. larger
asymptotic variance) of the MPLE is established in Mase (1992) under very restrictive condi-
tions (small neighbourhood around the Poisson process, see above). Huang & Ogata (1999)
propose to compute the MPLE and then applying one Newton-Raphson step towards max-
imising the likelihood. Note, that (4.32) coincides with the likelihood of a Poisson process
13in the context of point processes, in order to “increase the sample size” we let the observation window

expand to Rd
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when cθ(z | ζ) does not depend on z. Hence, for point processes with weak interaction
the MPLE and the MLE may be expected to be close to each other, cf. Baddeley & Turner
(2000).

Remark 4.26 (Computation of MPLE). For practical implementations of the MPLEs of
Gibbs processes with a log-linear density, cf. the spatstat package of Baddeley & Turner
(2005) in R Core Team (2021) and (Møller & Waagepetersen, 2003, Section 9.2.2). For the
considered superposition model no previous so�ware was available. �e algorithm as pre-
sented below is implemented in R and can be found in Section 6.5 as well as in the repository
of Wieditz (2021a).

Since the optimisation problem (4.33) is usually solved numerically, it is crucial for the
pseudolikelihood to be e�ciently computable. However, the numerator as well as the de-
nominator of (4.39) contain of order 2|ζ| many summands, making computation infeasible
without further ado. In the application of �ngerprints, we can make use of the fact, that
only a few of our points in fact do interact with each other. We propose a fairly e�cient
method to compute the MPLE in the superposition model in such cases.

We reduce the computation of the pseudolikelihood of the superimposed pa�ern ζ = ξ ∪̇ η
with ξ ∼ Pop(λ), η ∼ StraussHard(β, γ, r, R), to the computation of cθ(zi | ζ \ {zi})
for i = 1, 2, . . . , n. To this end, we follow a graph-theoretic approach which is based on
graphs induced by sub-pa�erns η ⊆ ζ . Some preliminaries on graph theory needed for this
section are provided in Section A.3.

De�nition 4.27 (Interaction graph, neighbourhood). Let η ⊆ ζ and ρ > 0. We call the
(undirected, simple) graph Gρ[η] = (V (η), Eρ(η)) with

V (η) = η, Eρ(η) = {uv ∈ P2(η) | ‖u− v‖ ≤ ρ}

the interaction graph induced by η with interaction range ρ. Here, P2(η) denotes the set of
all two-element subsets of η ⊆ ζ .

An example for the interaction graph of the �ngerprint from Figure 2.1 is depicted in Fig-
ure 4.6. Clearly, the largest component contains only 4 out of 31 vertices in total.

For η ⊆ ζ and u ∈ R2 we de�ne by

Nρ(u | η) := {w ∈ η : ‖u− w‖ ≤ ρ} (4.35)

the (spatial) neighbourhood of radius ρ of u in η.
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Figure 4.6: Construction of the interaction graph
(right) of the �ngerprint from Figure 2.1. Le�: �e
dashed circles have a radius R/2 where R is three
times the average inter-ridge distance. Right: Two ver-
tices (minutiae, black dots) are connected (red line) if
and only if they are closer thanR, i.e. the circles on the
le� overlap. �e components of the graph are outlined
in black (contour size is of no importance).

�en, cf. (4.8) and (4.30), we have
that sρ(η) = |Eρ(η)| is the number
of edges in the subgraph induced by
η and tρ(u | η) = |Nρ(u | η)| is
the number of ρ-close neighbours of
u in η. Note, that for obtaining all
the interaction graphs of η ⊆ ζ it
is su�cient to compute Gρ[ζ] since
we can obtain Gρ[η] from Gρ[ζ] by
deleting the nodes in ζ \ η and all
edges incident with these vertices.

If u ∈ η, then the spatial neighbour-
hood (4.35) of u in η coincides with
the graph neighbourhood in Gρ[η],
i.e.

Nρ(u | η) =
{
w ∈ η : uw ∈ Eρ(η)

}
.

(4.36)

For u ∈ R2 \ η this is in general not
true. However, we can compute the
spatial neighbourhood (4.35) using a graph theoretic approach (as in (4.36)) by considering
the graph neighbourhood in the interaction graph induced by the superimposed pa�ern
η ∪ {u}, i.e. for u ∈ R2 \ η we have

Nρ(u | η) =
{
w ∈ η : uw ∈ Eρ(η ∪ {u})

}
.

It turns out, that restricting the computation of the conditional intensity to components
(outlined in black in the right panel in Figure 4.6) of the interaction graph has the po-
tential to reduce the computational workload. We state here only the results and refer to
Section 4.6 for the proofs.
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�eorem 4.28. Let Z = Ξ ∪̇H with Ξ ∼ Pop(λ), H ∼ StraussHard(β, γ, R, r) and ζ ∼ Z

be a point pa�ern. Moreover, let z ∈ ζ and denote by Gk = (ζk, ER(ζk)), k = 1, 2, . . . , K ,
the components of GR[ζ \ {z}]. �en, the conditional intensity of Z satis�es

cθ(z | ζ) = cθ(z | ζ \ {z})

= λ+ β(z)
K∏
k=1

∑ηk⊆ζk

(∏
v∈ηk

β(v)
λ

)
γ|ER(ηk)|γ|NR(z|ηk)| 1 (Er(ηk ∪ {z}) = ∅)∑

ηk⊆ζk

(∏
v∈ηk

β(v)
λ

)
γ|ER(ηk)| 1 (Er(ηk) = ∅)

 .

Remark 4.29. Notice, that for the computation of the MPLE problem we have to compute
the components of ζ \ {zi} for every vertex zi ∈ ζ individually, i = 1, 2, . . . , n. However,
this has to be done only once in advance. A�erwards, the evaluation of the PL for one
particular value of (β, γ, λ) requires

O
(

n∑
i=1

Ki2
max

k=1,...,Ki
|V i

k |
)

many operations. Here, Ki is the number of components Gi
k = (V i

k , E
i
R,k) of Gk = GR[ζ \

{zi}], i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , Ki}.
A similar argument as above holds true for the computation of the integral in (4.33) which
is in practice approximated by the (multivariate) Riemann sum

∫
X

cθ(u | ζ) du ≈ |X|
L

L∑
`=1

cθ(u` | ζ), (4.37)

where u` ∈ X, ` = 1, 2, . . . , L form some grid covering X appropriately, e.g. a rectangular
grid, see also Baddeley & Turner (2000). Again, since the structure of the graphs considered
for each u` does not depend on θ, this can be precomputed in advance speeding up the
computation of the MPLE.

To conclude this section, we like to outline some properties of the MPLE and issues coming
along with the computation for a simulated example in a homogeneous se�ing. An example
for applications in �ngerprints is provided in Chapter 7.

Example 4.30 (MPLE for superpositions of homogeneous Strauss and Poisson processes).
We consider the sample in Figure 4.7 stemming from the superposition Z of Ξ ∼ Pop(λ0)

and H ∼ StraussHard(β0µ, γ0, 0.03, 0.1) on the unit squareX = [0, 1]2. �e true parameter
θ(0) = (λ0, β0, γ0) = (12, 1, 0.4), the activity µ = 42 and the interaction radii were chosen
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to resemble the parameters in a real �ngerprint application. Indeed, we have 17 / 45 Poisson
points (≈ 31%) which is slightly more than the expected amount of 28%, cf. Remark 3.16.

Figure 4.7: Sample point pa�ern of Z; Strauss
points in black, Poisson points in red. Interac-
tion radii r < R as do�ed and dashed circles,
respectively. �e grid {u`} in the background
of size 25 × 25 is used for the computation of
the integration constant.

�ree cuts through the parameter space,
each at one of the true parameter values can
be seen in Figure 4.8. �e true parameter
is marked with a black cross (×). MPLEs
for three initial points θ(1) = (20, 1, 0.75)

(expected low interaction), θ(2) = θ(0) =

(12, 1, 0.4) (true value), θ(3) = (30, 2, 0.1)

(expected strong repulsion) for the optimi-
sation algorithm as yellow circle (◦), blue
triangle (∆) and red square (�), respec-
tively.

�e MPLE within each cut (i.e. conditional
on knowing the respective third compo-
nent) is indicated as green diamond (�)
each. �e computed estimators with corre-
sponding function values are listed in Ta-
ble 4.1. For the optimisation we employed
the optim function of R using the L-BFGS-B
method, cf. Zhu et al. (1997), for solving box-constrained optimisation problems with stan-
dard precision 10−8. �is method relies on gradient descent steps and terminates when the
norm of the gradient of the objective function is small. Hence, in general only local minima
are to be found.

Indeed, as visible in Figure 4.8, the log-pseudolikelihood for the considered point pa�ern
is not concave. �e plot suggests that the PL has a very �at banana-shaped hill. We have
reason to believe that there are probably at least two local maxima: one on the lower le� and
one in the middle on the right hand side of Figure 4.8d. Depending on where we initialise
the optimisation, we can end up in one or the other region of the parameter space. Notably,
the local maximum on the lower le� is close to the case where the parameters of the model
are not identi�able anymore (γ = 1) raising a further issue of this approach.

We like to remark, that the value of the PL for all computed MPLEs is approximately the
same, see Table 4.1, even though the values for the initial value θ(3) and the optimisation
conditional on γ = 0.4 is slightly larger. �is suggests that all these parameter choice
are about “equally good” in terms of PL. �e MPLE approach, however, does not provide
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Figure 4.8: Top le� to bo�om right: Log-PL on three cuts through the parameter space for
�xed λ = λ0 (a), β = β0 (b) and γ = γ0 (c), respectively. �e projection of the true parameter
to the slices is marked as ×, the projected MPLEs within the shown slice (with the respective
third component �xed at the true value) as green diamond and the projections of three MPLEs
to the slices for di�erent initial values from Example 4.30 for the optimisation procedure as
yellow circle, blue triangle and red square, respectively. An aerial view on the log-PL over the
3D parameter space is depicted in (d) (visible are the three slices where λ = 3, γ = 0 or β = 3,
respectively). An interactive graphic of the 3D log-PL can be found in Wieditz (2021b). Note
that the numerical optimisation gives reason to believe that there are two local maxima for
very small γ ≈ 0 (approx. hard core process) and γ = 1 (unidenti�able case).
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λ̂ β̂ γ̂ log p`(θ̂ | ζ)

initial point θ(1) 20.8513 0.5745 1.0000 126.2998
initial point θ(2) 32.8837 0.2885 1.0000 126.2998
initial point θ(3) 34.9765 0.3127 0.0000 126.3230
�xed θ1 = λ0 12.0000 0.7857 1.0000 126.2998
�xed θ2 = β0 3.0000 1.0000 1.0000 126.2998
�xed θ3 = γ0 34.5290 0.2930 0.4000 126.3023
true θ = θ(0) 12.0000 1.0000 0.4000 124.1730

Table 4.1: Computed MPLEs from di�erent starting points (row 1–3) and within the two-
dimensional subspaces when one component of θ is set to the true value (row 4–6) with corre-
sponding log-PL. �e value of the log-PL for the true parameter θ(0) in the last row. All values
are rounded to four decimal places.

any information about the number of “equally good” parameter choices and associated
uncertainties. �is has to be kept in mind when using MPLE information in practice.

As a �nal remark, we like to note that the main computational workload comes from the
computation of the integral

∫
X
cθ(u | ζ) du, see also Table 6.3 on p. 125. In view of the ap-

plication of �ngerprints, the used grid of 25×25 la�ice points might be too coarse-meshed.
Increasing the number of la�ice points might improve the approximation of the integral,
however, also leads to larger components and hence to an increase in computational time.
�e optimal choice of a mesh is beyond the scope of this thesis; we refer to the literature
for improved versions, e.g. (Baddeley et al., 2015, Section 9.8).

�e following Section 4.6 contains the remaining proofs of results stated in this chapter.
�e reader might skip this part and proceed with Chapter 5 in which we introduce an
approach which takes uncertainties in the choice of parameters into account.

4.6 Proofs

In this section we present the proofs le� out in the �rst part of Chapter 4. To start with,
we provide three auxiliary results which are needed for the proof of Lemma 4.18. For the
proof we need moreover the Poisson thinning theorem as stated below.

�eorem 4.31 (Poisson thinning theorem). Suppose Ξ ∼ Pop(X, λ) is subject to indepen-
dent thinning with retention probabilities p(x) for x ∈ X and let λthin(x) = p(x)λ(x), x ∈ X.
�en, Ξthin and Ξ\Ξthin are independent Poisson processes with intensities λthin and λ−λthin,
respectively.
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Proof. For the proof, we refer to (Møller & Waagepetersen, 2003, Proposition 3.7). �

Lemma 4.32. Let

Φ : N×N→ N×N,

(
N∑
n=1

δxn ,
M∑
m=1

δym

)
7→
(

N∑
n=1

δxn ,
N∑
n=1

δxn +
M∑
m=1

δym

)
.

�en, for A,B ∈ N we have

(Π1 ⊗ Π1)
(
Φ−1(A×B)

)
= e−|X|

∫
B

∑
ξ⊆ζ

δξ(A)Π1(dζ).

Proof. �e mapping Φ is bijective with inverse

Φ−1 :

{(
N∑
n=1

δxn ,
L∑
`=1

δz`

)
∈ N×N : |{n | xn = x}| ≤ |{` | z` = x}| , x ∈ X

}
→ N×N,(

N∑
n=1

δxn ,
L∑
`=1

δz`

)
7→
(

N∑
n=1

δxn ,
L∑
`=1

δz` −
N∑
n=1

δxn

)
.

Denote by Π2 := Pop(2) the Poisson process with intensity 2. Let Z ∼ Π2 and Zthin be
a process obtained from Z via thinning with retention probability 1

2
. From �eorem 4.31

follows that for independent H1,H2 ∼ Π1 we have (Zthin,Z \ Zthin) ∼ (H1,H2). �en, for
A,B ∈ N we have:

(Π1 ⊗ Π1)
(
Φ−1(A×B)

)
= P((H1,H2) ∈ Φ−1(A×B)) = P (Φ(H1,H2) ∈ A×B)

= P (Φ(Zthin,Z \ Zthin) ∈ A×B) = P ((Zthin,Z) ∈ A×B)

=

∫
B

P (Zthin ∈ A | Z = ζ)PZ(dζ)

where the last equality follows from the de�nition of the conditional probability. Now, we
have

P (Zthin ∈ A | Z = ζ) =
|{ξ ⊆ ζ : ξ ∈ A}|
|{ξ ⊆ ζ}| =

∑
ξ⊆ζ 1(ξ ∈ A)

2|ζ|
.

Moreover, due to Z ∼ Π2 and using

dPZ

dΠ1

(ζ) =
dΠ2

dΠ1

(ζ) = e−|X|2|ζ|,

see Lemma 4.8, we obtain
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∫
B

P (Zthin ∈ A | Z = ξ)PZ(dξ) =

∫
B

(∑
ξ⊆ζ 1(ξ ∈ A)

2|ζ|

)
PZ(dζ)

=

∫
B

(∑
ξ⊆ζ 1(ξ ∈ A)

2|ζ|

)
e−|X|2|ζ|Π1(dζ)

= e−|X|
∫
B

∑
ξ⊆ζ

δξ(A)Π1(dζ),

which yields the assertion. �

Lemma4.33. Let Φ be the mapping from Lemma 4.32 andh : N×N→ R+ be (N ⊗N ,B(R))-
measurable. �en,∫∫

N×N
h(ξ, ζ) (Π1 ⊗ Π1) Φ−1(dξ, dζ) =

∫
N

e−|X|
∑
ξ⊆ζ

h(ξ, ζ)Π1(dζ). (4.38)

Proof. We do the proof by employing measure theoretical induction.

(i) Let at �rst A,B ∈ N and h(ξ, ζ) = 1A×B(ξ, ζ) = 1A(ξ)1B(ζ). �en,∫∫
N×N

h(ξ, ζ) (Π1 ⊗ Π1) Φ−1(dξ, dζ) = (Π1 ⊗ Π1) Φ−1(A×B)

and ∫
N

e−|X|
∑
ξ⊆ζ

h(ξ, ζ)Π1(dζ) =

∫
N

e−|X|
∑
ξ⊆ζ

1A(ξ)1B(ζ)Π1(dζ)

=

∫
B

e−|X|
∑
ξ⊆ζ

1A(ξ)Π1(dζ)

and Equation (4.38) follows from Lemma 4.32. Now, the system
{
A×B

∣∣A,B ∈ N
}

is a λ-system and, moreover, an intersection-stable generator forN ⊗N . Hence, due
to to Dynkin’s π-λ-theorem (Klenke, 2020, �eorem 1.19) we obtain (4.38) even for
arbitrary indicator functions h = 1D for D ∈ N ⊗N .

(ii) Since the integral is a linear operator, Equation (4.38) holds also true for linear com-
binations of indicator functions.

(iii) Moreover, note that the sum over all subsets of ζ on the right hand side of (4.38) is �-
nite. Hence, monotone limits of linear combinations of indicator functions
limn→∞

∑n
i=1 hi(ξ, ζ) can be pulled out of the limit and (4.38) follows by the monoto-

nous convergence theorem.

�
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Having found a formula for the density of superpositions of point proceses, we can derive
the formula for the conditional intensity. We recall:

�eorem 4.28. Let Z = Ξ ∪̇H with Ξ ∼ Pop(λ), H ∼ StraussHard(β, γ, R, r) and ζ ∼ Z

be a point pa�ern. Moreover, let z ∈ ζ and denote by Gk = (ζk, ER(ζk)), k = 1, 2, . . . , K ,
the components of GR[ζ \ {z}]. �en, the conditional intensity of Z satis�es

cθ(z | ζ) = cθ(z | ζ \ {z})

= λ+ β(z)
K∏
k=1

∑ηk⊆ζk

(∏
v∈ηk

β(v)
λ

)
γ|ER(ηk)|γ|NR(z|ηk)| 1 (Er(ηk ∪ {z}) = ∅)∑

ηk⊆ζk

(∏
v∈ηk

β(v)
λ

)
γ|ER(ηk)| 1 (Er(ηk) = ∅)

 .

Proof. We know

hθ(ζ) = e−|X|
∑
ξ⊆ζ

fλ(ξ) gβ,γ(ζ \ ξ),

where

fλ(ξ) = e(1−λ)|X|λ|ξ|, gβ,γ(η) = α

(∏
v∈η

β(v)

)
γsr(η) 1 (dmin(η) > r) .

We show the claim at �rst for the superposition of a homogeneous Poisson and a homoge-
neous Strauss process. For z ∈ ζ we have

cθ(z | ζ) =
hθ(ζ)

hθ(ζ \ {z})
=

∑
η⊆ζ β

|η|γsR(η)λ|ζ\η|∑
η⊆ζ\{z} β

|η|γsR(η)λ|(ζ\{z})\η|
=

=

∑
η⊆ζ\{z} β

|η|γsR(η)λ|ζ\η| +
∑

η⊆ζ\{z} β
|η ∪̇ {z}|γsR(η ∪̇ {z})λ|(ζ\{z})\η|∑

η⊆ζ\{z} β
|η|γsR(η)λ|(ζ\{z})\η|

= λ+ β

∑
η⊆ζ\{z}

(
β
λ

)|η|
γsR(η)+tR(z|η)∑

η⊆ζ\{z}
(
β
λ

)|η|
γsR(η)

= λ+ β

∑
η⊆ζ\{z}

(
β
λ

)|η|
γ|ER(η)|+|NR(z|η)|∑

η⊆ζ\{z}
(
β
λ

)|η|
γ|ER(η)|

. (4.39)

It is now su�cient to show that the computation of the numerator and the denominator of
(4.39) can both be decomposed into the computation of components of GR[ζ \ {z}].
Let K = 2, i.e. ζ = ζ1 ∪̇ ζ2. For the denominator de�ne

ϕ : P2(ζ \ {z})→ R, η 7→
(
β

λ

)|η|
γ|ER(η)|.
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For η1 ⊆ ζ1, η2 ⊆ ζ2 we have ϕ(η1 ∪̇ η2) = ϕ(η1)ϕ(η2). �en∑
η⊆ζ

ϕ(η) =
∑
η⊆ζ

ϕ((ζ1 ∩ η) ∪ (ζ2 ∩ η)) =
∑
η⊆ζ

ϕ(ζ1 ∩ η)ϕ(ζ2 ∩ η)

=
∑
η1⊆ζ1

∑
η2⊆ζ2

ϕ(ζ1 ∩ (η1 ∪ η2))ϕ(ζ2 ∩ (η1 ∪ η2))

=
∑
η1⊆ζ1

∑
η2⊆ζ2

ϕ(η1)ϕ(η2)

=

(∑
η1⊆ζ1

ϕ(η1)

)(∑
η2⊆ζ2

ϕ(η2)

)
.

For the numerator consider

ψ : P2(ζ \ {z})→ R, η 7→
(
β

λ

)|η|
γ|ER(η)|+|NR(z|η)|.

Since for η1 ⊆ ζ1, η2 ⊆ ζ2 we have

NR(z | η1 ∪̇ η2) = {v ∈ η1 ∪̇ η2 : ‖v − z‖ ≤ R} = NR(z | η1) ∪̇NR(z | η2).

Analogously to the argumentation for ϕ we obtain hence ψ(η1 ∪̇ η2) = ψ(η1)ψ(η2) and
thus the same factorisation as above with ϕ replaced by ψ. Now, for K ≥ 3 we obtain by
induction

∑
η⊆ζ

ψ(η) =
K∏
k=1

∑
ηk⊆ζk

ψ(ηk) =
K∏
k=1

∑
ηk⊆ζk

(
β

λ

)|ηk|
γ|ER(ηk)|+|NR(z|ηk)|,

∑
η⊆ζ

ϕ(η) =
K∏
k=1

∑
ηk⊆ζk

ϕ(ηk) =
K∏
k=1

∑
ηk⊆ζk

(
β

λ

)|ηk|
γ|ER(ηk)|,

and hence the claim for the homogeneous case.

For inhomogeneous β we substitute β|η| by
∏

v∈η β(v). To include an additional hard core
at distance r ∈ (0, R) to the Strauss process, we have to check for every considered ηk ⊆ ζk

that no two distinct points u, v ∈ ηk are closer than r. Since dmin(ηk) > r ⇐⇒ Er(ηk) = ∅,
the assertion follows. �

An identi�ability result for the superposition model from Section 4.4 also holds in case of
a non-constant activity function µ as follows:
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Lemma4.34 (Identi�ability for inhomogeneous processes). Consider two independent point
processes Ξ ∼ Pop(λ), H ∼ StraussHard(βµ, γ,R, r) with λ > 0, β > 0 and γ ∈ [0, 1) and
assume the interaction radii 0 < r < R and µ : X → R++ to be known. Moreover, suppose
that cR > r for some c ∈ (1

2
, 1) and that diam(X) > 2cR. Let Z = Ξ ∪̇H with density

hθ : N→ R+ w.r.t. the unit Poisson process Π1 where θ = (λ, β, γ). �en, θ is identi�able.

Proof. Let

ζi = δxi , for i = 1, 2, 3,

ζ4 = δx1 + δx2 , with r < ‖x1 − x1‖ < R and

ζ5 = δx1 + δx2 + δx3 , with r < ‖x1 − x2‖, ‖x1 − x3‖ < R and ‖x2 − x3‖ > R

for x1, x2, x3 ∈ X. Existence of ζ5 is ensured by diam(X) > R. To simplify notation we
write βi := βµ(xi) and µi := µ(xi).

It su�ces to show that hθ(ζ) = hθ̃(ζ) for ζ ∈ A := {∅, ζi | i = 1, 2, . . . , 5} implies θ = θ̃.
�en, the assertion follows analogously to Lemma 4.20 (c).

As in Lemma 4.20 (a) it su�ces to consider the unnormalised densities h̆θ, h̆θ̃ since hθ(∅) =

hθ̃(∅). �e density h̆θ for the provided point pa�erns ζi writes as

h̆θ(ζi) = λ+ βi, i = 1, 2, 3, (4.40)

h̆θ(ζ4) = λ2 + λ(β1 + β2) + β1β2γ

= (λ+ β1)(λ+ β2) + β1β2(γ − 1), (4.41)

h̆θ(ζ5) = λ3 + λ2(β1 + β2 + β3) + λ(γβ1(β2 + β3) + β2β3) + γ2β1β2β3

= (λ+ β1)(λ+ β2)(λ+ β3) + β1β2(γ − 1)

(
λ

(
1 +

β3

β2

)
+ β3(γ + 1)

)
. (4.42)

Hence, if hθ(ζ) = hθ̃(ζ) for all ζ ∈ A, the equations (4.40), (4.41) and (4.42) lead to

λ+ βi = λ̃+ β̃i,

β2(γ − 1) = β̃2(γ̃ − 1), (4.43)

λ

(
1 +

µ3

µ2

)
+ β3(γ + 1) = λ̃

(
1 +

µ3

µ2

)
+ β̃3(γ̃ + 1).

Note, that the µ1, µ2 cancel on both sides of Equation (4.43). If we subtract the �rst equation
for i = 3 from the last equation we get

µ3

µ2

λ+ βµ3γ =
µ3

µ2

λ̃+ β̃µ3γ̃.
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Dividing by µ3 > 0 and plugging in λ = λ̃ + β̃2 − β2 leads to β (γ − 1) = β̃ (γ̃ − 1) or
equivalently

ββ̃(γ − 1) = β̃2(γ̃ − 1) = β2(γ − 1), (4.44)

where the la�er equality originates from (4.43). Since β > 0 and γ < 1, we can divide by
these quantities and obtain get β = β̃ and thus immediately also γ = γ̃ and λ = λ̃, which
yields the claim. �
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Chapter 5

Bayesian inference and Markov Chain
Monte Carlo algorithms

We balance probabilities and choose the most likely. It is the scienti�c use of the

imagination, but we have always some material basis on which to start our speculation.

Sherlock Holmes, �e Hound of the Baskervilles
Arthur Conan Doyle, 1901

In Chapter 4 we outlined that for the superposition model proposed, a unique best choice
of the underlying model parameters is unlikely. A similar behaviour is also expected for
the separation of the minutiae into necessary and random minutiae. �us, we seek for
methods allowing separation in a probabilistic sense and incorporating uncertainties in
the parameter choices. �e tools to do so are provided by the theory of Bayesian statistics.

�is chapter is intended to acquaint the reader with the world of Bayesian statistics. We
provide the framework in which we like to practice statistical inference and show, how
this can be applied for separating the minutiae into necessary and random ones. In the
following section we present the Bayesian philosophy, point out di�erences to classical,
frequentist statistics and provide common tools and algorithms. Section 5.2 considers ap-
plications of Bayesian methods to spatial point processes and the separation problem from
Chapter 4.

81
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5.1 Introduction to Bayesian statistics

�e presented results below are obtained from Young & Smith (2005); Schervish (2012). A
broader overview over the �eld is provided e.g. in Brooks et al. (2011) or Liu (2008). We
start from a slightly more general point of view.

5.1.1 The Bayesian philosophy

Assume that we observe data x ∈ X in the sample space X 14 sampled from a probability
distribution Pθ which depends on the parameter θ ∈ Θ, but the true value of θ is unknown.
�e distribution Pθ is assumed to stem from a family of distributions {Pθ | θ ∈ Θ} on X .
�e parameter space Θ will in our context be a subset of Rd for some d ∈ N. We like to
make inference on θ given the observed data x.

In classical statistics, sometimes also called frequentist statistics, the dataX (before observ-
ing) is a random variable with distribution Pθ where θ is unknown, but �xed. In contrast
to this, in Bayesian statistics both the data and the parameter are regarded as random. Usu-
ally we have some information about the parameter even before knowing about the data,
so-called prior information. �e key idea is to update our prior beliefs in θ a�er observ-
ing data x to take the new information into account to obtain the posterior distribution,
i.e. the distribution of θ a�er observing the data. Bayesian methods rely on Bayes’ law of
conditional probabilities (hence the name Bayesian statistics) which tells us exactly how to
obtain the posterior distribution.

For a mathematical precise de�nition, suppose X and θ are random variables with values
in the measure spaces (X ,B) and (Θ, τ), respectively, and let Pθ be the conditional distri-
bution of X given θ. We assume that the parameter θ has a probability density function π
w.r.t. the Lebesgue measure µ on (Θ, τ). �e density π is called prior density and represents
our beliefs about the parameter before observing the data.

Moreover, assume that eachPθ has a densityhθ = dPθ

dν
w.r.t. to a measure ν on (X ,B). Here,

ν can e.g. be the counting measure on N (in a discrete se�ing), the Lebesgue measure (for
the continuous case) or the measure induced by the unit Poisson process (for point process
applications). We assume that hθ is measurable w.r.t. B ⊗ τ allowing us to integrate this
function w.r.t. measures on both X and Θ.

14later on, this will be the space N of point pa�erns on the region of interest X ⊆ R2
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�e function θ 7→ hθ(x) as a function of θ a�er X = x is observed is called likelihood
since it models how likely it is to observe the data x if the model parameter is θ.

For given θ, the function x 7→ hθ(x) is the conditional density (w.r.t. ν) of X given θ.
Assuming that the marginal distribution of X is absolutely continuous w.r.t. ν, we can
write the density hX of X w.r.t. ν as

hX(x) =

∫
Θ

hϑ(x)π(ϑ)µ(dϑ), (5.1)

see e.g. (Schervish, 2012, Equation (1.23)). �is density is called marginal density of X ,
evidence or prior predictive density.

�e conditional distribution of θ given X = x is called posterior distribution of θ. Using
Bayes’ theorem, (Schervish, 2012, �eorem 1.31), we can compute its density π(· | x) :

Θ→ R+ w.r.t. µ (the posterior density) as

π(θ | x) =
π(θ)hθ(x)

hX(x)
=

π(θ)hθ(x)∫
Θ
π(ϑ)hϑ(x)µ(dϑ)

. (5.2)

It is common to just write

π(θ | x) ∝ π(θ)hθ(x) (5.3)

or in words posterior∝ prior× likelihood, where “∝” means proportional and the constant
of proportionality may depend on x but not on θ. �is proportionality or normalising
constant, and thus also the posterior distribution itself, is in general hard to compute. �us,
in practice usually sampling schemes are applied to approximate the posterior distribution
which are designed in a way that sampling is possible without (explicitly) knowing the
normalising constant. As a result, the right hand side of (5.3) is o�en su�cient to sample
from the posterior distribution.

Moreover, in practice the choice of an appropriate prior is an important issue to think
about, since inference for the posterior could heavily depend on how much we already
know in advance. For a detailed discussion about the choice of prior distributions, see e.g.
(Young & Smith, 2005, Section 3.6). Sometimes, a particular choice of the prior makes the
computation of the posterior very easy and allows to write it even in closed form.
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Example 5.1. (Conjugacy, (Young & Smith, 2005, Example 3.1)) Let X ∼ Poi(θ) be a
Poisson distributed random variable but the true intensity θ ∈ Θ = R+ is not known.
Assume the prior density is a Gamma density with shape a > 0 and rate b > 0, i.e.

π(θ) =
ba

Γ(a)
θa−1e−bθ

where Γ(t) :=
∫∞

0
ut−1e−u du denotes the Gamma function. Since given θ, the data X is

Poisson distributed, the likelihood (i.e. its probability mass function given θ) is of form

hθ : N→ R+, x 7→ hθ(x) =
θx

x!
e−θ.

Hence, for the posterior density holds

π(θ | x) ∝ π(θ)hθ(x) =
ba

Γ(a)x!
θa+x−1e−(b+1)θ,

which is, up to normalising constants, again the density of a Gamma distribution but now
with shape a+ x and rate b+ 1 instead of a and b. See (Gelman et al., 2013, Section 2.6) for
a more detailed calculation and the computation of the normalising constant.

�e fact that prior and posterior distribution belong to the same class of probability dis-
tributions is also referred to as conjugacy and the prior is called a conjugate prior for the
likelihood function.

Example 5.1 gives rise to a useful application for Poisson point processes.

Example 5.2 (Conjugacy for Poisson processes). Let Ξ ∼ Pop(λ) be a homogeneous
Poisson process on some compact subset X ⊆ R2 with positive Lebesgue measure where
the intensity λ > 0 is unknown. We assume λ ∼ Γ(a, b) (as prior knowledge) for some
a, b > 0 and are interested in the posterior distribution of λ a�er observing a point pat-
tern ξ = {x1, x2, . . . , xn} ∼ Ξ. To this end, recall the scaling property of the Gamma
distribution: for X ∼ Γ(a, b) and c > 0 we have cX ∼ Γ

(
a, b

c

)
.

From Remark 4.5 follows that n = Ξ(X) ∼ Poi(λ|X|). Moreover, the scaling property of
the Gamma distribution yields λ|X| ∼ Γ

(
a, b
|X|

)
. Now, due to the conjugacy of Poisson

and Gamma distribution, cf. Example 5.1, we obtain λ|X| | n ∼ Γ
(
a+ n, b

|X| + 1
)

and
hence, applying again the scaling property:

λ | ξ = λ | n ∼ Γ (a+ |ξ|, b+ |X|) . (5.4)
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In particular, the posterior distribution of λ only depends on the number n of observed
points in ξ but not on their locations.

�e use of a conjugate prior is not mandatory and there would be no reason to adhere with
it if we had more prior information about the parameter λ. However, it is very convenient
since it leads to a closed form for the posterior and we do not have to worry about the
normalising constant hX(x). In non-conjugate cases, where everything has to be computed
numerically, the computation of the normalising constant is usually the most laborious. For
instance, for Strauss processes a similar approach as for Poisson processes is not possible
without further ado because relation between the model parameters β, γ and the intensity
is not tractable.

Remark 5.3 (Frequentist vs. Bayesian statistics). In the se�ing of separating minutiae pat-
terns, one advantage of Bayesian methods over frequentist methods becomes particularly
apparent. As pointed out in Example 4.30, the likelihood of the parameters might be mul-
timodal. In particular, when incorporating also the latent variable W, cf. Equation (4.19),
it can happen that for given parameters and a pair of points it might be equally likely to
assign either of the two points to the Strauss and the Poisson process but not both to the
same process, leading to two modes and negative correlation between the labels. While in
classical approaches uncertainty estimation for e.g. the MPLE of the model parameters θ
can be obtained for instance by employing bootstrap or Monte Carlo methods, cf. Coeur-
jolly & Rubak (2013), a similar approach for the latent variables is, to the best of the author’s
knowledge, not known.

In contrast, Bayesian methods yield an uncertainty estimation of the posterior distribution
of both the parameters and the labels given the data which captures the uncertainty and
correlation e�ects mentioned above. �is, however, comes at the price of dealing with the
normalising constant of the posterior, cf. (5.1). Unfortunately, for the model considered in
Section 4.4, we do not know of a corresponding conjugate prior (as in Example 5.2) for the
model parameters (β, γ) and W. Moreover, we cannot explicitly compute the integral (5.1),
not even for known W due to the normalising constant of the Strauss process in (4.19).

To tackle this problem we proceed as follows: �e rest of this section is dedicated to in-
troducing the reader to general approaches for parameter estimation in a Bayesian sense
if the marginal density (5.1) of the data is not explicitly available to us. With regard to
estimating the parameters θ = (λ, β, γ) ∈ Θ, cf. Section 4.4, in a Bayesian sense for an
already separated point pa�ern (i.e. for known W) we point out associated issues (par-
ticularly due to intractable normalising constants of Gibbs processes) in Section 5.2. We
include the estimation of the posterior distribution of W in Section 6.4.
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5.1.2 Metropolis-Hastings algorithms

In practice, one usually tries to avoid the computation of (5.1) as this integral can be very
hard to compute especially if Θ is high-dimensional. Nevertheless, the prior predictive
distribution or evidence (5.1) is sometimes used e.g. for the prediction of unseen data con-
ditioned on the observed data or for model evaluation and validation, cf. (Gelman et al.,
2013, Chapter 6 and 7). To this end, Monte Carlo methods are o�en employed to approx-
imate (5.1) numerically. �e idea is to sample from the parameter space Θ on random
points, evaluate the integrand at these sample points and approximate the integral via an
(possibly weighted) arithmetic mean of these values. Usually pseudo-random number gen-
erators are used to generate independent, identically distributed numbers on [0, 1] and then
transformation methods are applied to get any arbitrary desired distribution. However, this
requires that we can at least evaluate the integrand, particularly the likelihood hθ making
these analyses hard for models including Gibbs processes due to the intractable normal-
ising constant. More recent algorithms rely on machine learning based techniques, see
Kingma & Welling (2019) for introductory reading.

In the following we will focus on methods for parameter inference in which the computa-
tion of (5.1) plays only a minor role as algorithms are usually designed in a way to avoid
the computation of normalisation constants. One of the most popular methods is the so-
called Metropolis-Hastings algorithm, originally developed by Metropolis et al. (1953) and
then extended by Hastings (1970), which we will introduce now.

�e idea is to iteratively explore the parameter space Θ in a way such that the sampling
distribution of the generated sequence (θ(t))t=1,2,... converges to the posterior distribution,
i.e. we obtain an approximation of the posterior distribution by drawing (independent)
subsamples (θ(ti))Ti=1 ⊆ (θ(t))t=1,2,... via

π(θ | x) ≈ 1

T

T∑
i=1

δθ(ti) .

To this end, assume Θ ⊆ Rd and let π̆(θ | x) = π(θ)hθ(x) be the possibly unnormalised
posterior density of the parameter of interest θ given x. We introduce a trial density q :

Θ×Θ→ R+, (θ,θ′) 7→ q(θ′ | θ), the proposal, which is some probability density satisfying∫
Θ
q(θ′ | θ) dθ′ = 1 for all θ ∈ Θ. It models the likeliness to get from the state θ to any

other state θ′ ∈ Θ or into a set of states A ⊆ Θ via
∫
A
q(θ′ | θ) dθ′. We denote by

θ′ ∼ q(· | θ) that we draw θ′ as a sample from a random variable with density q(· | θ).
�en, a Metropolis-Hastings algorithm works as described in Algorithm 5.4.
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Algorithm 5.4 (Metropolis-Hastings algorithm).

1 Choose an arbitrary point θ(0) as starting point.
2 for t = 0, 1, 2, . . . do
3 Proposal: Given θ(t) = θ, generate a candidate θ′ for the next sample from the

probability density q(· | θ), i.e. θ′ ∼ q(· | θ).
4 Compute the Hastings ratio

H(θ′ | θ) =
π̆(θ′ | x) q(θ | θ′)
π̆(θ | x) q(θ′ | θ)

=
π(θ′ | x) q(θ | θ′)
π(θ | x) q(θ′ | θ)

. (5.5)

5 Calculate the acceptance ratio α = min {H(θ′ | θ), 1}.
6 Accept/ Reject: Generate a uniformly distributed random number u ∼ U([0, 1]).

Set

θ(t+1) =

θ
′, if α ≥ u (acceptance),

θ(t), if α < u (rejection).

7 end for
8 If deemed reasonable, discard the �rst t0 iterations (burn-in).

Output: Sample (θ(t))t=t0,t0+1,t0+2,... ≈ π(· | x).

Note, that the Algorithm 5.4 does not depend on the normalising constant hX(x) anymore
since they cancel in the numerator and the denominator of the Hastings ratio (5.5). Since
Algorithm 5.4 uses random steps, it belongs to the class of Monte Carlo algorithms. Its out-
put is a sequence of random samples which, indeed, build a Markov chain, hence the name
Markov chain Monte Carlo, short MCMC. �is Markov chain converges under rather weak
assumptions (Harris recurrence and irreducibility) to the desired stationary distribution
with density π(θ | x), see (Robert & Casella, 2013, Section 7.3). However, several major
issues arise in practice.

(a) �eoretical results o�en guarantee the geometric convergence to the posterior (e.g.
in the total variation distance, see Equation (5.8)). However, they do usually not
provide error bounds which are applicable in an applied se�ing. To determine the
distance from the sample distribution to the posterior, typically calculations are re-
quired which are only feasible in relatively simple se�ings and are hence not very
useful in practice.
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�us, in practice one usually deletes the �rst few iterations of Algorithm 5.4 to allow
for burn-in, i.e. the period during which the sample density is assumed to get close
to the true posterior density. �e choice of the burn-in length of the algorithm is,
however, subjective and o�en more a ma�er of computational time than of actual
convergence. �ere exist various diagnostics for convergence. See (Robert & Casella,
2013, Section 12) for an overview.

(b) Since (θ(t))t=1,2,... is a Markov chain the samples θ(t) are not independent and, even
worse, o�en exhibit a dependence structure for many iterations. �is impairs the
quality of the estimated posterior distribution from (θ(t))t=1,2,... and requires a larger
sample size compared to an i.i.d. sequence. In general, it is desirable that the depen-
dence between θ(t) and θ(t+s) dies out quickly as s increases in which case the chain
is said to be well mixing.

(c) As for the burn-in, also the overall run time is o�en a ma�er of computational time
and rather a subjective choice. For example, the algorithm could discard the �rst
10,000 iterations which are treated as burn-in. �en it runs for another 100,000 itera-
tions to generate a random sample from the desired distribution. From this, one o�en
proceeds with a thinned sequence where we only consider every s-th sample for suf-
�ciently large s to get approximately independent samples where s is some quantity
measuring the correlation between samples, e.g. the integrated autocorrelation time

τint := 1 + 2
∞∑
t=1

cor
(
θ(0),θ(t)

)
.

�ere are di�erent opinions about whether thinning is worthwhile since the number
of discarded samples can be quite large. For our purposes we decided to apply thin-
ning with τint for our inference to obtain approx. independent samples. �e reduced
sample size is compensated for by a longer run of the Markov chain. For further
discussions we refer to (Young & Smith, 2005, Section 3.7) and (Gelman et al., 2013,
Section 11.6).

One method we will use a�erwards is based on the following idea: Supposeθ = (θ1, . . . ,θd) ∈
Θ ⊆ Rd to be d-dimensional. �en, instead of updating all components at once, we chose
i ∈ {1, . . . , d}, �x all components except the i-th and propose a new

θ′ = (θ1, . . . ,θi−1,θ
′
i,θi+1, . . . ,θd).
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If we go through all components one a�er another, this is called a Gibbs sampler15, if i is
chosen randomly also random (scan) Gibbs sampler. �e advantage of this procedure is,
that in each step we only have to sample from a one-dimensional distribution instead of a
d-dimensional. �is would still require that we can sample from the conditional marginals
but in practice this o�en turns out to be much easier, since we can for example use conjugate
priors.

Example 5.5 (Proposal variance). One of the most crucial ingredients to successfully im-
plement a well-performing MCMC algorithm is parameter tuning, especially tuning the
variance of the proposal distribution. We like to demonstrate the e�ect in a simple exam-
ple.

Assume we want to sample from a standard normal distribution, i.e. π(· | x) is a N (0, 1)

density (independent of x), using an MH-algorithm with anN (θ, σ2) proposal q(· | θ) for
some σ > 0. We execute the algorithm starting from θ = 0 for three di�erent choices
of σ, namely a large one σlarge = 32, a small one σsmall = 0.5 and an intermediate one
σintermediate = 4. �e results of a run of 1,000 iterations can be seen in Figure 5.1.

In the top row we plo�ed the trace of the Markov chain during the run time, i.e. the graph
of t 7→ θ(t), indicating the behaviour of the chain over the time. It is clearly visible, that for
a large proposal variance we quite o�en discard the proposals and only rarely change the
state: the acceptance rate, i.e. the percentage of accepted proposals in relation to the total
proposals, is 0.3%. However, if this is the case, these jumps can be very large. In contrast
to this, for the small proposal variance we almost always accept the proposals (acceptance
rate 85%), however, the changes in the state are only minor. For the intermediate proposal
variance we observe frequent state changes (acceptance rate 28%) of moderate size.

Let’s now have a look how the proposal variance a�ects the autocorrelation of the Markov
chain, shown in the second row of Figure 5.1. For the Markov chain with large proposal
variance we observe only a slow decay in the autocorrelation, caused by the long dwell
time in the states. �e autocorrelation for the small proposal variance decays a li�le faster,
however due to the minor state changes, consecutive θ(t) are highly correlated even for
quite a few iterations. In fact, the (rounded) integrated autocorrelation times are

τ large
int = 54, τ small

int = 18, τ intermediate
int = 6.

15Substantially, this has nothing to do with the Gibbs processes from Chapter 4; merely the eponym is in
both cases Josiah Willard Gibbs (1839–1903).
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Only the chain for σintermediate shows a rapid decay of the autocorrelation, suggesting that
already a�er short time, samples are approximately independent.

In the bo�om row of Figure 5.1 the histograms and estimated densities for the sample
obtained from the whole run can be seen. Ideally, this should resemble a standard normal
density, indicated as dashed green line. Clearly, for σlarge the deviation is quite large — the
estimated density is even bimodal. �e estimated density of σsmall is quite good, maybe
even be�er than the one for the intermediate proposal variance. However, it could happen
e.g. for a bimodal posterior distribution, that due to the small step size we only explore
one part of the parameter space and miss one of the two modes. Since the structure of the
parameter space is not known in advance, a too small choice of the proposal variance can
lead to convergence to the wrong posterior distribution. A very common diagnostic to �nd
out about the structure of the parameter space is the multistart heuristic. �e idea is to start
the Markov chain at di�erent points in order to examine the convergence behaviour of the
chain. If the posterior distribution is multimodal or the state space of the chain has poorly
connected regions we would �nd see this in di�erent convergence behaviours depending
on the chosen initial point.

In the literature the problem of choosing the right proposal variance is widely discussed
and so far there is no universal answer on how to choose it just right. (Roberts, 1996,
Section 3.5.2) proposed, as a rule of thumb, to try to achieve an acceptance rate between
15% and 50% which seems to be good enough for most applications. Hence, it is usually
recommended to explore the state space using some pilot experiments, beginning with a
large proposal variance and adjust the proposal variance accordingly.

Remark 5.6 (Further tuning). In practice, the tuning of the proposal variance is not the
only issue to consider to set up a well-performing MCMC algorithm. Jarner & Roberts
(2007); Neal & Roberts (2011) mention that for fast convergence to the posterior compati-
bility in the tail behaviour of proposal and posterior is required (e.g. we might not converge
geometrically when the proposal distribution is Gaussian while the posterior distribution
of the parameter has heavy tails). Algorithms that take local information of the posterior
into account in the proposal o�en require pointwise evaluations of derivatives of the pos-
terior density, see e.g. Roberts & Rosenthal (1998). Parameter tuning for our application
is discussed in Section 6.4. For further reading about tuning possibilities of MCMC algo-
rithms and optimal proposals see e.g. Roberts & Rosenthal (2009) or (Brooks et al., 2011,
Chapter 4).
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Remark 5.7 (Posterior point estimators). In practice, it is sometimes useful (or even nec-
essary) to summarise the posterior distribution to a single value (e.g. for point estimation)
as the whole posterior distribution is too much information for us to think about easily.
Common methods to do so are, as in classical descriptive statistics, to describe the pos-
terior distribution by e.g. the posterior mean (i.e. the expectation of the parameter w.r.t.
the posterior distribution), the posterior median (i.e. the value cu�ing the probability mass
of the posterior distribution in halves) or the posterior mode (sometimes called maximum
a posteriori estimator (MAP), i.e. the maximum of the posterior distribution). �e answer
which one to use depends very much on the application, for a discussion we refer to lit-
erature about Bayesian decision theory, e.g. (Schervish, 2012, Chapter 3). In applications
if the posterior distribution looks even vaguely like a normal distribution it is common to
summarise it like

θ = posterior mean± posterior standard deviation.

If we are interested in the precision of the estimate, e.g. of the posterior mean, from a
sample from the posterior distribution we state the estimate ± standard error (s.e.), i.e. the
empirical posterior standard deviation divided by the square root of the sample size.

5.2 MCMC for point processes

Let us now consider how MCMC can be applied for exploring the posterior distribution
of the model parameters from our superposition model from Section 4.4. To obtain in-
formation about both the model parameters of the Poisson and Strauss process and the
labels W ∈ {0, 1}n as in Section 4.4, we have to include W as an additional variable to
the parameter space. It has turned out to be di�cult to sample from the joint distribution
of parameters and labels at the same time. Hence, we decided to employ a Gibbs sampler
and update the parameters and labels alternately. Implementation details are considered
in Section 6.4. In this section we like to highlight some issues coming along the parameter
updates for point processes. Hence, for the rest of this section, assume tacitly the alloca-
tion W of the points to the processes to be known. All probabilities are conditional on the
number n of data points.

We consider a point pa�ern ζ = ξ ∪̇ η ∼ Z = Ξ ∪̇H from the superimposed process Z as
in Section 4.4. �e density of ζ = ξ ∪̇ η for known W w.r.t. Binomial process16 is hθ(ζ) ∝
16i.e. a Poisson process conditioned on the total number of points being n
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fλ ({zi : Wi = 0}) gβ,γ({zi : Wi = 1}) for some θ = (λ, β, γ) ∈ Θ = R+ × R+ × (0, 1).
�e posterior density

π(θ | ζ) =
π(θ)hθ(ζ)∫

Θ
π(ϑ)hϑ(ζ) dϑ

contains in fact two normalising constants, namely the one of the likelihood hθ in the
numerator (from the Strauss density gβ,γ) and the one in the denominator, which are both
in fact intractable. �is problem is in the literature also referred to as double intractability.
Whereas we can get rid of the normalising constant in the denominator by applying a
Metropolis-Hastings algorithm, cf. Section 5.1.2, we cannot apply a similar argument for
the normalising constant of the likelihood hθ. To solve this problem, we apply an approach
which goes back to Besag & Green (1993). For applications in point processes we refer to
Berthelsen & Møller (2006); Redenbach et al. (2015); Rajala et al. (2016).

5.2.1 Auxiliary variable method

�e idea is to extend the space and introduce an auxiliary point pa�ern χ̃17 living in the
same space as the data ζ . We assume χ̃ to be drawn w.r.t. a density ϕ(· | ζ) w.r.t. the
standard Poisson process and which does not depend on the current θ. �en, this point
pa�ern is included into the model as an additional variable, i.e. the parameter space is now
Θ × N. For this augmented model we have to de�ne a new proposal density q̃ on the
extended parameter space Θ×N which we chose as

q̃(θ′, χ̃′ | θ, χ̃) = hθ′(χ̃
′)q(θ′ | θ), (5.6)

i.e. we draw the new auxiliary point pa�ern χ̃′ independently of the current auxiliary point
pa�ern χ̃ as a realisation of the Gibbs process of our model, but with parameter θ′. �e
proposal for the parameter θ′ remains as before. Now, the Hastings ratio for a parameter
update from (θ, χ̃) to (θ′, χ̃′) writes as

H(θ′, χ̃′ | θ, χ̃) =
π(θ′, χ̃′ | ζ)

π(θ, χ̃ | ζ)

q̃(θ, χ̃ | θ′, χ̃′)
q̃(θ′, χ̃′ | θ, χ̃)

=
ϕ(χ̃′ | ζ)

ϕ(χ̃ | ζ)

hθ′(ζ)

hθ(ζ)

π(θ′)

π(θ)

hθ(χ̃)

hθ′(χ̃′)

q(θ | θ′)
q(θ′ | θ)

.

(5.7)

Since the normalising constants of the two hθ-terms and the two hθ′-terms cancel, this
Hastings ratio can be computed explicitly. However, in every update we have to draw a
17the tilde indicates that this is not a parameter of the original model
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new point pa�ern from a Gibbs process which can in practice be quite costly. �e sampling
scheme is summarised in Algorithm 5.8.

Algorithm 5.8 (Auxiliary variable method).

1 Draw initial θ(0) ∼ π(·) from the prior and χ̃(0) ∼ hθ(0)(·).
2 for t = 0, 1, 2, . . . do
3 Given (θ, χ̃) = (θ(t), χ̃(t)) propose θ′ ∼ q(· | θ).
4 Generate an auxiliary point pa�ern χ̃′ ∼ hθ′(·) and compute

H(θ′, χ̃′ | θ, χ̃) =
ϕ(χ̃′ | ζ)

ϕ(χ̃ | ζ)

hθ′(ζ)

hθ(ζ)

π(θ′)

π(θ)

hθ(χ̃)

hθ′(χ̃′)

q(θ | θ′)
q(θ′ | θ)

.

5 Accept θ′ with probability α = min{H(θ′, χ′ | θ, χ), 1}. In case of acceptance,
set (θ(t+1), χ̃(t+1)) = (θ′, χ̃′); otherwise (θ(t+1), χ̃(t+1)) = (θ, χ̃).

6 end for

A crucial in�uence on the algorithm’s performance is the choice of ϕ which ideally should
�t well to the proposal density hθ. �e best choice would of course be to choose ϕ(χ̃ |
ζ) = hθ(χ̃), which is not feasible since then (5.7) would contain the normalising constants
again.

Another possibility is in choosing ϕ(χ̃ | ζ) = hθaux(χ̃) with a �xed value θaux. �is choice
is expected to work well if the posterior distribution is concentrated around θaux. To follow
this approach we have to be able to simulate auxiliary point pa�erns from the distribution
induced by hθaux . For homogeneous Strauss processes, we can draw auxiliary point pa�erns
e.g. using the coupling from the past algorithms, cf. Algorithm 4.17. For the case of an
inhomogeneous Strauss process which will be of interest to us later, unfortunately there
does not yet exist appropriate so�ware. Certainly, we can run another Markov chain with
the appropriate invariant distribution. �is approach, however, is not exact anymore, so
convergence to the correct invariant distribution is not ensured. We will elaborate on this
in more detail in Section 5.2.2. For further details regarding the auxiliary variable method
for Bayesian analysis on Strauss processes, see Berthelsen & Møller (2006). �e choice of
ϕ for our application to �ngerprints will be discussed in Section 6.4.

Remark 5.9 (Exchange algorithm). Murray et al. (2012) proposed an approach which
works similarly as the auxiliary variable method mentioned above, however, does not de-
pend on an estimation of the parameter θaux. In the proposed method, referred to as single
variable exchange algorithm, they do not associate an auxiliary point pa�erns χ̃, χ̃′ with the
current and the proposed parameters θ and θ′ respectively, but generate only one χ̃ ∼ hθ′ ,
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see Algorithm 5.10 below. Notably, the Markov chain produced by Algorithm 5.8 is running
on Θ×N whereas Algorithm 5.10 projects down to Θ in every step.

Algorithm 5.10 (Exchange algorithm).

1 Draw initial θ(0) ∼ π(·) from the prior.
2 for t = 0, 1, 2, . . . do
3 Given θ = θ(t) propose θ′ ∼ q(· | θ).
4 Generate an auxiliary point pa�ern χ̃ ∼ hθ′(·) and compute

H(θ′ | θ) =
hθ′(ζ)

hθ(ζ)

π(θ′)

π(θ)

hθ(χ̃)

hθ′(χ̃)

q(θ | θ′)
q(θ′ | θ)

.

5 Accept θ′ with probability α = min{H(θ′ | θ), 1}. In case of acceptance, set
θ(t+1) = θ′; otherwise θ(t+1) = θ.

6 end for

Especially, when the estimate of θaux is poor, the exchange algorithm o�en outperforms
the auxiliary variable method in terms of acceptance rate. �is can help to improve the
performance of the overall MCMC algorithm whenever low acceptance probabilities are
an issue. As for the point pa�erns considered we do not observe a low acceptance rate in
general, see Chapter 7, we refrained from implementing the exchange algorithm. Note, that
Algorithm 5.10 also requires exact sampling of auxiliary point pa�erns from hθ′ . Hence,
the problem that we do have to run a Markov chain to obtain these point pa�erns is not
resolved by this approach either.

5.2.2 Double Metropolis-Hastings algorithm

As already mentioned, the algorithms from Section 5.2.1 require that sampling from a pro-
cess with density hθ w.r.t. Π1 is possible. As perfect sampling is in practice not always pos-
sible or very cumbersome, a common practice is to substitute the sampling step in Line 4 of
Algorithm 5.8 or Algorithm 5.10, respectively, by running another Markov chain with the
appropriate stationary distribution. Algorithms resulting from such a substitution are also
referred to as double Metropolis-Hastings algorithms. Indeed, in every iteration of the (outer)
Metropolis-Hastings algorithm we again run another Metropolis-Hastings algorithm.

Immediately the question arises whether we can still expect convergence of the overall
Markov chain to the correct stationary distribution by le�ing the inner Markov chain (the
one for generating a Gibbs point pa�ern) run just long enough. To this end, denote by
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α(θ,θ′, χ̃) the acceptance probability of an update θ′ of the Metropolis-Hastings algorithm
given the current value θ using the auxiliary variable χ̃ (either directly drawn or generated
using Metropolis-Hastings). Moreover, assume that the via Metropolis-Hastings generated
auxiliary variable has a density, mt say, w.r.t. the standard Poisson process Π1 where t is
the number of iterations.

Let E and D denote the Markov kernels18 for one step of the auxiliary variable method
(or the exchange algorithm) and the double Metropolis-Hastings algorithm, respectively.
�en, for θ ∈ Θ and A ⊆ Θ we have

E(θ, A) =

∫
N

∫
A

α(θ,θ′, χ̃) q(θ′ | θ)hθ(χ̃)dθ′Π1(dχ̃),

D(θ, A) =

∫
N

∫
A

α(θ,θ′, χ̃) q(θ′ | θ)mt(χ̃)dθ′Π1(dχ̃),

where q(· | θ) is the proposal density given θ ∈ Θ. Given θ ∈ Θ, we compare the
measures induced by these Markov kernels using the total variation distance. Recall, that
for two measures µ, ν on a measurable space (Ω,A), their total variation distance is de�ned
as

‖µ− ν‖tv := sup
A∈A
|µ(A)− ν(A)| . (5.8)

�en, we have

‖E(θ, ·)−D(θ, ·)‖tv ≤ sup
A∈σ(Θ)

∫
N

∫
A

α(θ,θ′, χ̃) q(θ′ | θ) |hθ(χ̃)−mt(χ̃)| dθ′Π1(dχ̃)

≤
∫
N

∫
Θ

α(θ,θ′, χ̃) q(θ′ | θ)dθ′ |hθ(χ̃)−mt(χ̃)|Π1(dχ̃)

=

∫
N

|hθ(χ̃)−mt(χ̃)|Π1(dχ̃) −→ 0

as t → ∞. Here, the �rst inequality follows from the triangle inequality. �e equality in
the third row is due to

∫
Θ
α(θ,θ′, χ̃) q(θ′ | θ)dθ′ = 1 and the convergence follows under

quite general conditions, cf. Tsvetkov et al. (2013).

Hence, if we run the inner Metropolis-Hastings algorithm just long enough, the error be-
tween the auxiliary variable method (or exchange algorithm) and the double Metropolis-
Hastings algorithm is small. However, this raises the question whether the errors from sin-
gle iterations cumulate in a way that the convergence of the overall Metropolis-Hastings

18for some preliminaries on theory of Markov chains, see Section A.2.
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algorithm is not longer ensured. �is is a central topic of the perturbation theory of Markov
chains. Approximate Metropolis-Hastings algorithms and criteria under which conver-
gence is ensured are considered in Rudolf & Schweizer (2018).

Checking these conditions in an applied se�ing is o�en challenging and whenever re-
sources are limited there is usually a trade-o� between actual convergence and speed of the
overall algorithm; especially, since the inner Markov chain has to run in every Hastings-
step of the outer algorithm. We discuss this issue for our application to point processes in
Section 6.4.2.

Having found a framework that allows for Bayesian inference, we are now in a position to
compute all ingredients and elaborate on the choice of hyper-parameters needed for this
inference. �is will be discussed in the following Chapter 6.
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Chapter 6

Algorithms and implementation
details

�is chapter considers all algorithms and algorithmic details used for this thesis. We focus
at �rst on processing the �ngerprint image itself in the Sections 6.1–6.3 whereas implemen-
tation details for the MCMC-based separation algorithm are discussed in Section 6.4. �e
provided so�ware packages and an analysis on computational complexity are presented in
Section 6.5.

For the model introduced in Chapter 3 we determine a �ngerprint’s divergence �eld using
the algorithms presented below. For our experiments we use the databases of the �nger-
print veri�cation competition 2002, cf. Maio et al. (2002). We process an image in the
following order:

(i) Segmentation (separation of �ngerprint foreground and background)

(ii) Binarisation (transformation into a black-and-white image)

(iii) Orientation estimation and singularity detection

(iv) Ridge frequency estimation

(v) Orientation �eld divergence and ridge frequency divergence estimation

(vi) Estimation of intensity of necessary minutiae

General remarks All methods presented below depend on hyper-parameters such as
smoothing bandwidths or window sizes of �lters. �e suitable choice of these parameters
depends on many factors such as quality and resolution of the captured �ngerprint or the
used acquisition medium. To obtain optimal results of our analysis, these parameters have
to be tuned individually for every considered �ngerprint which is, of course, not suitable for

99
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application to large databases. �erefore, and to exclude the in�uence of hyper-parameters
on our analysis, we restrict ourselves to a �xed set of these hyper-parameters which we
determined experimentally to perform reasonably well on the considered �ngerprints from
Figure 3.6.

Segmentation & Binarisation We determine the region of interest using the segmen-
tation algorithm of �ai et al. (2016). �is algorithm also provides a binarised version of
its input �ngerprint. �ese binary images turned out to behave more robust than the non-
binarised versions, especially regarding ridge frequency estimation, see Section 6.2. We
hence use these binarised images for the entire following analysis. We like to stress that
for the analysis of �ngerprints the actual object of interest is the actual �ngerprint of the
person (i.e. the friction ridge pa�ern of the epidermis), however, not the �ngerprint im-
age itself (which is just a digital representation). Hence, image preprocessing and image
enhancement can be seen as procedures improving the performance of feature extraction
algorithms rather than manipulating the data of interest which is, indeed, not a�ected by
it. However, there is no ground truth for neither the orientation �eld, singular points nor
ridge frequency to compare with, since the actual �ngerprint is not available to us.

6.1 Orientation field and singularity detection

�e issue of extracting an orientation �eld has already been researched for a long time,
however, is not yet resolved to a satisfying level for all kinds of images. Issues arise es-
pecially whenever the quality of the images deteriorates. We will henceforth focus on
�ngerprint images with high quality and follow a simple natural approach based on the
computation of image gradients from Bazen & Gerez (2002). To this end, we will �rst make
a brief excursion to image feature extraction procedures.

6.1.1 Image feature extraction and filtering

For this thesis, a (digital) image is considered to be a matrix I with entries in a pixel space.
Typically, this pixel space is {0, 1, . . . , 255} (8-bit grey-value images) or {0, 1} (binary im-
ages). To simplify notations and to omit rounding e�ects in computations, we allow for
real-valued entries and assume I ∈ Rh×w where h,w ∈ N are the height and width of the
image, respectively.



6.1 Orientation �eld and singularity detection 101

In image processing, an image feature is a piece of information about the content of an
image, typically whether a certain region of the image has certain properties. Features
may be speci�c structures in the image such as points, edges or objects. A �lter is a device
for extracting image features or for removing unwanted components or features from an
image. In the context of �ngerprint recognition, interesting features of a �ngerprint image
are for instance the region of interest, ridge lines and their endings/ bifurcations (minutiae),
ridge orientation, distances between ridges as well as singular points.

Faulty information in digital images is an intrinsic problem of image processing usually
caused by the acquisition medium. Filtering is important and o�en necessary whenever
the acquired �ngerprint image is noisy or of bad quality to remove spurious features which
do not actually belong to the depicted �ngerprint. Whereas noise removal is o�en no
issue for the human eye, it poses a challenge for computers. It is o�en di�cult to �nd
a suitable trade-o� between removing spurious features on the one hand and remaining
actual features of the image on the other hand. Hence, smoothing �lters for noise removal
are o�en combined with the corresponding feature extraction �lters to obtain satisfying
results. We brie�y discuss the most important concepts to us as follows. For thorough
insights into image processing and image feature extraction methods we refer to Bredies
& Lorenz (2011); Nixon & Aguado (2019) or Zhao et al. (2020) for an overview of modern
feature learning based algorithms.19

De�nition 6.1 (Convolution). . Let I ∈ Rh×w be an image and K ∈ R(2n+1)×(2m+1) be a
matrix of dimension (2n+ 1)× (2m+ 1) for n,m ∈ N0, which is called kernel, also �lter
or convolution matrix. �e �ltered image I∗ := K ∗ I ∈ Rh×w of I is given via

I∗(i, j) :=
n∑

k=−n

m∑
`=−m

K(k, `) I(i+ k, j + `)

for 1 ≤ i ≤ h, 1 ≤ j ≤ w. We set I(i + k, j + `) = 0 whenever (i + k, j + `) /∈
{1, 2, . . . , h} × {1, 2, . . . , w} to capture boundary e�ects, see Remark 6.2 for the practical
implementation.

Remark 6.2 (Boundary e�ects). Note, that whenever the size of the �lter extends beyond
the edge of the image the �ltered image depends on values outside of the original image.
�ere are various ways to deal with this problem, e.g. zero-padding as in De�nition 6.1,
mirroring the image at the boundary or introducing periodic boundary conditions. For
19We like to remark that modern deep learning based feature extraction methods such as convolutional

neural networks o�en produce good results, however need to be trained on large data bases to do so and
are hence not applicable in our se�ing, see also the discussion in Section 1.2.
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the practical implementation of our work we decided to not to consider pixels too close to
the boundary (computationally se�ing these pixel values to NA; see also Remark 4.11 for
boundary e�ects regarding point processes). Since the quality of the �ngerprint close to
the boundary is o�en bad, the loss of information due to this is negligible.

Example 6.3 (Smoothing kernels). By application of a smoothing kernel an image is
smoothed or blurred and noise is suppressed via building weighted averages of the colour
values of pixels within a window which strides over the image, cf. Figure 6.1. Simple ex-
amples for smoothing �lters are:

(a) �e averaging kernel (3× 3 box blur)

1

9

1 1 1

1 1 1

1 1 1

 ∗ I.
gives every pixel within a window around (i, j) (here: 3 × 3) the same weight. �e
result is the average of the considered pixel (i, j) and all its 8-neighbours, i.e. all
pixels sharing a corner with (i, j), see Figure 6.1b. Indeed, we have

I∗(i, j) =
1

9

1∑
k=−1

1∑
`=−1

I(i+ k, j + `).

(b) One of the most commonly applied smoothing kernels is the (isotropic) Gaussian
kernel given by

K(k, `) =
1

2πσ2
exp

(
− 1

2σ2

(
k2 + `2

))
.

Note, that actually this kernel has an unbounded support. However, since the weights
K(k, `) for large ‖(k, `)‖ are very small and hence the contribution of pixels far apart
from the centre of the kernel is negligible, it is common to restrict the kernel to a small
window. For standard deviation σ = 1 for instance, see Figure 6.1c for an illustration,
the �ltered image using a Gaussian kernel K of size 5× 5 has the form

I∗ =
1

273


1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

 ∗ I.
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(a) (b) (c)

Figure 6.1: Applications of a 3×3 averaging smoothing kernel (b) and a Gaussian smoothing
kernel (b) with σ = 1 on the chequerboard pa�ern (a). Notice, that the edges of the original
pa�ern are dilated by the averaging kernel whereas they are more blurry a�er application of
the Gaussian kernel due to the di�erently assigned weights.

�e choice of the �lter variance or bandwidth σ is o�en a balancing act between a
su�cient smoothing of the image and preserving important image features at the
same time, cf. the discussion at the beginning of the section. �e particular value is
o�en chosen according to empirical values and adjusted if deemed necessary.

To obtain the ridge lines orientation of an image, we compute the image gradient of the
grey-valued image, indicating the change of the brightness (from light to dark) of an image.
Its magnitude tells us how quickly the image colour is changing whereas its direction tells
us the direction where the image changes most rapidly. As a result, image gradients are
usually used for edge detection see e.g. Figure 6.2d. For a �ngerprint image, the image
gradient always points in the direction of the nearest ridge and is orthogonal to it. We can
derive an orientation just by rotating the image gradient by π

2
.

Remark 6.4 (Finite di�erences). Since the image information is only given on a discrete
grid, the image gradient rather corresponds to �nite di�erences than to a derivative. From
elementary calculus it is known that for a function I : R2 → R on a continuous domain
we have

∂

∂x
I(x, y) = lim

h→0

I(x+ h, y)− I(x− h, y)

2h
,

∂

∂y
I(x, y) = lim

h→0

I(x, y + h)− I(x, y − h)

2h
.
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Hence, for su�ciently small h, the quotient on the right hand side is a good approximation
for the derivative. Since the smallest unit in a digital image I is one pixel, we use the
following approximation of �nite di�erences

∂

∂x
I(i, j) ≈ I(i+ 1, j)− I(i− 1, j)

2
, (6.1)

∂

∂y
I(i, j) ≈ I(i, j + 1)− I(i, j − 1)

2
. (6.2)

We call (6.1) and (6.2) image gradient of I in (i, j) in x- and y-direction, respectively.

For an image I we can compute its image gradients e�ciently by convolution.

Example 6.5 (Derivative �lters). (a) �e image gradient ∇I = (GxI, GyI)> of an im-
age I can be computed by convolution as follows:

GxI =
1

2

[
−1 0 1

]
∗ I, GyI =

1

2

−1

0

1

 ∗ I.
Indeed, we have for instance

GxI(i, j) =
1

2

(
(−1) · I(i− 1, j) + 0 · I(i, j) + (1) · I(i+ 1, j)

)
=

I(i+ 1, j)− I(i− 1, j)

2
≈ ∂

∂x
I(i, j),

see Equation (6.1) for the �nite di�erences approximation.

(b) Moreover, image gradients and smoothing kernels are o�en concatenated to obtain
a smoother version of the gradient making the computation more robust to noise. A
very popular choice for this is the Sobel �lter

SxI =
1

4

−1 0 1

−2 0 2

−1 0 1

 ∗ I, SyI =
1

4

−1 −2 −1

0 0 0

1 2 1

 ∗ I.
For an illustration of the �ltered images due to application of the Sobel �lter, see Fig-
ures 6.2b and 6.2c. Figure 6.2d illustrates particularly well the edge detection property
of the image gradient’s magnitude.

�ere exists a variety of further derivative �lters including information on directed or larger
windows e.g. using Gabor �lters or Gaussian �lters, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Image gradients using the Sobel �lter in x- and y-direction (b), (c), respectively,
of the original image (a). �e magnitude (d) of the image gradient (e) shows the edges in the
image (changes from black to white). For (b) and (c), black denotes negative, white positive and
grey zero values. (f) shows the estimated ridge orientation directly from (e) without smoothing.
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Gabor �lters are directed according to a given direction and capture features at a given
frequency. �ey are hence particularly suited to detect not only horizontal or vertical
but also slanted edges (corresponding to directional derivatives), cf. Moreno et al. (2009);
Go�schlich (2011). However, direction and frequency are parameters of the �lters which
we are trying to determine in the context of �ngerprints making them less appropriate for
orientation estimation but rather for image enhancement and post-processing.

Larger masks (i.e. �lters of larger sizes) will in general give a be�er approximation of the
derivatives since sometimes high frequency noise needs to be removed, however, the com-
putation becomes more expensive. Hence, in practice we have to �nd a trade-o� between
performance and accuracy. For our purposes, the Sobel �lter turned out to be a good com-
promise.

In image processing, smoothing �lters are also referred to as low-pass �lters. In contrast to
this, high-pass �lters such as the derivative �lters above, have the property of sharpening
edges. �e terminology originates from signal processing, where images are considered as
two-dimensional signals in the Fourier domain and �lters correspond to “cu�ing o�” high
or low frequencies.

6.1.2 Computation of orientation images

Recall that we denote by O = (θ(i, j)) the orientation image of the �ngerprint where
θ(i, j) is the local orientation of the ridge line pa�ern in pixel (i, j), cf. Section 2.1. Since
we do not assume the line pa�ern to be directed, θ(i, j) only takes values in [−π

2
, π

2
) and

we identify angles modulo π.

Using the results from Section 6.1.1 we can compute a �ngerprint’s orientation image via
image gradients. To obtain more robust results we use the Sobel �lters Sx, Sy from Ex-
ample 6.5. Denote the obtained gradient images by Gx = SxI, Gy = SyI. From these
gradients we compute the orientation image. �e local orientation in θ(i, j) in (i, j) is the
direction orthogonal to the image gradient in (i, j) modulo π, i.e.

θ(i, j) = ∠(Gx(i, j),Gy(i, j)) +
π

2
mod π ∈

[
−π

2
,
π

2

)
(6.3)

where the notation a mod π ∈
[
−π

2
, π

2

)
shall mean that

a mod π =


a, if |a| < π

2
,

π + a if a < −π
2
,

π − a if a ≥ π
2
.
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Note, that (6.3) can be computed using the arctan2 function, see also Section 3.2.1, via

∠(x, y) = arctan2(x, y) =


arctan

(
y
x

)
, x > 0,

arctan
(
y
x

)
+ sgn(y) π, x < 0,

sgn(y) π
2
, x = 0, y 6= 0.

where sgn(y) is the sign of y ∈ R. Note that arctan2 is not de�ned for (x, y) = (0, 0).

In applications it turned out that this approach is still prone to noise and the so obtained
orientation image is o�en not smooth enough (see also Figure 6.2f) to induce a C2 vector
�eld (apart from singularities) as required in Chapter 3. A subsequent smoothing routine
is hence desirable or even necessary. Common smoothing procedures cannot be applied to
the obtained orientation image directly since opposed orientations would cancel. For exam-
ple, the mean orientation between 1◦ and 179◦ would rather be 0◦ than 1

2
(1◦+179◦) = 90◦.

Moreover, averaging is not even always well-de�ned. For instance, the mean orientation
between 0◦ and 90◦ can be either 45◦ or 135◦.

To solve this problem we follow an approach by Bazen & Gerez (2002). Computationally,
every orientation is interpreted as direction in

[
−π

2
, π

2

)
. �e idea is that each direction

ψ ∈ [−π, π) corresponds to a vector e iψ in the complex plane C representing this direc-
tion. By squaring these vectors, opposite gradient vectors will point in the same direction
(i.e. representing the same orientation) preventing that they cancel when computing an
(extrinsic) mean in C. A�er averaging, we convert the gradient vectors e iθ̄ back via taking
the root e iθ̄/2.

Hence, we compute the squared gradients (Sx,Sy) in a pixel (i, j) from the image gradi-
ents Gx, Gy via

Sx(i, j) = Gx(i, j)
2 −Gy(i, j)

2, Sy(x, y) = 2Gx(i, j)Gy(i, j),

corresponding to real and imaginary part of the squared gradient. We now apply a Gaussian
�lter K to the squared gradient in order to obtain S̄x, S̄y with

S̄x = K ∗Sx, S̄y = K ∗Sy.

To obtain the corresponding smoothed orientation image, we take the “square root” of this
vector and rotate this again by π

2
, i.e. we compute

θ̄(i, j) =

(
1

2
∠(S̄x, S̄y) +

π

2

)
mod π ∈

[
−π

2
,
π

2

)
.
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(a)
(b) (c) (d)

Figure 6.3: Results of the smoothing procedure by Bazen & Gerez (2002) of the orientation
image of the �ngerprint (a) for di�erent choices of σ = 1, 7, 20 ((b)–(d), le� to right). Clearly,
the orientation images become smoother as σ increases. Detected cores using the Poincaré index
are marked as red diamonds (�), deltas as green triangles (∆). As σ increases, the number
of spuriously detected singularities decreases, however we observe displacement of the loop-
type singularities towards the boundary. �e drawn singularities for (a) were computed using
σ = 7, cf. (c).

Again, naturally the question arises which smoothing variance to choose for the smooth-
ing kernel K. To answer this, we considered several band widths, cf. Figure 6.3. A larger
σ leads, as mentioned above, to a smoother orientation �eld, however also to a larger dis-
placement of the loop-type singularities. In Figure 6.3 for instance, the upper core of the
whorl moves upwards as σ increases, cf. also the discussion in (Maltoni et al., 2009, p. 122).
Since for the analysis in Chapter 3 regions close to a singularity are excluded, we have to
rely on a relatively precise estimation of the singularities. We hence choose σ = 7 for our
further analysis since this seems to be a good compromise between a smooth orientation
image and not too large displacement of the singularities on all considered images.

6.1.3 Singularity detection

Using the orientation image, we can now estimate the locations of the orientation �eld’s
singularities. An algorithm to do so is provided for instance by Bazen & Gerez (2002) or
Awad & Baba (2012), and is based on the Poincaré index, cf. De�nition 3.6.
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Recall from �eorem 3.9 that the Poincaré index in z0 ∈ A can be computed as

indexθ(z0) =
1

2π

∫ 2π

0

〈∇θ(γ(t)), γ̇(t)〉 dt =
1

2π

∫∫
A

curl∇θ(z) dz,

where A ⊆ R2 is compact and γ : [0, 2π]→ ∂A is a positively oriented, piecewise smooth,
closed curve enclosing z0.

An implementation to compute the Poincaré index directly from the de�nition using cu-
mulative changes in the orientation is described in Hong & Jain (1999). �e algorithm
presented there depends on the particular choice of the curve γ which the authors claim
to be optimal for a square curve with a side length 25 pixels. A smaller curve results in
spurious detections while a larger curve may ignore core-delta-pairs lying close to each
other. �is results in an image containing the Poincaré index for each pixel. Classi�cation
into the di�erent types of singularities and regular points is �nally applied based on con-
nected components with similar Poincaré index. Hence, the localisation of singular points
is relatively imprecise.

By contrast, the method by Bazen & Gerez (2002) relies on �eorem 3.9 and promises to
extract all singular points, including the ones due to insu�cient smoothing, see Figure 6.3b,
at a precision of up to one pixel (i.e. maximal 2×2 pixel size singular points). �e algorithm
�rst takes the squared orientation image which is obtained from the orientation image by
doubling the orientation angles. �is eliminates the discontinuity of the orientation �eld
between −π

2
and π

2
, cf. Section 6.1.2. By doing so, the Poincaré indices change to –1, 1, 2

and 0 for, respectively, a delta, a core, a whorl and a regular point.

�en we compute

1

2π

∫∫
A

curl∇2θ(z) dz ≈ 1

2π

∑
(i,j)∈A

(
∂

∂x

∂

∂y
2θ(i, j)− ∂

∂y

∂

∂x
2θ(i, j)

)

whereas the derivatives are to be understood to be computed via �nite di�erences as de-
scribed in Section 6.1.1. In our application we choose A to be one pixel such that we can
extract all singular points as precise as possible, cf. the discussion above. �e classi�cation
is implemented by thresholding according to the above mentioned reference values, cf. also
�eorem 3.8, with accuracy 10−3.

�e precision of the singularity point extraction depends severely on the extracted orien-
tation �eld and the Poincaré index may lead to false singularities in noisy or low-quality
regions of the �ngerprint, see Figure 6.3b. A regularisation of the orientation �eld (e.g. via
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additional smoothing) is o�en quite e�ective in preventing the detection of false singulari-
ties, however, usually leads to displacement of the loop-type singularity positions towards
the boundary of the image (see Figure 6.3d). For all images considered, σ = 7 seems to
be a suitable choice. Since the detection of false singularities is o�en an indicator for bad
quality of the extracted orientation image (given a predetermined amount of smoothing),
we do not apply further regularisation on the orientation image. We rather see this as an
advantage in information and exclude also regions around “false” singularities from further
analysis to obtain results as precise as possible in the remaining region of interest.

6.2 Ridge frequency

(i, j)

θ(i, j)

L

W

Figure 6.4: An oriented window of size L×W , centred
at (i, j) for computing the ridge frequency. �e dashed
lines indicate the pixels whose colour values are accu-
mulated for a given column of the x-signature, cf. Hong
et al. (1998). �e x-signature of (i, j) can be seen in the
lower le� as a bar plot.

Recall from Section 2.1 that the
ridge frequency in a pixel (i, j)

is the number of ridges per unit
length (measured in pixels) along
a hypothetical line segment cen-
tred at (i, j) and orthogonal to the
local ridge orientation θ(i, j) in
(i, j). In a region of the image
where the ridge �ow is continu-
ous (i.e. no singularities or minu-
tiae), the grey levels of the im-
age form a (discrete) sinusoidal
wave along a direction orthogo-
nal of the local orientation, cf. Fig-
ure 6.4. �e waves’ frequency is
the same as that of the ridges or
valleys and hence the distance be-
tween two consecutive peaks cor-
respond to the inter-ridge distance
which is the reciprocal of the ridge
frequency.

To compute the ridge frequency we follow an approach presented in Hong et al. (1998). For
every pixel (i, j) we compute an oriented, rectangular window20 centred at (i, j) that covers
20For our implementations we use L = 33, W = 17, cf. Algorithm 6.6.
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W pixel rows along each containing L pixels orthogonal to the local ridge orientation,
cf. Figure 6.4. �en, the grey-values are column-wisely cumulated; the resulting vector is
called x-signature.

In Figure 6.4, the x-signature of the pixel (i, j) is indicated as a bar plot on the bo�om
le� corner. Now, we compute the distance sm between every two consecutive peaks in
the x-signature. Averaging the sm and taking the reciprocal results in the local ridge fre-
quency ϕ(i, j) in (i, j).

Since this approach is very prone to noise, which can cause additional local extrema in the
grey-value pro�le, cf. Figure 6.5, Hong et al. (1998) provide an additional smoothing step.
Experiments showed that this is o�en not su�cient and that considering the binarised
images instead of grey-value images lead to more reliable results. Hence, we use for our
computations the binarisation provided by the approach from �ai et al. (2016).

We summarise the procedure for computing the ridge frequency in the following algorithm:

Algorithm 6.6 (Ridge frequency).

Input : Binarised �ngerprint image I, orientation image O = (θ(i, j))i,j .

1 for every pixel (i, j) do
2 Compute an oriented window of size L×W (33× 17) that is de�ned in the

ridge coordinate system centred in (i, j), see Figure 6.4.
3 Compute the x-signature X[0], X[1], . . . , X[L− 1] of the ridges and valleys

within the oriented window, where

X[`] :=
1

W

W−1∑
k=0

I(u`,k, vk,`), ` = 0, 1, . . . , L− 1,

and
u`,k =

⌊
i+

(
k − W

2

)
cos θ(i, j) +

(
`− L

2

)
sin θ(i, j)

⌉
,

v`,k =

⌊
j +

(
k − W

2

)
sin θ(i, j) +

(
L

2
− `
)

cos θ(i, j)

⌉
,

where bxe denotes rounding x to the nearest integer, cf. p. 156.
4 Compute the average T (i, j) of the distances sm between two consecutive

peaks in the x-signature, cf. Figure 6.5.
5 Set ϕ(i, j) = 1

T (i,j)
.

6 end for
7 If deemed reasonable, apply a smoothing kernel to ϕ.

Output: Ridge frequency image F = (ϕ(i, j)).
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(a) (b)

(c) (d)

Figure 6.5: An oriented window centred at the pixel 	 for a section of a grey-valued image
(a) and the binarised counterpart (c). �e local inter-ridge distance is computed as the average
of the distances sm between the peaks in the x-signature (right column). Notice, that the x-
signature of the grey-value image (b) exhibits an additional small peak due to noise which is
not present in the x-signature of the binarised image (d) and resulting in a much smaller ridge
frequency for (d).

Remark 6.7 (Ridge frequency via Fourier transform). In the literature, there are apart from
the presented approach for the computation of the ridge frequency, algorithms based on
Fourier transform analysis, see e.g. Chikkerur et al. (2007); Patriciu & Spinu (2014). Zhan
et al. (2006) compared ridge frequency estimation in the spatial domain and the Fourier
domain and found that the former ones can be implemented more e�ciently while the
la�er appear to be more robust to noise. Since the binarisation preprocessing seems to
solve the problem of noise for the images considered to a large extent, we chose to adhere
with the approach presented above.
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6.3 Divergence and intensity

In this section we provide an algorithm for computing the divergence �eld of a �ngerprint’s
ridge frequency weighted orientation �eld as in �eorem 3.13. We split the computation
up into the computation of the �ngerprint’s orientation �eld divergence and the ridge fre-
quency divergence, see (3.15) and (3.16).

Divergence of the orientation field A vector �eld’s divergence, is the sum of the par-
tial derivatives of its components. As a vector �eld has a direction, the divergence is a
directed quantity. However, the orientation �eld has only an orientation, so in each point
we can assign even two directions pointing in opposite directions, cf. Section 3.2.1. To get
a meaningful divergence �eld we thus have to direct the orientation �eld (i.e. we have to
decide for one the two possible directions). In general, it is not possible to globally direct
the orientation �eld continuously as long as it contains singularities, cf. (Sherlock, 2004,
�eorem 5.3.3.1). However, we can divide the image in small simply connected subregions
(e.g. using a regular grid), exclude the regions containing the singularities and direct the
orientation �eld within the remaining grid patches such that we obtain a continuous �eld
within these subregions. �e procedure of doing so is called unwrapping since we unwrap
the angles from values in [−π

2
, π

2
] to the real line such that the resulting function is contin-

uous as a function from the grid patch to R. Computationally, we obtain the unwrapped
orientation ψ(i, j) from the (wrapped) orientation θ(i, j) by adding an integer multiple of
π, i.e.,

ψ(i, j) = θ(i, j) + πk(i, j), (6.4)

where θ(i, j) ∈
[
−π

2
, π

2

)
and k(i, j) ∈ Z is chosen such that ψ becomes continuous21 for

all pixels (i, j) within the considered subregion of the ROI.

Since the orientation �eld is only available via the orientation image, we compute image
gradients (of the unwrapped orientation) instead of partial derivatives and compute the
divergence from these image gradients. In general, if the orientation image exhibits sin-
gularities the unwrapping procedure is path dependent, i.e. the value of ψ depends on the
order the pixels (i, j) are unwrapped. Hence, if we restrict ourselves only to patches not
containing singularities this issue is theoretically not of concern. However, the determina-
tion of singularities is in practice o�en imprecise (depending on the degree of smoothness

21For discrete images we mean by continuity that the di�erence between the unwrapped orientation of
adjacent pixels is small. We choose a tolerance of 10−3 for our implementations.
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of the OF, cf. Section 6.1) and experiments showed that the unwrapping path indeed can
a�ect the result of the unwrapping procedure even in patches which do not contain a sin-
gularity but are close to one.

Figure 6.6: Unwrapping scheme of the algo-
rithm. �e start pixel is indicated in black, al-
ready unwrapped pixels are grey and pixels yet
to unwrap in white. �e unwrapping path is
indicated with dots (· · · ), the direction with ar-
rows.

For our purposes, we use a pixel queue
based unwrapping algorithm following a
spiral path around the centre of a given
patch, cf. Figure 6.6. We start the unwrap-
ping procedure at the centre (0, 0) of a con-
sidered patch A and set k(0, 0) = 0. �e
pixels are ordered into a queueQ according
to the spiral path. �en, the integer k(i, j)

for the �rst pixel of the queue is deter-
mined such that ψ(`,m) is continuous (in
the above sense) for all already unwrapped
pixels (`,m) ∈ A \ Q. We then remove
the �rst element from the queue and iter-
ate with the subsequent new front element.
�is turned out to perform reasonably well
on all considered data. For a more detailed
overview about robust phase unwrapping algorithms we refer to the literature, e.g. Ghiglia
& Pri� (1998); Antonopoulos et al. (2015).

An example for the orientation image O = (θ(i, j)) and its unwrapped version Õ =

(ψ(i, j)) can be seen in Figure 6.7a and 6.7b, respectively. Note that within grid tiles the un-
wrapped orientation image is (su�ciently) smooth and that the lines of discontinuity a�er
unwrapping are only on the grid lines but not within grid tiles anymore. Hence, it is rea-
sonable to assume that the vector �eld ~F (i, j) = (cosψ(i, j), sinψ(i, j))> corresponding
to the unwrapped orientation Õ is C2 on the interior of the patches.

Using this su�ciently smooth unwrapped orientation image Õ and the ridge frequency
image F = (ϕ(i, j)), we can compute the OF divergence image DO as a discrete approxi-
mation of Equation (3.15) via

DO(i, j) = ϕ(i, j)

(
cosψ(i+ 1, j)− cosψ(i− 1, j)

2
+

sinψ(i, j + 1)− sinψ(i, j − 1)

2

)
≈ ϕ(i, j) (∂xF1(i, j) + ∂yF2(i, j)) = ϕ(i, j) div ~F (i, j).

Note that, due to the �nite di�erence approximation, we need to unwrap for each grid tile
an additional padding of one pixel. An example for the divergence image can be seen in
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Figure 6.7: Top: �e orientation image before (le�) and a�er unwrapping (middle) using a
8 × 15 grid (side length 37×37 pixels). �e resulting absolute OF divergence �eld is depicted
in (c). Bo�om: �e ridge frequency image and its RF divergence image (d), (e) and the total
minutiae intensity image (f). Patches containing singularities (� and ∆) were excluded from
the computations.
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Figure 6.7c. Note also that the OF divergence image, as the unwrapped orientation, is only
continuous within the patches but not necessarily globally, see e.g. the patches west and
north-west of the delta at the bo�om right of Figure 6.7c.

Divergence of ridge frequency �e ridge frequency divergence in a pixel (i, j) is,
cf. (3.16), given as 〈

∇ϕ(i, j), ~F (i, j)
〉
.

Note, that this quantity also depends on the direction chosen for the orientation �eld. Since
we have to combine the divergence of the orientation �eld and the ridge frequency to obtain
the intensity of necessary minutiae, cf. �eorem 3.13 , we have to choose the direction con-
sistently with the one chosen in the previous paragraph, i.e. we use the orientation �eld Õ

which is unwrapped on the same patches as above, i.e. ~F (i, j) = (cosψ(i, j), sinψ(i, j))>.
Let (GxF, GyF) be the �nite di�erences approximation of ∇ϕ, cf. Example 6.5. �en, the
ridge frequency divergence image DF is computed via

DF(i, j) = GxF(i, j) cosψ(i, j) +GyF(i, j) sinψ(i, j).

An example can be seen in Figure 6.7 where the ridge frequency image is depicted in
panel 6.7d and the resulting RF divergence in panel 6.7e.

Intensity of the necessary minutiae �e intensity of necessary minutiae in a certain
pixel can, given the orientation �eld divergence image and the ridge frequency divergence
image, according to �eorem 3.13 be estimated as

µ(i, j) =
∣∣∣ϕ(i, j) div ~F (i, j) +

〈
∇ϕ(i, j)~F (i, j)

〉∣∣∣ .
Combining the divergence images from the two previous paragraphs, we obtain the nec-
essary minutiae intensity image M as M(i, j) = |F(i, j)DO(i, j) +DF(i, j)|. An example
is depicted in panel 6.7f of Figure 6.7. We use this image M as the activity/ trend image for
the Strauss process for our computation.

Having computed the intensity images we can now formulate an algorithm to separate a
given minutiae pa�ern into random and necessary minutiae. �is will be subject of Sec-
tion 6.4.
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6.4 Bayesian inference using MCMC

�is section is dedicated to the implementation details of an MCMC algorithm (as in Sec-
tion 5.2.1 but we allow now also for changes in W, see Section 6.4.3) for sampling from the
posterior distribution of the parameters of the model from Section 4.4 given some minu-
tiae pa�ern ζ = {z1, z2, . . . , zn} ⊆ X. Recall that we denote the model parameters by
θ = (λ, β, γ) ∈ Θ = R+ × R+ × (0, 1) and the label vector by W ∈ {0, 1}n. Moreover,
X denotes the region of interest. Note, that the tuning of hyper-parameters occurring in
this section is based on the 20 high quality �ngerprints from Figure 3.6 and all data-related
statements made below relate to this data base. Bayes’ theorem (5.2) yields for the posterior
distribution

π(θ,W | ζ) =
hθ,W(ζ) π(θ,W)∫

hϑ,W(ζ) π(ϑ,W) d(ϑ,W)
. (6.5)

�e framework for the MCMC algorithm is described in the following Algorithm 6.8.

Algorithm 6.8 (Framework for the Minutiae Separation Algorithm (MiSeal)).

Input : Minutiae pa�ern ζ = {z1, z2, . . . , zn} ⊆ X.

1 Choose some initial (θ(0),W(0)) ∈ Θ× {0, 1}n. Draw χ̃(0) ∼ hθ(0),W(0)(·).
2 for t = 0, 1, 2, . . . do
3 Given (θ(t),W(t), χ̃(t)) = (θ,W, χ̃), generate a candidate (θ′,W′, χ̃′) for the

next sample from the probability density q̃(θ′,W′, χ̃′ | θ,W, χ̃).
4 Calculate the Hastings ratio

H(θ′,W′, χ̃′ | θ,W, χ̃) =
π(θ′,W′, χ̃′ | ζ)

π(θ,W, χ̃ | ζ)

q̃(θ,W, χ̃ | θ′,W′, χ̃′)

q̃(θ′,W′, χ̃′ | θ,W, χ̃)
. (6.6)

5 Accept the candidate with probability min{H(θ′,W′, χ̃′ | θ,W, χ̃), 1}.
6 In case of acceptance set (θ(t+1),W(t+1), χ̃(t+1)) = (θ′,W′, χ̃′), otherwise

(θ(t+1),W(t+1), χ̃(t+1)) = (θ,W, χ̃).
7 end for
8 Project the samples to Θ× {0, 1}n (i.e. drop χ̃).
9 If deemed necessary, discard the �rst t0 samples (burn-in).

Output: A sample (θ(t),W(t))t=t0+1,t0+2,... from the distribution induced by
π(θ,W | ζ).
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For our model from Section 4.4 we have

hθ,W(ζ) = fλ ({zi : Wi = 0}) gβ,γ ({zi : Wi = 0})

is the model likelihood, cf. Equation (4.19), of the labelled data given parameters and labels.
π(θ,W) models our prior belief about the parameters and labels which we will de�ne in
Section 6.4.1.

Recall from Section 5.2 that we face a doubly intractable problem because the denominator
in (6.5) is intractable, and hθ,W(ζ) in the numerator contains another intractable normalis-
ing constant. Hence, we employ Algorithm 6.8 which is a variant of the auxiliary variable
method (using auxiliary point pa�erns χ̃, χ̃′ ∈ N), see Algorithm 5.8, to produce samples
from the posterior distribution (6.5).

Remark 6.9. �e performance of Algorithm 6.8 crucially depends on the computation of
the Hastings ratio (6.6). Similarly to Equation (5.7) we can rewrite the Hastings ratio as

H(θ′,W′, χ̃′ | θ,W, χ̃) =
π(θ′,W′, χ̃′ | ζ)

π(θ,W, χ̃ | ζ)

q̃(θ,W, χ̃ | θ′,W′, χ̃′)

q̃(θ′,W′, χ̃′ | θ,W, χ̃)

=
hθ′,W′(ζ)

hθ,W(ζ)

ϕ(χ̃′ |W′, ζ)

ϕ(χ̃ |W, ζ)

π(θ′,W′)

π(θ,W)

q̃(θ,W, χ̃ | θ′,W′, χ̃′)

q̃(θ′,W′, χ̃′ | θ,W, χ̃)

where ϕ is the density of χ̃ w.r.t. the standard Poisson process which must not depend
on the value of θ, cf. Section 5.2, since otherwise the Hastings ratio would again contain
intractable normalising constants.

In the following sections we elaborate further details on how to compute the individual
quotients, the choice of our priors as well as the update procedures for (θ, χ̃) and W. Note
that the auxiliary point pa�ern χ̃ is only needed for the update of θ, cf. Section 5.2.1. Hence,
we will always propose (θ, χ̃) jointly, however do not propose a new χ̃ in a W update step.

For the updates, we employ a random scan Gibbs sampler, cf. Section 5.1.2 or Liu (2008),
with update probabilities pθ for θ and 1−pθ forW because the computation of the Hastings
ratio for a joint update turned out to be di�cult. A value of pθ = 0.05 (re�ecting on
average 19 proposed �ips out of the approx. 30–60 minutiae per �nger for each θ update)
approximately yields the fastest mixing. �e update for each component employs a Markov
chain yielding a variant from the Metropolis-within-Gibbs class of algorithms, see Roberts
& Rosenthal (2006).
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6.4.1 Choice of priors

We write π(θ,W) = π(θ)π(W) (assuming independence of model parameters θ and la-
bels W) and suppose the prior of the parameters π(θ) = π(λ)π(β)π(γ) is a product of the
priors of the single parameters chosen as follows.

We choose β ∼ Γ(a1, b1) where the parameters a1 = b1 = 5 are chosen such that the
expected value of β equals one (see the discussion below Equation (4.18)) and the variance
is reasonably large. For �exibility we choose γ ∼ B(p1, q1) to be beta distributed with
p1 = 2 and q1 = 5 (hence, Eγ = 2

7
), since we expect the process to be rather inhibitive also

outside the hard core distance.

For the intensity λ of the random minutiae we choose the prior to be a Gamma distribution
Γ(a0, b0). Being conjugate to the Poisson likelihood, cf. Example 5.2, this prior has the
advantage that we do not have to perform Hastings steps when updating λ, but can draw
directly from the posterior distribution conditional on W, β and γ, cf. (6.8) below. We
choose the parameters a0 = 5, b0 = 5

λ0
such that the expected value of the prior is λ0 =

10−4 from (3.19) and its variance is λ2
0/5 such that the ratio 1/

√
5 of standard deviation

over mean is reasonably sized.

Furthermore, for every imprint featuring nminutiae in its region of interest X, Remark 3.16
yields an expected number λ0|X| of random minutiae in X. Hence, for each �nger individ-
ually, we choose the prior for the label vector as π(W) =

⊗k
i=1 π(Wi) with Wi

i.i.d.∼
Ber (pW) and pW = max

{
1− λ0|X|

n
, 0
}

. We discard infeasible label vectors, i.e. label vec-
tors for which some pairs of {zi | Wi = 1} have distances smaller than r and thereby
violate the hard core condition. �e e�ect on the procedure is irrelevant since infeasible
W’s would be rejected by the MCMC algorithm in any case. �e ratio of priors for di�erent
parameters (θ,W), (θ′,W′) thus computes as

π(θ′,W′)

π(θ,W)
=
π(θ′)

π(θ)

π(W′)

π(W)

=

(
λ′

λ

)a0−1

e−b0(λ′−λ)

(
β′

β

)a1−1

e−b1(β′−β)

(
γ′

γ

)p1−1(
1− γ′
1− γ

)q1−1 (
pW

1− pW

)`′−`
,

(6.7)

where 1 ≤ `, `′ ≤ n denote the number of ones in W,W′, respectively. We have adjusted
the variances of the priors such that they concentrate on a domain we deem reasonable
according to a some pilot experiments. We keep them rather uninformative, however, to
avoid undesirable dependence of the posterior on our particular prior choices.
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6.4.2 Update of θ

When updating θ, we randomly choose to update either λ or (β, γ). To this end, toss a coin
with success probability pλ = 0.2 (this is slightly smaller than 1/3, taking into account
that, due to the explicitly available posterior, see below, there are no rejections for the λ-
updates). In case of success, update λ, which, since the Gamma prior is conjugate for the
Poisson likelihood, we can draw directly from the posterior distribution, namely from

λ | (ζ,W) ∼ Γ(a0 + n0, b0 + |X|), (6.8)

where n0 is the number of minutiae currently labelled as random inW, cf. also Example 5.2.
In case of failure, we update the parameters of the Strauss process. To this end, as men-
tioned above, we have to apply the auxiliary variable method by proposing an auxiliary
point pa�ern additionally to the new parameter.

For the update (θ′, χ′) we decompose the proposal q̃ as in Equation (5.6) as

q̃(θ′,W, χ̃′ | θ,W, χ̃) = q̃(θ′,W, χ̃′ | θ,W) = gβ′,γ′(χ̃
′) q(θ′,W | θ,W),

i.e. we propose at �rst a new parameter θ′ = (λ, β′, γ′) ∼ q(·,W | θ,W) and then draw
a new auxiliary point pa�ern χ̃′ independently of the current auxiliary point pa�ern χ̃ as
a realisation of a Strauss process (with hard core) having parameter (β′, γ′).

To update θ we propose a normally distributed update step for θ in the natural parameter
space (log-space), i.e. our proposal (β′, γ′) is log-normally distributed,(

β′

γ′

)
∼ LN

((
log β

log γ

)
,

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

))
, (6.9)

where the parameters σ1, σ2, ρ12 are �xed (see the end of this subsection). Denote the
covariance matrix in (6.9) by Σ. �en, the proposal density q for a (β, γ)-update from
θ = (λ, β, γ) to θ′ = (λ, β′, γ′) is given as

q (θ′,W | θ,W) =
1

2π
√

det Σ

1

β′γ′
exp

−1

2

(
log β′/β

log γ′/γ

)>
Σ−1

(
log β′/β

log γ′/γ

) .

and hence

q(θ,W | θ′,W)

q(θ′,W | θ,W)
=
β′γ′

βγ
. (6.10)
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�en, the Hastings ratio for a parameter update from θ = (λ, β, γ) to θ′ = (λ, β′, γ′) is

H(θ′,W, χ̃′ | θ,W, χ̃) =
π(θ′,W, χ̃′ | ζ)

π(θ,W, χ̃ | ζ)

q̃(θ,W, χ̃ | θ′,W, χ̃′)

q̃(θ′,W, χ̃′ | θ,W, χ̃)

=
ϕ(χ̃′ |W, ζ)

ϕ(χ̃ |W, ζ)

gβ′,γ′(η)

gβ,γ(η)

π(θ′,W)

π(θ,W)

gβ,γ(χ̃)

gβ′,γ′(χ̃′)

q(θ,W | θ′,W)

q(θ′,W | θ,W)
,

(6.11)

where the ratio of priors and proposals can be obtained from (6.7) and (6.10), respectively.
Since the normalising constants of the two gβ,γ-terms and the two gβ′,γ′-terms cancel, this
Hastings ratio can be computed explicitly. However, in every update we have to draw a
new point pa�ern from a Strauss process with hard core, for which we again have to run a
Markov chain. �is requires a considerable additional e�ort in each update step for (β, γ),
cf. the discussion in Section 5.2.1 and the run time analysis in Section 6.5.

As mentioned in Section 5.2.1, a crucial in�uence on the algorithm’s performance is the
choice of ϕwhich ideally should �t well to the proposal density gβ,γ . �e best choice would
of course be to choose ϕ(χ̃ |W, ζ) = gβ,γ(χ̃), which is not feasible since then (6.11) would
contain the normalising constants again, cf. Section 5.2.1. In Redenbach et al. (2015), the
density of a Poisson process was used, which results in a rather poor mixing behaviour,
cf. (Redenbach et al., 2015, Figure 6). We therefore choose for ϕ the density of another
Strauss process with hard core, �xing its parameter at θ̂aux = θ̂MPLE(ζ,W), where W

is the current label vector and θ̂MPLE(ζ,W) is the maximum pseudo-likelihood estimate
(MPLE) based on the minutiae currently labelled as necessary; see e.g. (Baddeley et al.,
2015, Section 13.13) and the references given there. If we knew the true W in advance, this
would be a good initial guess for the parameters. However, in practice the true W is not
known. We therefore adapt θ̂aux iteratively during burn-in and keep it �xed for the rest of
the run, so that we still obtain convergence to the desired posterior distribution, cf. also
Section 7.1.

Note, that we cannot draw the auxiliary point pa�erns from the exact distribution, cf. Sec-
tion 5.2.1. For the presented algorithm we used the MCMC-based rmh-procedure of the
spatstat package (cf. also Section 4.3) to obtain the corresponding point pa�erns. A run
time of 100,000 iterations for this inner Metropolis-Hastings algorithm turned out to be a
good compromise between convergence to the right distribution and performance of the
overall algorithm, cf. also Section 5.2.2 for some theoretical elaborations.



122 Chapter 6 Algorithms and implementation details

For the proposed MCMC algorithm the proposal variances σ1, σ2 and correlation ρ12 have
to be determined. To this end, we considered for reasonable values of σ1, σ2 and ρ12 = 022

a pilot sample and estimate the correlation coe�cient ρ12 as its sample correlation. �e
corresponding proposal variances are then adjusted such that the acceptance rate for a
parameter proposal is between 20% and 30%, see (Brooks et al., 2011, Section 1.13) or the
discussion in Example 5.5. For our computations we set σ1 = 0.07, σ2 = 0.05 and ρ12 =

−0.7.

6.4.3 Update ofW

When updating W, we pick one component of W uniformly at random, Wi, say, and
propose to �ip it to W′

i = 1−Wi, while keeping the other components unchanged, W′
j =

Wj for j 6= i. Writing ζ = ξ ∪̇ η = ξ′ ∪̇ η′ for the partition in random and necessary
minutiae before and a�er the proposed �ip, respectively, we either have ξ′ = ξ ∪ {zi},
η′ = η \ {zi} if the �ip of Wi is from 1 to 0 or ξ′ = ξ \ {zi}, η′ = η ∪{zi} if the �ip is from
0 to 1. �us, the Hastings ratio is given as

H(θ,W′, χ̃ | θ,W, χ̃)

=
π(θ,W′, χ̃ | ζ)

π(θ,W, χ̃ | ζ)

q̃(θ,W, χ̃ | θ,W′, χ̃)

q̃(θ,W′, χ̃ | θ,W, χ̃)

=
ϕ(χ̃ |W′, ζ)

ϕ(χ̃ |W, ζ)

fλ(ξ
′)gβ,γ(η

′)

fλ(ξ)gβ,γ(η)

π(θ,W′)

π(θ,W)

q(θ,W | θ,W′)

q(θ,W′ | θ,W)
(6.12)

=


λ

β(zi)γtR(zi|η\{zi})
1− pW
pW

if Wi = 1 and W′
i = 0,

β(zi)γ
tR(zi|η)

λ
1 (dmin(η ∪ {zi}) > r)

pW
1− pW

if Wi = 0 and W′
i = 1.

Here, tR(zi | η) denotes the number of R-close neighbours of zi in η, cf. (4.30).

Remark 6.10. Note that in the last equality we used that the �rst factor of (6.12) is equal
to 1, which is valid a�er the burn-in phase, when we do not update the parameters of
the auxiliary target density ϕ anymore. By contrast, it seems that the same factor was
erroneously omi�ed in (Redenbach et al., 2015, Section 3.2.2). It is not equal to 1 there,
because the auxiliary target density is homogeneous Poisson with intensity depending on

22We are aware that the parameters β, γ are likely to be negatively correlated, so a prior with a negative value
for ρ12 would perhaps be more reasonable. However, as we do not wish to bias the resulting estimation
we choose ρ12 = 0 at this point.



6.5 So�ware packages and computational costs 123

η (in our notation). �is may be another part of the reason for the unfavourable mixing
behaviour in Redenbach et al. (2015).

In Chapter 7 we apply the MiSeal from this section to simulated data and real minutiae
pa�erns. In the following Section we present our implemented so�ware and analyse the
required computing time on a database of real �ngerprints.

6.5 So�ware packages and computational costs

�e algorithms presented above in Sections 6.1–6.3 are implemented in Java whereas the
separation algorithm of Section 6.4 and the MPLE algorithm from Section 4.5 are im-
plemented in R. All the so�ware can be found on GitHub following the links https://

github.com/jwieditz/MiSeal and https://github.com/jwieditz/SuperMPLE,
respectively, including instructions for use, see Wieditz (2020, 2021a).

�e tool to compute a �ngerprint’s intensity �eld for necessary minutiae is provided as
command line interface (CLI) along with an extending graphical user interface (GUI), see Fig-
ure 6.8.

Figure 6.8: Screenshot of the graphical user interface of the MiSeal tool from Wieditz (2020),
applied to image 1 1 of database FVC2002 DB1 from Maio et al. (2002).

https://github.com/jwieditz/MiSeal
https://github.com/jwieditz/MiSeal
https://github.com/jwieditz/SuperMPLE
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As an input, it is necessary to pass an image (in .png format). In addition to this, you have
the possibility to supply the region of interest, a minutiae template (just for visualisation
in the GUI) or a pre-computed orientation �eld which is then used and the computation
step from Section 6.1 is skipped.

To get an impression about the computational complexity of our algorithms, we tested
them on the 20 �ngerprints from Figure 3.6. We executed all algorithms on a server based
on 2 × Intel® Xeon® X5660 2.80GHz CPU and 96GB RAM. For our computations we used
exclusively 1 CPU 6-cores (12 threads) and 1 memory only node (NUMA) 6× 8GB memory
modules via isolated cgroup environment. �e execution run times of the the Java CLI
for processing an image, cf. Table 6.1, include saving times for the corresponding images.
Note, that for the image processing some preprocessing steps take place at the beginning
of the execution. Smoothing steps are included in all procedures. Unwrapping of the OF
is included in the corresponding divergence computations. Certainly, the computational
e�ort for processing a �ngerprint image and to compute the necessary intensity numbers
is with approximately 42 seconds per image too large to be included in real-time-algorithms
such as minutiae matchers. Since for every considered �ngerprint this has to be computed
only once, this performance was su�cient for our purposes, however, we believe that a
speed-up of our algorithms is certainly possible.

run time (in s ± s.d.)
orientation �eld 4.4 ± 0.5
ridge frequency 13.9 ± 3.0
OF divergence 11.8 ± 2.3
RF divergence 11.6 ± 1.8
total 41.7 ± 6.0

Table 6.1: Computational costs of computation of global features for the 20 �ngerprints from
Figure 3.6.

Moreover, we computed experimentally 100,000 MCMC iterations (plus 10,000 iterations
burn-in) for each �ngerprint from Figure 3.6 to analyse the computational workload of
MiSeal given the input parameters. �e results can be seen in Table 6.2.

Note that we broke down the computational cost into the time consumed for a proposal for
the considered parameters (β, γ), λ and W, respectively, the average time for one MCMC
step as well as the total time needed for a 100,000 iterations run with a 10,000 iterations
burn-in. Clearly, a proposal of the Strauss parameter takes the longest since we have to
run another Markov chain in order to draw an auxiliary point pa�ern, cf. Section 6.4.2. �e
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run time (in ms ± s.d.)
(β, γ)-proposal 164,523 ± 20,984
λ-proposal 248 ± 66
W-proposal 64 ± 54
average proposal 6,613 ± 32,425
total for 105 steps (in s) 727.46 ± 36.25

Table 6.2: Computational costs of the update steps in the MiSeal.

proposal of a label �ip or a new λ proposal on the other hand only takes a few milliseconds
making the procedure overall quite e�cient.

For the computation of the MPLE approach from Section 4.5 we excluded three of the
�ngerprints due to too large minutiae components (> 10) leading to unreasonably large run
times. For approximating the integral as in (4.37) we used 50×50 la�ice points. �e times
required for the computations of the interaction graphs for point pa�ern and integration
la�ice as well as the run time of the used optimisation procedure are listed in Table 6.3.

run time (in s ± s.d.)
graphs for point pa�ern 4.9 ± 6.1
graphs for integration grid 99.4 ± 87.6
optimisation 336.9 ± 117.5
total 441.2 ± 119.9

Table 6.3: Computational costs of the MPLE approach from Section 4.5 for the 20 �ngerprints
from Figure 3.6.

Evidently, the computation of an MPLE is quite costly especially with regard to the pro-
vided information of only one point estimator for the model parameters. Notable is also
the high variance in the computation times, indicating that the computational cost of this
approach heavily depends on the spatial con�guration of the minutia pa�ern considered.
In view of the run times for the Bayesian approach, this is yet another argument for the
usage of MiSeal instead. For a comparison we can argue that the computation of the MPLE
corresponds approximately to running the MiSeal for 60,000 steps a�er a 10,000 iterations
burn-in.

Let us �nally consider how MiSeal performs for the computation of the posterior distribu-
tion of (θ,W) on simulated and real data. �is is subject of Chapter 7.
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Chapter 7

Applications

�is chapter is dedicated to the application of the MiSeal from Section 6.4 for the separa-
tion of random and necessary minutiae in simulated and real minutiae pa�erns. Moreover,
we show in a proof of concept that random minutiae indeed may carry individual infor-
mation beyond the orientation �eld and ridge frequency, giving rise to calling them also
characteristic minutiae.

7.1 Performance of the minutiae separating algorithm

In order to benchmark MiSeal for separating random from necessary minutiae, we �rst
simulate a test scenario close to real �ngerprints with true parameters known. To this
end, for each of the manually marked 20 �ngerprints and the one from Figure 2.1a (cf. also
Figure 7.1a), we compute a smoothed necessary minutiae intensity image M = (µ(i, j))

from (3.18) as described in Sections 6.1–6.3. �en we draw “true” parameters (λ, β, γ)

from the priors speci�ed in Section 6.4.1 and simulate a sample of superimposed random
and necessary minutiae following the model (4.19). Such a simulated minutiae pa�ern is
depicted in Figure 7.1b where the true parameters (rounded to two decimals) are

λ = 1.04× 10−4, β = 1.17, γ = 0.24, r = 10.63, R = 31.89, (7.1)

see also Table 7.1. �e original minutiae pa�ern of the same print is seen in Figure 7.1a
and the heat map of the necessary minutiae intensity on which the simulation is based in
Figure 7.1c.

We determine the parameter θ̂aux for the auxiliary point pa�ern density (cf. Section 6.4.2)
as follows: During the burn-in phase of 10,000 iterations, we compute a�er every 1,000

127
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(a) (b) (c)

Figure 7.1: (a) Minutiae pa�ern of the �ngerprint from Figure 2.1 (imprint 7 6 from (Maio
et al., 2002, DB2)). (b) Simulated random minutiae (black) and necessary minutiae (white)
using the necessary minutiae intensity computed by (3.18) from the �ngerprint image; the
outer circles (dashed) have radiusR/2 = 15.95, cf. (7.1). (c) Simulated minutiae with posterior
probabilities in grey values from random (black) to necessary (white). �e heat map gives the
computed necessary minutiae intensity (log10-scale).

iterations the MPLE θ̂
j

aux = (β̂j, γ̂j) (j = 1, . . . , 10) for (β, γ) given the labels W(t) from
the respective current iteration t = 1000j and use θ̂

j

aux for the next 1,000 iterations. We
then use the component-wise mean θ̂aux := 1

10

∑10
j=1 θ̂

j

aux for the rest of the entire run
(alternatively, one could take the mean in the natural parameter space). �is MPLE can be
e�ciently computed using the ppm function of the R package spatstat by Baddeley et al.
(2015).

We consider the samples from an MCMC run of 1,000,000 iterations. Trace plots and the
estimated posterior densities for the example in Figure 7.1b are depicted in Figure 7.2. �e
results for the Strauss parameters (β, γ) are shown in the panels 7.2b, 7.2c and 7.2e, respec-
tively. Overall, we observe a good mixing behaviour of the Markov chain even though the
parameter θ̂aux for the auxiliary variable method was only determined heuristically. Espe-
cially for γ we see that the MPLE-estimate γ̂ is considerably di�ers from the true value,
cf. Table 7.1. In all 20 cases the posterior distributions of (β, γ) concentrate around the
true parameters, exemplarily shown for the simulated point pa�ern from Figure 7.1b in
Figure 7.2e. In 11 out of 20 cases β has been overestimated by the posterior mean as in
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Figure 7.2b and in 12 out 20 cases γ has been overestimated as in Figure 7.2c. �is suggests
that our method is not substantially biased in one or the other direction.

A trace plot for λ can be seen in Figure 7.2a with corresponding estimated posterior density
in Figure 7.2d. Note that the samples for λ, due to conjugacy, cf. Equation (6.8), are drawn
directly from the posterior distribution (hence we have no rejections of λ proposals) and
concentrate also well in the vicinity of the true value.

We use the samples from the posterior of the parameter θ as well as the labels W to com-
pute posterior means of the marginals of both θ and W. Moreover, we compute the MPLE
θ̂MPLE from Section 4.5 for the superimposed pa�ern unconditional on W. �e values for
the posterior mean θ̄post, the parameter θ̂aux for the auxiliary point pa�ern density, the
unconditional MPLE θ̂MPLE as well as the true value are listed in Table 7.1.

λ̂ β̂ γ̂

θ̂aux — 1.365992 0.650895
uncond. MPLE θ̂MPLE 0.000123 1.093297 0.031331
posterior mean θ̄post 0.000076 1.741961 0.429357
± standard error 0.000002 0.039575 0.012402
true value 0.000104 1.166708 0.235489

Table 7.1: Estimated and true parameter values for the simulated point pa�ern in Figure 7.1b.
�e interaction radii were chosen as r = 10.63 and R = 31.89.

For the considered example from Figure 7.1b, the unconditional MPLE (indicated as yellow
in Figure 7.2) estimates the parameters β and λ (possibly surprisingly) quite precisely. For
the computation of the unconditional MPLE we started the optimisation procedure from
di�erent points in various regions within the parameter space we deemed reasonable. In
contrast to Example 4.30 the optimisation converged to the same point in all cases consid-
ered, suggesting a more benign, possibly even globally concave shape of the pseudolikeli-
hood in the inhomogeneous case as well as the existence of a unique global maximum.

�e above mentioned precision of the MPLE for the true parameter could in general not be
achieved for the database from Figure 3.6. �e β-component of θ̂MPLE is underestimated in
17 out of 20 cases by about 1–100% with an average of 40%, cf. Equation (7.1) for the true
parameters. For the λ-component we observe an overestimation in 16 out of 20 cases (of
which 15 coincide with an underestimated β-parameter) by about 7–250% with an average
of 90%.

For the simulated minutiae pa�ern from Figure 7.1b the parameter γ is strongly underes-
timated and does not even lie within the estimated posterior distribution, cf. Figure 7.2c;
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Figure 7.3: Heat map of the posterior density of (a) (β, λ) and (b) (γ, λ), respectively for
the simulated minutiae pa�ern from Figure 7.1b ranging from blue (low values) to red (high
values).

note the discontinuity at the lower end of the axis. In contrast, for the simulated minu-
tiae pa�erns from the �ngerprints from Figure 3.6 we observe an overestimation of γ in
all cases. In 19 of 20 cases the unconditional MPLE for γ is even equal to 1 (unidenti�able
case). Issues in the estimation of γ have already been observed in Redenbach et al. (2015);
Rajala et al. (2016) for other estimation methods. We believe that this is on the one hand
due to the issue that interaction in the superimposed process can be caused both due to
Strauss and Poisson points. On the other hand, the observed point pa�erns are relatively
small in comparison to the region of interest, making it di�cult to observe interaction at
all (in fact, only 41% of the observed points interact with at least one other point), cf. also
the discussion in Example 4.30.

Notably, the estimation of the posterior mean θ̄post of θ is quite precise (see the small stan-
dard errors in row four of Table 7.1), however, di�ers considerably from the true value.
�is seems plausible due to the low sample size of only one point pa�ern considered, thus
considering the whole posterior distribution is worthwhile.

�e univariate marginals of the posterior distribution of the label vector W are depicted in
the top right panel of Figure 7.1c in grey values ranging from certainly random (black) to
certainly necessary (white). While overall the minutiae separation is not too far from the
truth, minutiae in regions of large necessary minutiae intensity not violating the Strauss
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hard core condition are more likely classi�ed as necessary. In contrast, minutiae in regions
of low intensity or those lying very close to one another are more likely classi�ed as ran-
dom. Notably, such candidates tend to cluster which indicates their high correlation. In
a realisation, however, within such a cluster in expectation only as many minutiae will
be random as the sum of marginal probabilities indicates, so that most clusters disappear
(compare also Figure 7.1b with Figure 7.1c), making the random minutiae pa�ern Poisson-
like. �is corresponds exactly to the model design from Section 4.4.

We also considered the bivariate marginals of the posterior distribution of θ, see Figure 7.2e
and Figure 7.3 for the simulated point pa�ern from Figure 7.1b. For the parameters (γ, λ) we
observe a weak correlation of cor(γ, λ) = −0.0804 suggesting that considering the univari-
ate marginals of these two parameters might be su�cient. For the parameter pairs (β, γ)

and (β, λ), however, we observe moderate negative correlations of cor(β, γ) = −0.3876

and cor(β, λ) = −0.1462 (more minutiae classi�ed as random results in less minutiae
classi�ed as necessary and vice versa provided a �xed number of minutiae). Hence, the
respective joint distribution seems to carry more information than just the marginals. �is
indicates that considering the whole distribution of the parameters is more informative
than just point estimates from their marginals such as the posterior mean.

7.2 Model analysis

We �nally apply MiSeal to real minutiae pa�erns of real �ngerprints, including the one
depicted in Figure 7.1a. �e intensity images and minutiae pa�erns of the �ngerprints from
the database in Figure 3.6 are depicted in Figure 7.9 on p. 139 at the end of this section. We
show here exemplarily the results for the minutiae pa�ern from Figure 7.1a. Again we
obtain a good mixing behaviour for the parameter estimation as can be seen in Figure 7.5
(except for a somewhat longer period of rejections near iteration 6 × 105). Note that the
β-component of the MPLE-estimate θ̂aux for the auxiliary point pa�erns is quite large,
cf. Table 7.2. �is could be an indicator that during burn-in a lot of minutiae are classi�ed
as necessary due to the small number of interacting points, see Figure 7.4.

�e posterior distribution of the parameters overall resembles the results from the simu-
lation study. In fact, the values for the posterior means of both, the simulated and real
minutiae pa�ern from Figure 7.1b and 7.1a, respectively, are very similar (notably, their es-
timation is again very precise, see the small standard error). �is suggests that both real and
simulated point pa�erns carry the same information in terms of the posterior parameter
distribution and could be understood as an argument in favour of our model.
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λ̂ β̂ γ̂

θ̂aux — 3.484271 0.286867
uncond. MPLE θ̂MPLE 0.000036 2.049738 0.108702
posterior mean θ̄post 0.000048 1.744231 0.373191
± standard error 0.000002 0.030755 0.010469

Table 7.2: Estimated parameter values for the real minutiae pa�ern from Figure 7.1a. As for
the simulated point pa�ern from Section 7.2 interaction radii were chosen as r = 10.63 and
R = 31.89.

Whereas the estimated values for bothλ and β for the posterior mean and the unconditional
MPLE are relatively close to each other, we have a large discrepancy between the estimated
values of γ. �e estimated unconditional MPLE for γ is again very small and lies in a
region where the posterior distribution has almost no probability mass. �is problem could
probably be reduced to the small number of interacting points, see also the discussion in
Section 7.1. For the �ngerprints in Figure 7.9 we do not observe this behaviour. For these
examples, the interaction parameter γ is estimated in all cases as to be 1 by the MPLE.

Figure 7.4: Real minutiae pa�ern from Fig-
ure 7.1a with posterior probabilities in grey val-
ues from certainly random (black) to certainly
necessary (white). �e heat map gives the com-
puted necessary minutiae intensity.

However, in almost all considered cases the
number of interacting pairs of points is also
considerably larger, cf. Figure 7.9.

Again, we considered the bivariate poste-
rior distributions, cf. Figure 7.5d and Fig-
ure 7.6 for the results from �ngerprint 7.1a.
As for the simulated pa�erns we observe
almost no (empirical) correlation between
the parameters (γ, λ), namely cor(γ, λ) =

0.0024 whereas there is a considerable neg-
ative correlation between the parameter
pairs (β, γ) and (β, λ), i.e. cor(β, γ) =

−0.3816 and cor(β, λ) = −0.1355. �is
suggests that considering the joint param-
eter distribution is particularly worthwhile
in order to capture dependencies between
the parameters.

�e marginal posterior probabilities for the
real minutiae pa�ern from Figure 7.1a are
depicted in Figure 7.4. �e discrimination
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Figure 7.6: Heat map of the posterior density of (a) (β, λ) and (b) (γ, λ), respectively for the
real minutiae pa�ern from Figure 7.1a ranging from blue (low values) to red (high values).

between random and necessary minutiae in this image is not as obvious as in Figure 7.1c.
However, we can observe the same behaviour as mentioned at the end of Section 7.1,
namely minutiae which do interact with other minutiae or which are located in regions
of low intensity tend to have a lower marginal posterior probability of being necessary.

Considering only the marginal posterior probabilities might in general, however, not be
su�cient as we observe that the components of W are not independent. Considering
minutiae pairs within interaction distance R from each other, Fisher’s exact test always
rejects the hypothesis of independence at the 1% level.

As an example, Table 7.3 gives the sampled posterior frequencies of the di�erent label pairs
for the two minutiae marked on Figure 7.1a with ⊕ and ⊗ (halfway north-west from the
whorl). In parentheses are the expected frequencies under independence. Notably, we
thinned the run by 100 (a li�le more than the integrated auto-correlation time), resulting
in approximately independent subsamples. We partitioned these subsamples in 100 batches
and computed batch-wise Ma�hews (1998) correlation coe�cients to obtain a Monte Carlo
estimate of the dependence between W⊕ and W⊗. �is yields a correlation of –0.093 on
average (with standard error of 0.007), suggesting negative correlation. Moreover, we com-
pute the Kullback-Leibler divergence of the joint distribution of (W⊕,W⊗) to the closest
independent distribution resulting in a Kullback-Leibler divergence of 0.0069 (using base-2
logarithms).
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W⊕

W⊗ 0 1 total

0 73 (172) 636 (537) 709
1 2,349 (2,250) 6,942 (7,041) 9,291

total 2,422 7,578 10,000

Table 7.3: Contingency table of two selected components of W (labelled ⊕ and ⊗ in Fig-
ure 7.1a, halfway north-west from the whorl) whose minutiae lie within interaction distance
R, with frequencies under hypothesis of independence in parentheses.

Judging from this analysis, it seems important to consider the whole distribution of W
provided by Algorithm 6.8, rather than only the marginals obtained by the method in Rajala
et al. (2016).

Finally, to obtain an impression of the overall model �t we applied MiSeal on the data base
from Figure 3.6. Figure 7.7 depicts the estimated posterior means for θ. Assuming that the
estimated posterior mean is approximately normally distributed around the true posterior
mean, we obtain a quanti�cation of uncertainty using the shown Gaussian 95% con�dence
ellipses (in the colour of the corresponding posterior mean for λ) for the parameters (β, γ)

(top), (β, λ) (middle) and (γ, λ) (bo�om), respectively, for the 20 considered �ngerprints.
Note that for reasons of clarity and comprehensibility we did not include an indicator for
the variance of λ in the upper plot of Figure 7.7.

Obviously, the posterior means are rather spread out in the parameter space, however the
corresponding con�dence ellipses largely overlap and suggest a considerable variability
on the estimated parameters. Indeed, due to the individuality of the minutiae pa�erns in
terms of size and interaction structure, one would expect varying values of β and γ for the
corresponding �ngerprints whose ��ed values �t these quantities. Moreover, the param-
eters (λ, β, γ) could also depend on unobserved quantities, such as manner of imprinting
on the acquisition medium, quality or resolution of the image. Overall, Figure 7.7 suggests
that it might be worthwhile to consider a model for the distribution of θ using universal
parameters for whole data base of �ngerprints yielding potential for future research.

Furthermore, we estimated the PCF, cf. Example 4.13, of the ��ed process using the pos-
terior mean as parameter for each of the data considered based on 100 draws from the
model, cf. Figure 7.7. �e resulting PCFs are pooled and depicted as a red dashed curve in
Figure 4.5, see also Figure 7.8. We observe that the PCFs of the ��ed processes run mostly
within the pointwise con�dence band, however it seems clear that theR chosen based on a
pilot study is somewhat too small. �e preselection of the interaction radii h and R leaves
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Figure 7.7: Posterior means θ̄ = (λ̄, β̄, γ̄) of θ of the 20 example �ngerprints from Section 4.4
and the one from Figure 7.1a in the (β, γ) (top) (β, λ) (middle) and (γ, λ) plane (bo�om). �e
value of λ̄ is indicated as the size and colour of the bubble. Around each bubble a Gaussian
95% con�dence ellipse in the corresponding two dimensional slice of the parameter space is
shown.
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Figure 7.8: PCFs of the ��ed models (dashed) using the posterior mean and their pooled PCF
(red). �e con�dence region of the data from Figure 4.5 is shaded in blue.

potential for future research, cf. also the discussion in Section 4.4. It may be desirable to
adjustR using more sophisticated characteristics of the individual �ngerprint than just the
average inter-ridge distance. At small distances, the PCFs tend to be slightly above the con-
�dence band due to Poisson minutiae forming close pairs with other minutiae. �is might
not be very relevant in practice, and in any case it is hard to avoid this behaviour without
making the model mathematically much more di�cult. As a �nal remark, we note that a
global way of assessing the model �t might be more desirable. One approach in this direc-
tion is given by the global envelope-based goodness-of-�t tests in Myllymäki et al. (2017)
and Myllymäki & Mrkvička (2019), which have been developed for a single observation of
a point pa�ern. An extension of the approach provided there to replicated point pa�erns
is beyond the scope of this thesis.
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Figure 7.9: Computed minutiae intensity images M as heat maps (log10-scale) ranging from
blue (low values) to red (high values). Manually marked minutiae as dots with corresponding
hard-core (do�ed) and interaction radius (dashed) as in Section 4.4. Corresponding marginal
posterior probability of being necessary in grey values from certainly random (black) to cer-
tainly necessary (white). Data from (Maio et al., 2002, DB1) (row-wise), see also Figure 3.6 on
p. 34. Estimated singularity positions are marked with � (core) and ∆ (delta), respectively.
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7.3 Investigation for characteristicness

To conclude this chapter, we consider an application of the information resulting from the
posterior distribution of the labels W as computed in Section 7.2 in �ngerprint matching.
To this end, we consider the two �ngerprints from Newman (1930), cf. Figure 1.1 on p. 2. At
�rst glance, they appear very similar based on their OFs and RFs, but actually stem from
two di�erent persons. We claim that excluding the random minutiae from the minutiae
pa�erns makes them look more alike (w.r.t. some similarity criterion) in comparison to
excluding the same amount of (any) minutiae at random.

As before, we enhance the images using the algorithm by �ai et al. (2016) and extract
the minutiae manually. �en, we approximate the posterior distributions π1, π2 of the la-
bel vectors W using our MiSeal (Section 6.4). �eir marginal probabilities are depicted
in Figure 7.10 on a grey-scale ranging from white (certainly necessary) to black (certainly
random). In particular the northeast part of the right print in Figure 7.10 contains candi-
dates for random minutiae (from grey to black), that are not found on the le� print. Note
that identifying random minutiae just from the marginal posterior distributions, however,
is not always possible due to the correlation between the components, cf. the discussion at
the end of Section 7.1 and the analysis around Table 7.3.

For comparison of two minutiae pa�erns we use the Minutiae Cylinder Code (MCC) match-
ing algorithm obtained from Cappelli et al. (2010b), which is publicly available. �e MCC
compares two given minutiae templates ζ(1), ζ(2) exploiting local information, i.e. spatial
and directional similarity of minutiae and their neighbourhood (cylinders) and combines
the most similar cylinders to a global score S(ζ(1), ζ(2)) ∈ [0, 1] where 1 means very similar
and 0 means very di�erent.

In order to assess characteristicness of random minutiae, as mentioned above, we investigate
whether deleting random minutiae leads to more similar �ngerprints than deleting the
same number of arbitrary minutiae. For this, we repeat the following procedure 1,000
times:

(1) Draw a sampleW(i) ∼ πi from the posterior πi of the labels and let r(i) be the number
of random minutiae in the minutiae template ζ(i), i = 1, 2.

(2) Delete from the minutiae template ζ(i) the minutiae labelled as random under W(i)

to obtain a new template ζ(i,n) containing only the necessary minutiae, i = 1, 2.

(3) Draw uniformly at random r(i) minutiae from ζ(i) and delete them from ζ(i) to obtain
a new template ζ(i,r) having the same number of minutiae as ζ(i,n), i = 1, 2.
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Figure 7.10: Top row: Fingerprints from a pair of monozygotic twins (Newman, 1930, 14a
and 14b) with almost identical orientation and ridge frequency �elds and manually marked
minutiae, see also Figure 1.1. Bo�om row: �e necessary minutiae intensities as heat maps on
the log10-scale from blue (low) to red (high). Marginal posterior probabilities are indicated on
a greyscale from black (certainly random) to white (certainly necessary). Hard core distance r
as do�ed circle. �e dashed circles have radius R/2, i.e. intersecting circles indicate minutiae
within interaction distanceR. Note that the intensity is computed patch-wise (la�ice indicated
as do�ed lines) and patches containing detected singularities were excluded.
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(4) Compute the matching scores S(n) := S(ζ(1,n), ζ(2,n)) and S(r) := S(ζ(1,r), ζ(2,r))

using the MCC.

We then compute the di�erences between these 1,000 pairs of matching scores. Note that
local clusters of minutiae, which make a major contribution to the MCC matching score,
are o�en dissolved by our deletion scheme, leading to scores on a very small scale. We
therefore consider the relative score di�erences in Figure 7.11. We obtain a Monte Carlo
estimate of 93.6% (with standard error of 0.8%) of the cases in which the matching score
a�er deletion of random minutiae is larger than the score a�er deleting the same number
of minutiae at random. �e Monte Carlo estimate for the relative di�erence of scores yields
a 23.7% improvement (with standard error of 0.6%).

Figure 7.11: Histogram of relative score di�erences
(
S(n) − S(r)

)
/S(r) (in %). Overall 93.6%

of these distances are positive and the average di�erence is 23.7%.

Hence, we may conclude that the two di�erent �ngerprints become more similar to one
another a�er deleting the random minutiae in comparison to just randomly deleting minu-
tiae. �is preliminary proof of concept suggests that for �ngerprints with similar OFs and
RFs the information encoded in random minutiae is characteristic to distinguish them from
one another.

An interesting application of the posterior distribution of W would be to include this in-
formation into matching algorithms to �nd out whether we can increase matching rates
also on larger data bases. Unfortunately, most matching algorithms are proprietary so�-
ware making it impossible to include data beyond the minutiae templates. Even though
the above mentioned MCC is publicly available it contains closed-source elements. �e
computation of the MCC similarity score is based on a similarity matrix which can be read
and modi�ed (as described above). �e processing of this similarity matrix, however, is a
black box, making it di�cult to analyse the in�uence of changes in the similarity matrix to
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the �nal score. An independent implementation of a matching algorithm is very di�cult
(cf. (Maltoni et al., 2009, Chapter 4)) and was out of scope of this thesis. Possible appli-
cations of the posterior distributions of parameters and labels in �ngerprint recognition
so�ware are hence le� for future research.
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Chapter 8

Discussion and outlook

It is now time to pull over to the side nearly at the end of our journey, to re-examine our
goals and to look how far we have come: We provide parameter inference methods in a
superposition model of point processes. Moreover, we allow for point pa�ern separation
in a mathematical model for the occurrence of minutiae based on orientation �eld (OF)
and ridge frequency (RF). We point out bene�ts and limitations of our work as well as
perspectives in the following.

Minutiae extraction using intensity images In Chapter 3 we introduced a model
which provides a formula for predicting locally the number of necessary minutiae deter-
mined by OF and RF of a �ngerprint. To the best of the author’s knowledge, this is the
�rst mathematical model including OF and RF information to do so. A statistical analysis,
based on 20 high quality images (cf. Figure 3.6), revealed that �ngerprints feature addi-
tional random minutiae. To this end, our study requires a reliable extraction of minutiae
and �ngerprint features. Minutiae detection algorithms experience problems in �nding all
minutiae within a �ngerprint’s region of interest, i.e. on the one hand not extracting spuri-
ous minutiae and, on the other hand detecting also rare-type minutiae (e.g. short ridges or
lakes) which are hard to distinguish from noise. Hence, an investigation of large data bases
is still le� for future research. Moreover, it would be certainly interesting to investigate the
in�uence of the scale (i.e. the degree of smoothing) on which we consider a �ngerprint’s
minutiae intensity �eld to the amount of random minutiae. Here, especially the question
arises whether there are no random minutiae (and hence the minutiae-divergence formula
being exact) on an arbitrarily small scale. Since minutiae are only visible on a scale large
enough to observe the ridge lines, this is in practice hard to verify. One possible approach in
this direction could be to consider �ngerprint skeletons (i.e. one-pixel ridge structures) in-
stead of the raw images to increase the resolution. A corresponding result could be applied
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to improve minutiae detection methods using the intensity image similarly to Nikodémusz-
Székely & Székely (1993). Moreover, the dependence of the amount of random minutiae
depending on the considered scale (i.e. di�erent patch sizes) could be worth investigating
in this direction. To this end, depending on the considered scale we have to adjust the used
bandwidth parameters accordingly, which requires a considerable additional e�ort and was
hence le� for future research.

By considering the pair correlation function for the 20 �ngerprints from Figure 3.6, we
have concluded that it is reasonable to model the necessary minutiae by an inhomogeneous
Strauss process with hard core whose activation is given by the necessary minutiae inten-
sity, while the additional random minutiae can be modelled by a homogeneous Poisson
point process. �e aim of identifying necessary and random minutiae for a given minu-
tiae pa�ern leads to a separation problem for the superposition of point processes which
is considered from two view points.

MPLE for superpositions with multi-scale interaction processes Following a fre-
quentist approach we lay the foundation for parametric inference in independent superpo-
sitions of point processes in stating the corresponding density. To the best of the author’s
knowledge, point process separation problems have not been considered from this theo-
retical side in the literature so far. For the model considered in Section 4.4 we state identi-
�ability results and an inference method using maximum pseudolikelihood estimation for
the model parameters and, moreover, provide corresponding so�ware. �e MPLE method
performed reasonably well on simulated and real data for the model parameters β and λ
but exhibited weaker performance on the interaction parameter γ. Moreover, we discussed
theoretical issues in a homogeneous se�ing and the drawback that we do not obtain in-
formation about the allocation of the points to the two process in the frequentist se�ing.
An extension of the MPLE method to a more general superposition model, e.g. for super-
positions of multi-scale Strauss processes and Poisson processes, is (also computationally)
easily conceivable by adapting the interaction graphs presented in Section 4.5 accordingly.
Note, that for each step in the interaction function computationally a corresponding inter-
action graph is required.

More general, the incorporation of a continuous interaction potential, i.e. the interaction
parameter γ depending continuously on the distance R between pairs of points, e.g. for
a Lennard-Jones process, is conceivable. As for the Lennard-Jones process the interaction
between pairs of points vanishes quickly with increasing distance. In practice the maximal
interaction distance is cut at a certain distance R. Using this distance as interaction dis-
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tanceR in the MPLE approach from Section 4.5 and considering a weighted graph23 where
the edge weights w(e) of an edge e = uv consist of the value w(e) = exp(V (‖u − v‖))
where V is the Lennard-Jones potential (instead ofw(e) = γ for a Strauss process), lead to a
possible extension of the results of Section 4.5 to models of in�nite interaction range. Com-
putationally, we substitute γ|ER(η)| in �eorem 4.28 by

∏
e∈ER(η) w(e). Note, however, that

depending on the application and the interaction range R the corresponding graph (and
especially its components) can be very large and hence the computation of the conditional
intensity can be extremely time-consuming.

Separation beyond fingerprint data Following a Bayesian mindset, we applied an
MCMC algorithm for exploring the distribution of necessary and random minutiae of a
given �ngerprint as well as, simultaneously, the model parameters. �e proposed Mi-Seal
(Chapter 5) is based on the work of Redenbach et al. (2015) but provides signi�cant im-
provements in terms of mixing times and does not need assumptions on the independence
of the components of the label vector as in Rajala et al. (2016) which turned out to be
unrealistic in our applications. We provide corresponding so�ware containing a tool to
compute all ingredients of MiSeal as the necessary minutiae intensity image as well as the
MCMC algorithm whose parameters are tuned for the considered data. �e so�ware pack-
age is ready-to-use also for applications beyond �ngerprint recognition allowing for an
easy means for separation and parameter estimation, e.g. in noise identi�cation in pa�erns
of air bubbles in ice cores, cf. Redenbach et al. (2015) or mine �eld detection, cf. Walsh &
Ra�ery (2002). Data analysis and application of the so�ware to other data sets, however,
was beyond the scope of this thesis. Nevertheless a comparison to Redenbach et al. (2015),
cf. Section 6.4.2, promises an improved performance also on other datasets.

Perfect simulation A crucial ingredient for good mixing seems to be a good choice of
the marginal distribution for the auxiliary point pa�ern. �e associated parameter θ̂aux has
thus to be chosen appropriately which we achieve by repeated estimation during the burn-
in phase. As a future improvement, updating θ̂aux can also be performed during the entire
run if we let the adjustments diminish as the iteration number increases and adapt the
Hastings ratio for the W-update appropriately, see e.g. Roberts & Rosenthal (2007). As we
can only draw auxiliary point pa�ern samples from an inhomogeneous Strauss process via
MCMC, convergence of MiSeal to the true posterior distribution is not ensured. �e imple-
mentation of an e�cient perfect simulation scheme for inhomogeneous Strauss processes

23i.e. every edge e ∈ E(G) in the graph G gets assigned a weight w(e) ∈ R, cf. Section A.3.
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yields potential for future research �lling a gap in an area where otherwise double MCMC
algorithms would have been employed (cf. Section 5.2.2). For perfect simulation, domi-
nated coupling from the past (CFTP) algorithms can be applied using an inhomogeneous
Poisson process with the desired trend µ as intensity as dominating process, see Kendall &
Møller (2000). However, in regions of intense interaction, i.e. when the interaction radius
relatively to the underlying intensity becomes too large (e.g. close to singularities) these
CFTP algorithms are expected to converge very slowly, cf. Kendall & Møller (1999), making
them in practice o�en very ine�cient to use.

Improving matching rates In an application to two �ngerprints from two monozy-
gotic twins exhibiting similar OF and RF we found out that excluding random minutiae
yields a highly signi�cant improvement of the similarity score as compared to excluding
arbitrary minutiae. �is suggests that the random minutiae carry characteristic informa-
tion of �ngerprint individuality going beyond OFs and RFs, which is why we refer to them
as characteristic minutiae. �e extent to which this information can e�ectively be used to
distinguish di�erent �ngerprints with similar OFs is the subject of current and future re-
search. A possible application could be in robust automatic minutiae detection by applying
MiSeal to an automatically extracted minutiae point pa�ern (possibly containing spurious
minutiae). As false minutiae are more likely to be classi�ed as random, a �ltering scheme
focussing only on the random minutiae could facilitate the detection of spurious minu-
tiae and hence improve the performance and robustness of minutiae detection algorithms.
Moreover, the inclusion of information about characteristicness in matching algorithms
(improving matching rates by also comparing the degree of characteristicness) yields an
interesting perspective.

Additionally, various parameters of our MiSeal, for instance the smoothing of the necessary
minutiae intensity, can be more �nely tuned based on larger data sets. Since smoothing
can be thought of as the scale on which �ngerprints are considered, the number of random
and necessary minutiae may vary accordingly; the investigation of the in�uence however
requires further research.

Generation of synthetic minutiae pa�erns Finally, we believe that the mathematical
model for minutiae pa�erns from Section 4.4 can be applied to produce training data for
machine-learning based matching algorithms. In a �eld where the availability of large
databases of realistic �ngerprints is still an issue due to privacy constraints this o�ers great
potential for improving the existing algorithms. To produce training data we can draw
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point pa�erns from a superimposed process as proposed in Section 4.4 provided the OF
and RF from a real �ngerprint. Beyond that, to obtain more variability to existing data, one
focus could be on generating arti�cial, realistically looking OF and RF which then are used
for the generation of minutiae pa�erns using our model. First results from a master thesis
project by Corvin Grigutsch using a convolutional variational autoencoder (VAE) based
approach already promise great potential. However, the formalisation of realness and its
usage as objective function in the VAE to produce realistically looking OFs and RFs seems
to be a major bo�leneck.

�e analysis in Section 7.2 suggests that on �rst order the posterior distributions of di�erent
minutiae pa�erns might resemble one another, opening up new perspectives for sampling
of minutiae pa�erns, namely, sampling from the proposed model for a typical or mean set
of parameters. Whether the minutiae pa�erns drawn from our model are competitive with
minutiae pa�erns produced by recent algorithms for generating synthetic �ngerprints, see
e.g. Cappelli et al. (2004); Mistry et al. (2019) for a comparison of recent algorithms, is
part of current and future research. However, since all algorithms considered in Mistry
et al. (2019) leave, according to them, great potential for improvement regarding a realistic
minutiae distribution, this seems to be worthwhile to consider.
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A Appendix

A.1 Vector analysis

�eorem A.1 (Green’s theorem). Let A ⊆ R2 be a bounded domain with piecewise smooth
boundary ∂Awhich is parametrised by the positively oriented curve γ : [a, b]→ ∂A. Consider
for an open neighbourhood B ⊇ Ā of the closure Ā of A the function f = (f1, f2) : B → R2

which is assumed to be di�erentiable except in �nitely many points. �en,∫ b

a

〈f(γ(t)), γ̇(t)〉 dt =

∫∫
A

∂f2

∂x
(x, y)− ∂f1

∂y
(x, y) d(x, y). (A.1)

Proof. Denote by ~n the unit outer normal vector on γ which is given by

~n(γ(t)) =
1

‖γ̇(t)‖

(
γ2(t)

−γ1(t)

)

and let g = (f2,−f1). �en,

∫ b

a

〈f(γ(t)), γ̇(t)〉 dt =

∫ b

a

〈(
f2(γ(t))

−f1(γ(t))

)
,

1

‖γ̇(t)‖

(
γ2(t)

−γ1(t)

)〉
‖γ̇(t)‖ dt

=

∫ b

a

〈g(γ(t)), ~n (γ(t))〉 ‖γ̇(t)‖ dt.

Applying the divergence theorem (Pfe�er, 1990, �eorem 4.14) to g yields∫ b

a

〈g(γ(t)), ~n (γ(t))〉 ‖γ̇(t)‖ dt =

∫∫
A

div g(x, y) d(x, y)

=

∫∫
A

∂f2

∂x
(x, y)− ∂f1

∂y
(x, y) d(x, y)

which concludes the proof. �
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A.2 Markov chains

A Markov chain is a collection (Xn)n∈N of random variables Xn on a probability space
(Ω,A,P) which satis�es the Markov property, i.e.

P (Xn ∈ A | X1, . . . Xn−1) = P (Xn ∈ A | Xn−1)

holds almost surely for all n ∈ N andA ∈ A. Its behaviour can completely be described by
its transition probabilities P (x,A) := P(Xn ∈ A | Xn−1 = x) for x ∈ Rd and A ∈ A. �e
mapping P is referred to as Markov kernel. A probability measure µ is called stationary or
invariant measure of a Markov chain with Markov kernel P if∫

A

µ(dx) =

∫
Rd

P (x,A)µ(dx).

If µ is the stationary measure of a Markov chain (Xn)n∈N and X0 ∼ µ, then Xn ∼ µ for
all n ∈ N and P(Xn ∈ A) = µ(A) for all A ∈ A. In this case, µ is also called stationary or
invariant distribution of (Xn). For a more detailed overview on Markov chains we refer to
Meyn & Tweedie (2012).

A.3 Graphs

An (undirected, simple) graph G = (V (G), E(G)) is a pair of a �nite set V (G), the vertex
set, and a subset E(G) ⊆ P2(V ) the set of edges. Here, P2(V ) denotes the set of all two-
element subsets of V (G). A subgraph H = (V (H), E(H)) of G is a graph with V (H) ⊆
V (G) and E(H) ⊆ E(G); we write H ⊆ G for short. A subgraph is induced , if E(H) =

P2(V (H)) ∩ E(G). For a set of vertices W ⊆ V (G) we denote by G[W ] = (W,P2(W ) ∩
E(G)) the subgraph of G induced by W .

For an edge e ∈ E(G) connecting vertices u, v ∈ V (G), we write also e = uv (or e = vu)
and call u and v adjacent. To avoid ambiguities, we always assume V (G) ∩ E(G) = ∅.
For a vertex v ∈ V (G) the neighbourhood of v is given as

Nv(G) = {u ∈ V (G) | uv ∈ E(G)} .

A graph P = (V (P ), E(P )) with V (P ) = {v1, v2, . . . , vn} and E(P ) = {vivi+1 | i =

1, 2, . . . , n− 1} is called path from v1 to vn if the vertices vi are pairwise distinct. A graph
G is connected if for every two vertices u 6= v ∈ V (G) there is a path P from u to v in G,
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i.e. P is a subgraph ofG. A component C ofG is a maximally connected subgraph ofG, i.e.
for each pair x, y ∈ V (C) there is a path from x to y in C and there is no connected graph
C̃ ⊆ G with V (C) ( V (C̃).

For a graph G and a set W ⊆ V (G) we de�ne E(W ) = {uv ∈ E(G) | u, v ∈ W} as the
set of edges induced by W . A set W ⊆ V (G) is called independent if E(W ) = ∅, i.e. no
two vertices u, v ∈ W are adjacent in G.

Let G be a graph and w : E(G) → R be a function, the weight-function. �en, (G,w) is
called weighted graph and w(e) is called weight of an edge e ∈ E(G).

For a more detailed introduction to graph theory see e.g. Diestel (2010).
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Notation index

N . . . . . . . . . . . . . . . . . . . . . . the natural numbers {1, 2, 3, . . . }

N0 . . . . . . . . . . . . . . . . . . . . . the non-negative integers {0, 1, 2, 3, . . . }

Z . . . . . . . . . . . . . . . . . . . . . . the integers {0,±1,±2,±3, . . . }

R . . . . . . . . . . . . . . . . . . . . . . the real numbers

C . . . . . . . . . . . . . . . . . . . . . . the complex numbers

Rd . . . . . . . . . . . . . . . . . . . . . {(v1, v2, . . . , vd) | vi ∈ R, i = 1, 2, . . . , d} the vector space of
all real-valued d–tuples, d ∈ N

ei . . . . . . . . . . . . . . . . . . . . . . the i-th canonical unit vector of Rd for i ∈ {1, 2, . . . , d}

Rd
+ . . . . . . . . . . . . . . . . . . . . . {(v1, v2, . . . , vd) | vi ≥ 0, i = 1, 2, . . . , d} the non-negative

orthant of Rd, d ∈ N

Rd
++ . . . . . . . . . . . . . . . . . . . . {(v1, v2, . . . , vd) | vi > 0, i = 1, 2, . . . , d} the positive orthant

of Rd, d ∈ N

Rn×m . . . . . . . . . . . . . . . . . . . {(a(i, j)) : a(i, j) ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m} the space of
all n×m–matrices with real entries, n,m ∈ N

(a, b) / [a, b] . . . . . . . . . . . . . the open/ closed interval from a to b for a, b ∈ R∪{±∞}with
a ≤ b

Sd . . . . . . . . . . . . . . . . . . . . . . {v ∈ Rd+1 : ‖v‖ = 1} the d-dimensional unit sphere, d ∈ N0

RP 1 . . . . . . . . . . . . . . . . . . . . S1/S0 the real projective line

argmin
m∈M

f(m) . . . . . . . . . . . . the set of minimisers of a function f : M → R

argmax
m∈M

f(m) . . . . . . . . . . . the set of maximisers of a function f : M → R
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Bε(x) . . . . . . . . . . . . . . . . . . . the open ball around x with radius ε > 0

∂A . . . . . . . . . . . . . . . . . . . . . the boundary of a set A

P(A) . . . . . . . . . . . . . . . . . . . the power set of a set A

Pk(A) . . . . . . . . . . . . . . . . . . the set of all sets B ⊆ A with |B| = k

〈·, ·〉 . . . . . . . . . . . . . . . . . . . . the canonical scalar product in Rd

∠(u, v) . . . . . . . . . . . . . . . . . the angle between two vectors u, v ∈ Rd

arg v . . . . . . . . . . . . . . . . . . . the argument of v ∈ R2, i.e. the angle ∠(v, e1) between v and
the e1-axis

‖v‖ . . . . . . . . . . . . . . . . . . . . the Euclidean norm of a vector v ∈ Rd

v> . . . . . . . . . . . . . . . . . . . . . the transposed vector of v ∈ Rd

A> . . . . . . . . . . . . . . . . . . . . . the transposed matrix of A ∈ Rn×m

trA . . . . . . . . . . . . . . . . . . . . the trace of A ∈ Rn×n

detA . . . . . . . . . . . . . . . . . . . the determinant of A ∈ Rn×n

sgnx . . . . . . . . . . . . . . . . . . . the sign of a real numberx ∈ Rwhere sgn(x) =

 x
|x| , x 6= 0,

1, x = 0.

bxe . . . . . . . . . . . . . . . . . . . . . rounding x to the nearest integer with tie-breaking rule round
half up

B(X) . . . . . . . . . . . . . . . . . . . the Borel σ-algebra of the set X

N . . . . . . . . . . . . . . . . . . . . . . the space of all �nite counting measures on (X,B(X)), see p. 40

P . . . . . . . . . . . . . . . . . . . . . . . a probability measure

PX . . . . . . . . . . . . . . . . . . . . . the distribution of a random variable X under a probability
measure P

suppX . . . . . . . . . . . . . . . . . the support of a random variable X

EX . . . . . . . . . . . . . . . . . . . . the expectation of a random variable X

varX . . . . . . . . . . . . . . . . . . the variance of a random variable X
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cov(X, Y ) . . . . . . . . . . . . . . the covariance of two random variables X , Y

cor(X, Y ) . . . . . . . . . . . . . . . the correlation of two random variables X , Y

δx . . . . . . . . . . . . . . . . . . . . . . the Dirac measure measure in x ∈ X

Lebd(A) . . . . . . . . . . . . . . . . the d-dimensional Lebesgue measure on A ⊆ Rd

Ber(p) . . . . . . . . . . . . . . . . . . the Bernoulli distribution with parameter p ∈ [0, 1]

Poi(λ) . . . . . . . . . . . . . . . . . . the Poisson distribution with intensity λ ≥ 0

U([a, b]) . . . . . . . . . . . . . . . . the uniform distribution on [a, b] ( R with a < b

N (µ,Σ) . . . . . . . . . . . . . . . . the (multivariate) normal distribution with mean µ ∈ Rd and
covariance matrix Σ ∈ Rd×d

LN (µ,Σ) . . . . . . . . . . . . . . the (multivariate) log-normal distribution with parametersµ ∈
Rd and Σ ∈ Rd×d

Γ(α, β) . . . . . . . . . . . . . . . . . the Gamma distribution with shape α > 0 and rate β > 0

B(α, β) . . . . . . . . . . . . . . . . . the Beta distribution with shape parameters α > 0 and β > 0

Pop(X, λ) . . . . . . . . . . . . . . the Poisson process on X with intensity λ : X→ R+, see p. 42

Strauss(X, β, γ, R) . . . . . . the Strauss process on X with activity function β : X → R+,
interaction parameter γ ∈ [0, 1] and interaction range R > 0,
see p. 46.

Hardcore(X, β, r) . . . . . . . the hard core process on X with activity function β : X→ R+,
hard core r > 0, see p. 48

StraussHard(X, β, γ, r, R) the Strauss-hard core process on X with activity function β :

X→ R+, hard core r > 0 interaction parameter γ ∈ [0, 1] and
interaction range R > r, see p. 46

dmin(ζ) . . . . . . . . . . . . . . . . . the minimal distance minu6=v∈ζ‖u− v‖ between two distinct
points in ζ ∈ N

sρ(ζ) . . . . . . . . . . . . . . . . . . . the number of ρ-close pairs of points within ζ ∈ N, ρ > 0

tρ(z | ζ) . . . . . . . . . . . . . . . . the number of ρ-close neighbours of z in ζ ∈ N, ρ > 0
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n×
i=1

Ai . . . . . . . . . . . . . . . . . . the n-fold cartesian cross product A1 × A2 × · · · × An

1A . . . . . . . . . . . . . . . . . . . . . the indicator function of a setAwhere 1A(x) =

1, x ∈ A,
0, else.

g ◦ f . . . . . . . . . . . . . . . . . . . the concatenation of functions g ◦ f(x) = g(f(x))

g ∗ f . . . . . . . . . . . . . . . . . . . the (discrete) convolution of functions f and g

C(A→ B) . . . . . . . . . . . . . . the space of continuous functions f : A→ B

Ck(A→ B) . . . . . . . . . . . . . the space of k-times continuously di�erentiable functions f :

A→ B, k ∈ N

γ̇(t) . . . . . . . . . . . . . . . . . . . . the velocity d
dt
γ(t) of a curve γ ∈ C1

(
[a, b]→ Rd

)
in t ∈ [a, b]

∇f . . . . . . . . . . . . . . . . . . . . . the gradient of a scalar function f ∈ C1
(
Rd → R

)
div ~F . . . . . . . . . . . . . . . . . . . the divergence of a vector �eld ~F ∈ C1 (R2 → R2)

curl ~F . . . . . . . . . . . . . . . . . . the curl of a vector �eld ~F ∈ C1 (R2 → R2)

indexθ(z) . . . . . . . . . . . . . . . the Poincaré index of a di�erentiable orientation �eld θ : R2 →[
−π

2
, π

2

)
in z, see p. 21

Gρ(ζ) . . . . . . . . . . . . . . . . . . the interaction graph induced by ζ ∈ N with interaction range
ρ > 0, see p. 68

V (G) . . . . . . . . . . . . . . . . . . . the vertex set of a graph G

E(G) . . . . . . . . . . . . . . . . . . . the edge set of a graph G

Nρ(u | ζ) . . . . . . . . . . . . . . . the spatial neighbourhood of radius ρ of u in ζ ∈ N, ρ > 0
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Myllymäki, M., Mrkvicka, T., Grabarnik, P., Seijo, H., & Hahn, U. (2017). Global envelope
tests for spatial processes. Journal of the Royal Statistical Society.

Nayak, V. C., Rastogi, P., Kanchan, T., Yoganarasimha, K., Kumar, G. P., & Menezes, R. G.
(2010). Sex di�erences from �ngerprint ridge density in Chinese and Malaysian popula-
tion. Forensic science international, 197 (1-3), 67–69.

Neal, P., & Roberts, G. (2011). Optimal scaling of random walk metropolis algorithms with
non-gaussian proposals. Methodology and Computing in Applied Probability, 13(3), 583–
601.

Neumann, C., & Ausdemore, M. (2020). Defence against the modern arts: the curse of
statistics—part II: ”score-based likelihood ratios”. Law, Probability and Risk, 19(1), 21–42.

Neumann, C., & Ausdemore, M. A. (2019). Defence against the modern arts: the curse of
statistics ”score-based likelihood ratios”. arXiv preprint arXiv:1910.05240.

Newman, H. H. (1930). �e �nger prints of twins. Journal of Genetics, 23(3), 415–446.
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