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1.5 Generalized Fréchet Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 “Classical” Fréchet Means 4
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1 Motivation and Generalized Fréchet Means

1.1 Intro and Brief Statistics Recap

Given data (a sample) X1, . . . , Xn
i.i.d.∼ X in some metric data space (Q, d) of “dimension” m ∈ N,

i.e.

Xi, X : (Ω,A,P)→ (Q,B(Q)) measurable , i = 1, . . . , n ,

P{X1 ∈ B1, . . . , Xn ∈ Bn} = Πn
j=1P{Xj ∈ Bj} for all B1, . . . , Bn ∈ B(Q) .

our most important tool is:

E[f ◦X] :=

∫
Ω

f ◦X(ω) dP(ω) =
∫
Q

f(x) dPX(x)

Think first of Q = Rm but aim at more general spaces, see further below.

1. Dimension reduction:

• the typical data point (dimension 0), e.g. their mean

• their main mode of variation (dimension 1),

• represent the data in a suitable k-dimensional subspace 0 ≤ k < m (principal compo-
nent analysis (PCA), multidimensional scaling (MDS).

2. Parametric models, regression, clustering, classification, discrimination, etc.

3. Asymptotic inference from samples:

• sample descriptor (estimator) µ̂n → µ population descriptor (parameter)

µ̂n
a.s.→ µ ⇔ P{ lim

n→∞
d(µ̂n, µ) > 0} = 0

µ̂n
P→µ ⇔ lim

n→∞
P{d(µ̂n, µ) > ϵ} → 0 ∀ϵ > 0

µn
D→Y ⇔ E[f ◦ µn]→ E[f ◦ Y ] ∀f : Q→ R bounded and continuous

• two-sample tests, inference on models, e.g. via MANOVA, model selection?

We build on

Theorem 1.1. Let X1, . . . , Xn
i.i.d.∼ X be random variables on Q = Rm.

Strong Law of Large Numbers (LLN): if E[∥X∥] <∞, then

X̄n :=
1

n

n∑
j=1

Xj
a.s.→ E[X] .

Central Limit Theorem (CLT): if E[∥X∥2] <∞, then

√
n(X̄n − E[X])

D→N (0, cov[X]) where cov[X] := E
[
(X − E[X])(X − E[X])T

]
.

1.2 Examples

Canonical smooth (quasi-)metrics on spheres Sk×(m−1)−1 = {X ∈ Rk×m : ∥X∥ = 1}:

• extrinsic (chordal) de(X,Y ) = ∥X − Y ∥ =
√
2(1− ⟨X,Y ⟩),

• intrinsic (spherical) di(X,Y ) = arccos⟨X,Y ⟩,

• residual (tangent space projection) dr(X,Y ) = ∥X − ⟨X,Y ⟩Y ∥ =
√
1− ⟨X,Y ⟩2,

where ⟨X,Y ⟩ := tr(XTY ).
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1.3 Principal Component Analysis (PCA)

Find an affine subspace of dimension k ∈ {0, 1 . . . ,m− 1} best approximating a random variable
X in Rm with E[∥X∥2] <∞.

Parametrize each such subspace

AV,α := {x ∈ Rm : V Tx = α}

which has m − k o.n. vectors vi ∈ Rm to it, each translated by a certain amount αi ∈ R,
i = 1, . . . ,m− k. In particular, every element in the o.n. Stiefel manifold

V ∈ O(m,m− k) := {V = (v1, . . . , vm−k) ∈ Rm×(m−k) : vTi vj = δij , 1 ≤ i, j ≤ m− k}

represents AV,0 and (V, α), (V ′, α′) ∈ O(m,m − k) × Rm−k represent the same subspace if and
only if there is a S ∈ O(k) with S.(V, α) := (V S, STα).

Theorem 1.2. The family of k-dimensional affine subspaces in Rm is uniquely parametrized by
the smooth manifold

A(m,m− k) = (O(m,m− k)× Rm−k)/O(m− k)

of dimension m(m− k) +m− (m− k)(m− k+1)/2− (m− k)(m− k− 1)/2 = m+ (m− k)k with
canonical Ziezold metric if O(m,m− k) carries the extrinsic metric.

Proof. Apply Theorem 4.2 since O(k) acts freely, isometrically and properly (O(k) is even com-
pact).

Remark 1.3. O(m,m− k)/O(m− k) =: G(m,m− k) ∼= G(m, k) := O(m,m− k)/O(m− k) are
the Grassmannian manifolds.

Theorem 1.4 (Euclidean PCA is Nested). With the distance

ρ(y,AV,α) = inf
x∈AV,α

∥y − x∥ = ∥V T y − α∥ for y ∈ Rm (1.1)

(apply Lagrange minimization) and random X in Rm with E[∥X∥2] <∞ and spectral decomposi-
tion

cov[X] = (v1, . . . , vm) diag(λ1, . . . , λm)(v1, . . . , vm)T , λ1 ≥ . . . λm ≥ 0, (v1, . . . , vm) ∈ SO(m) ,

then, for each k ∈ {0, . . . ,m− 1}

argminO(m−k).(V,α)∈A(m,m−k) E[ρ(X,AV,α)]

has a solution with representative V = (vk+1, . . . , vm), α = V TE[X], i.e. AV,α is spanned by
v1, . . . , vk, with base point E[X]. The space is unique if and only if λk > λk+1. For k = 0 it is
uniquely {E[X]}.

This leads to a flag of subspaces (complete) if all eigenvalues are different carrying canonical
metrics/distances, see Definition 4.3.

1.4 Principal Nested Spheres (PNS)

PNS by Jung et al. (2012). For X on a sphere Sm ⊂ Rm+1, every k-dimensional small
subsphere is some

AV,α ∩ Sm for some AV,α ∈ A(m+ 1,m− k) with ∥α∥ < 1 .
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Thus, imposing a spherical distance (for which Pythagoras’ theorem is not valid) instead of the
Euclidean in (1.1), the corresponding subspheres are in general no longer nested, but one can
enforce this by principal backward nested spheres (PNS) analysis, yielding a (random, see next
section) flag of affine subspaces:

Rm+1 = AV (m+1),α(m+1) ⊃ AV (m),α(m) ⊃ . . . ⊃ AV (2),α(2) ⊃∈ AV (1),α(1) = {p}

with AV (k),α(k) ∈ A(m+ 1,m− k) and ∥α(1)∥ = 1.
This motivates the following section.

1.5 Generalized Fréchet Means

Definition 1.5. Let X1, . . . , Xn
i.i.d.∼ X be Borel random variables on a topological space Q (data

space) linked to a metric space (P, d) (descriptor space) via a continuous function ρ : Q×P → R.
Then

F (p) := E[ρ(X, p)], Fn(p) :=
1

n

n∑
j=1

ρ(Xi, p)

are the (random) generalized Fréchet functions and the (random) closed sets

E[X] := argminp∈P F (p) , En := argminp∈P Fn(p)

is the (possibly empty) sets of generalized population and sample Fréchet means, respectively.
If P = Q and ρ = d2 then this definition gives classical Fréchet means as introduced by Fréchet

(1948).
We require F (p) <∞ for all p ∈ E[X].

Above, P can be taken as a flag manifold (PCA,PNS), or one of the A(m,m−k), with suitable
ρ, see, e.g. Lecture III and with more notational effort, this can be generalized to more general
nested descriptor sequences, cf. Huckemann and Eltzner (2018) with application to stem cell
differentiation.

Remark 1.6 (FMs are Extension of Euclidean Means). Indeed, for a classical random vector X
in Rm with metric d(p, p′) = ∥p − p′∥, with E[∥|X∥2] < ∞, p 7→ E[∥X − p∥2],Rm → [0,∞) is a
well defined smooth function and

E[∥X − p∥2] = E[∥X∥2]− 2pTE[X] + ∥p∥2

is uniquely minimized by p = E[X].
Does E[∥|X∥] <∞ suffice to define Fréchet means? Yes, see below.

Generalized Fréchet means are

• closed sets (as empty sets or as preimages of closed sets under a continuous function),

• nonempty sets, if ρ is bounded from below (e.g. ρ ≥ 0) the descriptor space (P, d) is complete
(Cauchy sequences converge), and the Fréchet function F is finite for at least one point p ∈ P
(in a metric space a set is closed if and only if it contains all of its cluster points),

• in particular, sample Fréchet mean sets are nonempty, if (P, d) is complete.

2 “Classical” Fréchet Means

Throughout this section consider a random variable X on a complete metric space (Q, d) = (P, d)
with ρ = d2.
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Theorem 2.1. [Folklore, Mattner, and Sturm (2003b)] Fix p0 ∈ Q and consider

F p0(p) := E
[
d(X, p)2 − d(X, p0)

2
]
, p ∈ Q .

Then

(i) F p0(p) exists for all p ∈ Q if E[d(X, p0)] <∞,

(ii) if E
[
d(X, p0)

2
]
<∞ then

E[X] = argminp∈Q F p0(p) .

Proof. (i): Using twice the triangle inequality, observe,

E
[∣∣d(X, p)2 − d(X, p0)

2
∣∣] = E

[(
d(X, p) + d(X, p0)

) ∣∣d(X, p)− d(X, p0)
∣∣]

≤
(
E[d(X, p)] + E[d(X, p0)]

)
d(p, p0)

≤
(
d(p, p0) + 2E[d(X, p0)]

)
d(p, p0) .

(ii): Using again the triangle inequality, observe,

E
[
d(X, p)2

]
≤ E

[
(d(X, p0) + d(p0, p))

2 ]
= E

[
d(X, p0)

2
]
+ 2d(p, p0)E

[
d(X, p0)

]
+ d(p, p0)

2 .

This gives the reason for the positive answer in Remark 1.6.

2.1 Extrinsic Means for Embeddings

Every Q ⊂ Rm and carries the extrinsic metric d(p, q) = ∥p − q∥ for all p, q ∈ Q (verify at once
that is it a metric). Then for every x ∈ Rm its orthogonal projection

Φ(x) := argminp∈Q ∥x− p∥ = argminp∈Q ∥x− p∥2

is a nonempty set if Q is closed.
The points x ∈ Rm with nonunique projection are called focal points. For instance, if Q is a

proper ellipse then all points between its foci are focal points; for a sphere its center is a focal
point.

Fréchet means E[X] with respect to an extrinsic metric are called extrinsic means.

Theorem 2.2. If E[X] ∈ Rm exists then

E[X] = Φ(E[X]) .

If E[X] is nonfocal then E[X] is unique.

Proof. First note that every minizer p ∈ Q of

E[∥X − p∥2] = E[∥X∥2]− 2E[X]T (p− p0) + ∥p∥2

is also a minimizer of

∥E[X]− p∥2 = ∥E[x]∥2 − 2E[X]T (p− p0) + ∥p∥2 ,

and vice versa. Hence E[X] = Φ(E[X]) in case of E[∥X∥2] <∞. Next, utilize Theorem 2.1 to see
that E[∥X∥] <∞ suffices.

In consequence the spherical extrinsic Fréchet mean is either unique or the entire sphere. More
generally, in the spirit of Sard’s theorem we have:

Lemma 2.3 (Bhattacharya and Patrangenaru (2003)). If Q is an embedded smooth manifold in
Rm then its focal points form a closed set of Lebegue measure zero.
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2.2 Residual Means for Embedded Manifolds

We now assume that Q ⊂ Rm is an embedded k-dimensional smooth manifold, 1 ≤ k < m. Hence
for every p ∈ Q there is an open U ⊆ Rm with p ∈ U and smooth u : U → Rm such that

U ∩Q = {x ∈ U : uk+1(x) = . . . = um(x) = 0} .

Then, with vi := (∂i)p, 1 ≤ i ≤ m1 and V = (v1, . . . , vk)

Q→ TpQ, q 7→ V V T

∥V ∥2
q

is the orthogonal projection of Q to the tangent space TpM ⊂ Rm at p. Further,

V V T

∥V ∥2
q and dr(p, q) :=

∥∥∥∥V V T

∥V ∥2
q

∥∥∥∥
are called the residual tangent space coordinate of q ∈ Q at p and the residual distance of q from p.
While on spheres, the residual distance agrees with the definition in Section ??, which is symmetric
but does not allow for the triangle inequality, on general spaces it is not even symmetric. Still,
residual Fréchet means can be defined on any embedded manifold.

For Procrustes analysis, the following is important

Theorem 2.4. Let X be a random variable on a sphere Sm−1 ⊂ Rm with 2 ≤ m ∈ N with
E[∥X∥2] <∞. Then, with a spectral decomposition

E[XXT ] = V ΛV T , V = (v1, . . . , vm) = V ∈ SO(m), Λ = (λ1, . . . , λm), λ1 ≥ . . . ≥ λm ,

the residual mean set of X satisfies

E(X) = Sm−1 ∩ span{v1, . . . , vk}

if λ1 = . . . = λk and k = m or if λk > λk+1. In particular, if λ1 > λ2 then

E[X] = {−v1, v1} .

Proof. This follows rather directly from the fact that the o.g. projection to TpSm−1 is given by
q 7→ (Im − ppT )q.

2.3 Intrinsic Means

Let X be a random variable on a complete connected Riemannian manifold Q with the induced
geodesic distance d and we consider intrinsic Fréchet means

E(X) = argminp∈Q F (p) with F (p) = E[d(X, p)2] .

Recall CAT(κ) spaces from Ezra’s talk. For instance, a sphere of radius
√
κ, κ > 0, is a CAT(κ)

manifold.

Theorem 2.5 (Afsari’s Theorem (2011)). If Q is additionally a CAT(κ) space, κ > 0 and if X
has support2 in a geodesic half ball

BRκ(p0) = {p ∈ Q : d(p, p0) < Rκ} with Rκ =
π

2
√
κ

about some p0 ∈ Q, then X has a unique Fréchet mean and this is contained in BRκ
(p0).

1for f ∈ C∞(M → R), (∂i)qf := d
dt
f ◦ u−1(q + tei) with the i-th standard unit vector ei, 1 ≤ i ≤ m

2supp(X) =
⋂

P{X∈A}=1,A closed A
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Recall that a connected Riemannian manifold Q is a symmetric space if for every p ∈ Q there
is a smooth isometric mapping j : Q → Q such that j(expp v) = expp(−v) for all v ∈ TpM . In
particular, j is involutive, i.e. j2 = idQ.

Theorem 2.6 (Le’s Theorem (1998)). If Q is additionally a symmetric space and if X has a
density f : Q → [0,∞), p 7→ f(p) with respect to the Riemannian volume with the property
f(p) = g(d(p, p∗)) for some p∗ ∈ Q with a nonincreasing function function g : [0,∞) → [0,∞)
that is strictly decreasing in (r1, r2) with some 0 ≤ r1 < r2 ≤ Rκ, then p∗ is the unique Fréchet
mean of X.

Proof. Let p′ ∈ Q be arbitrary. Since Q is connected and complete, it can be reached by a geodesic
from p∗. Take an involutive isometry j : Q → Q with j(p′′) = p′′ for the midpoint p′′ on that
geodesic from p∗ to p′. Then j(p∗) = p′ and let

A = {z ∈ Q : d(p∗, z) < d(p∗, j(z))} .

By hypothesis A ∪ j(A) ∪N = Q with a set N that Riemannian volume zero. Then the assertion
follows from

F (p′)− F (p∗) =

∫
Q

(
d(p′, z)2 − d(p∗, z)2

)
g(d(z, p∗)) d vol(z)

=

∫
A

(
d(p′, z)2 − d(p∗, z)2

)
g(d(z, p∗)) d vol(z)

+

∫
A

(
d(p′, j(z))2 − d(p∗, j(z))2

)
g(d(j(z), p∗)) d vol(z)

=

∫
A

(
d(p′, z)2 − d(p∗, z)2

)
(g(d(z, p∗))− g(d(j(z), p∗)) d vol(z)

> 0

since, by hypothesis d(p′, z) = d(p∗, j(z)) > d(p∗, z) and hence g(d(z, p∗)) ≥ g(d(j(z), p∗) for all
z ∈ A, where, the latter inequality is strict for a set of positive volume.

Remark 2.7. Unaware of Le’s result – she actually proved it for the special symmetric spaces of
Σk

2 , see Definition 4.5 below, the proof translates one-to-one to general symmetric spaces – Aveni
and Mukherjee (2024) give the above proof in a more general setting.

Sample means tend to be more unique than population means.

Theorem 2.8 (Arnaudon and Miclo (2014)). If X1, . . . , Xn
i.i.d.∼ X is absolutely continuous with

respect to Riemannian volume, then En is a.s. a unique point.

A role of the cut points C(p) := {q ∈ Q : there are at least two length minimizing geodesics
from p to q} for p ∈ Q. It is well known that the Riemannian volume of C(p) is zero. Also:

Theorem 2.9 (Le and Barden (2014)). Suppose that µ ∈ Q is an intrinsic Fréchet mean of X.
Then P{X ∈ C(µ)} = 0.

Notably, the cut locus is {q ∈ Q : every length minimizing geodesic from p to q is no longer
length minimizing beyond q} and it can also include conjugate points which are not cut points.

Intrinsic means on the circle. Now, X is a random variable on Q = S1 = {eit : −π ≤ t <
π} ⊂ C.

Theorem 2.10 (Hotz and Huckemann (2015)). Consider the distribution of X, decomposed into
the part which is absolutely continuous with respect to arc-length measure, with density f , and η,
the part singular to arc-length measure. If
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1. S1, . . . , Sk are the distinct open arcs on which f < (2π)−1,

2. they are all disjoint from supp(η),

3. and {x ∈ S1 : f(x) = (2π)−1} is a circular null-set,

then X has at most k intrinsic means and every antipodal arc of Sj contains at most one candidate,
1 ≤ j ≤ k.

In particular, f > (2π)−1 at the antipode of an intrinsic mean is not possible

This extends at once to the torus Tm := (S1)m.

Intrinsic means on Hadamard spaces. Euclidean spaces are CAT(0) spaces, so are hyperbolic
spaces in information geometry, and so are BHV trees spaces. The latter are no longer manifolds.
Hadamard spaces are complete CAT(0) spaces. Leaving the manifold world, returning to just
metric spaces, we have:

Theorem 2.11 (Sturm (2003b)). A X be a random variable on a Hadamard space (Q, d) with
finite first moment E[d(X, p)] <∞ for some p ∈ Q has a unique Fréchet mean.

2.4 Computing Intrinsic Fréchet Sample Means

N.B.: The proof of Theorem 2.9 relies on showing that

logµ = (expµ)
−1 is a.s. well defined (2.1)

Thus, for data on a Riemannian manifold, the most straightforward method is to find the root
p ∈ Q of

0 = gradp E[d(X, p)2] = gradp E[∥ logp X∥2] = gradp E[∥ logX p∥2] = −2E[logp X] . (2.2)

On Hadamard spaces there is an algorithm converging in probability and if supp(X) is
bounded even a.s. (Sturm, 2003a):

Algorithm 2.12 (Sturm (2003a)). Computing the Fréchet mean of a random variable X in a

separable Hadamard space (Q, d) based on X1, X2, . . .
i.i.d.∼ X

Iterate until d(Z(k), Z(k−1)) is below a given threshold and return Z(k).

Step 1 : Set Z(1) = X1

Step k ≥ 2 : Set

Z(k) := γ

(
1

k
d(Z(k−1), Xk)

)
with the geodesic γ from Z(k−1) to Xk, parametrized by arc length

N.B.: the deterministic version also converges (Bacák, 2014).

On the circle the following gives an O(n) algorithm to compute intrinsic sample means.

Corollary 2.13 (Hotz and Huckemann (2015)). Let X1 = eiT1 , . . . , Xn = eiTn be a sample on S1,
−π ≤ Tj < π, 1 ≤ j ≤ n with T̄n = 1

n

∑n
j=1 Tj. Then the candidates for their intrinsic sample

mean are
ei(T̄n+

2πk
n ) 1 ≤ k ≤ n

Proof. If µ = eiν , −π ≤ ν < π is an intrinsic mean then logµ Xj = Tj + 2πkj with suitable

kj ∈ {−1, 0, 1} such that −π + ν < Tj + 2πkj < π + kj , 1 ≤ j ≤ m and by (2.2), ν = X̄n +
1
n

∑n
j=1 2πkj .

This extends at once to the torus Tm := (S1)m.

8



3 Some Asymptotics for Generalized Fréchet Means

In this section we return to Definition 1.5, X1, . . . , Xn
i.i.d.∼ X are Borel random variables on a

topological space Q (data space) linked to a separable metric space (P, d) (descriptor space) via a
continuous ρ : Q× P → R giving rise to

F (p) := E[ρ(X, p)], Fn(p) :=
1

n

n∑
j=1

ρ(Xi, p)

are the (random) generalized Fréchet functions and the (random) closed sets

E[X] := argminp∈P F (p) , En := argminp∈P Fn(p)

is the (possibly empty) sets of generalized population and sample Fréchet means, respectively.

3.1 Strong Laws of Large Numbers

We require additionally:

Assumption 3.1. Assume that there exist

1. ρ̇ : Q×P → [0,∞) continuous in P and measurable in Q with E[ρ̇(X, p)] <∞ for all p ∈ P ,

2. h : [0,∞)→ [0,∞) continuous with h(0) = 0, and

3. δ > 0, such that for every p, p′ ∈ P with d(p, p′) < δ and all q ∈ Q,

|ρ(q, p)− ρ(q, p′)| ≤ ρ̇(q, p) h
(
d(p, p′)

)
.

Assumption 3.2. ∃C ≤ ∞ such that ∀ random discrete (no cluster points) sequences pn ∈ P ,

lim inf
n→∞

ρ(X, pn) ≥ C a.s.

Theorem 3.3 (Version by Wiechers et al. (2023)). Under Assumption 3.1, Ziezold strong consis-
tency (ZSC, Ziezold (1977)) holds

∞⋂
n=1

∞⋃
k=n

Ek ⊆ E(X), a.s. (3.1)

If, additionally, E(X) ̸= ∅, then, under Assumption 3.2, Bhattacharya-Patrangenaru strong con-
sistency (PBSC, Bhattacharya and Patrangenaru (2003)) holds:

∀ϵ > 0 ∃ a.s.Nϵ ∈ N such that

∞⋃
k=n

Ek ⊆ {p ∈ P : d(E(X), p) ≤ ϵ} ∀n ≥ Nϵ .

Remark 3.4. Assumption 3.1 covers

1. quasi-metrics for P = Q, ρ = d2 (original proof for ZSC by Ziezold (1977)), there ρ̇ = 1 and
h(t) = t

2. metrics for P = Q, ρ = d2 (original proof for BPSC by Bhattacharya and Patrangenaru
(2003), for (Q, d) is Heine-Borel), again there ρ̇ = 1 and h(t) = t,

3. in fact, (P, d) is Heine-Borel implies Assumption 3.2, cf. Wiechers et al. (2023),

4. (flags for) PCA and PNS (Huckemann and Eltzner, 2018), geodesic PCA (Huckemann et al.,
2010).

5. unlcear whether it covers barycentric subspaces (Pennec, 2018).

6. minimizing negative log-likelihoods, for this reason ρ may be negative as well (estimating
drift models for ENDOR in Wiechers et al. (2023), say), the version with nonnegative ρ is
from Huckemann (2011b).

7. Schötz (2022) and Evans and Jaffe (2024) have further extended SLLNs.
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3.2 The Central Limit Theorem

Now, P is a m-dimensional Riemannian manifold with induced geodesic distance d and we require
additionally:

Assumption 3.5. Assume that

1. µ ∈ P is the unique generalized Fréchet mean of a random variable X on Q

2. µn is a measurable selection of sample means
P→µ

3. ϕ : U → Rm is local chart at p ∈ U with ϕ(µ) = 0

4. x 7→ τ(X,x) := ρ(X,ϕ−1(x)) is a.s. smooth

5. Σ := cov[grad2 τ(X, 0)] and H := E(Hess2 τ(X,x)) exist for x = 0,

6. HessFn(x̃n)
P→H for every random sequence x̃n → 0 with x̃n between xn and 0.

Theorem 3.6 (Bhattacharya and Patrangenaru (2005)). Under Assumption 3.5 we have

√
nHϕ(µn)

D→N (0,Σ)

and, if H is invertible,

√
nϕ(µn)

D→N (0, H−1ΣH−1) . (3.2)

Proof. Let xn = ϕ(µn) and in abuse of notation write F (x), Fn(x) for F ◦ϕ−1(x) and Fn◦ϕ−1(x)as,
respectively. Then

0 =
√
n gradFn(xn)

=
√
n (gradFn(0) + HessFn(x̃)xn)

=
√
n
1

n

n∑
j=1

grad2 τ(Xj , 0) + HessFn(x̃)
√
nxn

with some x̃ between xn and 0. Then, the assumptions in combination with Slutky’s Lemma for
real valued random variables

Yn
D→Y, Zn

P→ z (deterministic) ⇒ ZnYn
D→ zY ,

yield the assertion.

Remark 3.7. Bhattacharya and Patrangenaru (2005) were the first to prove along the above
lines the case of intrinsic means on manifolds, see also Bhattacharya and Lin (2017). The general
version for generalized Fréchet means is from Huckemann (2011a).

A more refined CLT (Benjamin’s tutorial) will deal making HessFn(x̃n)
P→H more accessible

as well as dealing with H not of full rank. The latter leads to smeariness.

A special case is a new and quick proof of Anderson (1963) and its extensions, e.g. Davis
(1977); Tyler (1981).

Theorem 3.8. Let X1, . . . , Xn
i.i.d.∼ X be a Gaussian r.v. on Rm with E[X] = 0, with population

PCs γ1, . . . , γm and corresponding eigenvalues λ1 ≥ . . . ≥ λm as in Lecture 1. If λk is simple and
γ̂k the k-th sample PC then

√
n(γ̂k − γk)

D→N

0,

m∑
k ̸=j=1

λkλj

(λk − λj)2
γjγ

T
j

 D←
√
n(γ̂k − γ̂kγ

T
k γk)
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Proof. Using the residual distance and coordinates,H can be explicitly computed and HessFn(x̃n)
P→H >

0 can be verified, see Huckemann and Eltzner (2019) for k = 1.

Remark 3.9. 1. For asymptotics of higher dim. subspaces such as repeated eigenvalues, with
the Grassmannian-like A(m,m− k) as in Theorem 1.4 define

ρ(X,AW,0) = ∥X −WWTX∥2 ,

see Huckemann and Eltzner (2020). There, the CLT of Eltzner and Huckemann (2019), see
Benjamin’s talk, can be employed.

2. Rabenoro and Pennec (2022) obtain similar CLTs, also with explicit covariances and Hes-
sians, also for entire flags, using a geodesic, not residual distances and coordinates.

3. The CLT is holds also for the asymptotics of suitable general nested subspaces, e.g. for PNS
flags, see Huckemann and Eltzner (2018).

3.3 Two-Sample Tests and the Bootstrap

If H is not available and thus ignored, quantile based tests have wrong level. Hence, resort to
bootstrapping.

The Euclidean two-sample Hotelling T 2 test. For two independent samplesX1, . . . , Xn1

i.i.d.∼ N (µ1,Σ1),

Y1, . . . , Yn2

i.i.d.∼ N (µ2,Σ2), µ1, µ2 ∈ Rm, Σ1,Σ2 ∈ SPD(m) withX = (X1, . . . , Xn1), Y = (Y1, . . . , Yn2)
and the samples’ Mahalanobis distance

d(X,Y ) :=

√
(X̄ − Ȳ )′

(
(n1 + n2 − 2)−1

(
n1 Scov(X) + n2 Scov(Y )

))−1

(X̄ − Ȳ ) ,

under H0 : µ1 = µ2,Σ1 = Σ2 we have

T̂ 2 :=
n1n2

n1 + n2
d(X,Y )2 ∼ T 2(m,n1 + n2 − 2) ∼ m(n1 + n2 − 2)

n1 + n2 − 1−m
Fm,n1+n2−1−m .

Here X̄ := 1
n1

∑n1

j=1 Xj , Ȳ := 1
n2

∑n2

j=1 Yj and

Scov(X) =
1

n1

n1∑
j=1

(Xj − X̄)(Xj − X̄)T , Scov(Y ) =
1

n2

n2∑
j=1

(Yj − Ȳ )(Yj − Ȳ )T .

Reject H0 if T̂ 2 > Fm,n1+n2−1−m,1−α (1 − α quantile) at level α ∈ (0, 1); typically = 0.05 for
significance and 0.01 for high significance.

This two-sample test for E[X] = E[Y ] is asymptotically (n1, n2 → ∞) robust under nonnor-
mality if n1/n2 → 1 or cov[X] = cov[Y ] (Romano and Lehmann, 2005, Scn. 11.3).

“Näıve” applications to manifold data in a local chart ϕ at pooled sample Fréchet mean
µn1+n2 , replace X̄ by ϕ(X)n1

, Ȳ by ϕ(Y )n2
, Scov(X) by Scov(ϕ(X)), Scov(Y ) by Scov(ϕ(Y )),

but miss H and thus the asymptotic level α, see Benjamin’s tutorial.

Therefore bootstrap: With the sample Fréchet means µn1
and µn2

of the X1, . . . , Xn1
and

the Y1, . . . , Yn2 , respectively,

(i) for 1 ≤ b ≤ B (large, e.g. 1000), resampleX∗,b
1 , . . . , X∗,b

n1

i.i.d.∼ 1
n1

∑n1

j=1 δXj and Y ∗,b
1 , . . . , Y ∗,b

n2

i.i.d.∼ 1
n2

∑n2

j=1 δYj

to obtain sample Fréchet means µ∗,b
n1

, µ∗,b
n2

, respectively, to obtain with the same chart ϕ as
before,

d∗,b1 := ϕ(µ∗,b
n1

)− ϕ(µn1
), d∗,b2 := ϕ(µ∗,b

n2
)− ϕ(µn2

)
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and

Σ∗
1 :=

1

B

B∑
b=1

d∗,b1 (d∗,b1 )T , Σ∗
2 :=

1

B

B∑
b=1

d∗,b2 (d∗,b2 )T , A := Σ∗
1 +Σ∗

2 ;

(ii) Bootstrap independently again, as above d∗,b1 and d∗,b2 , to obtain

(T ∗,b)2 := (d∗,b1 − d∗,b2 )TA−1(d∗,b1 − d∗,b2 ), 1 ≤ b ≤ B

to obtain an empirical 1− α quantile (T ∗)21−α.

Then, rejecting H0 if (
ϕ(µn1

)− ϕ(µn1
)
)T

A−1
(
ϕ(µn1

)− ϕ(µn1
)
)
> (T ∗)21−α

is a test, under no smeariness (see Benjamin’s talk), of asymptotic level α ∈ (0, 1) (Eltzner and
Huckemann, 2017). Notably, for increased power, Step (ii) mimics H0 even if H1 is true.

4 Some Statistics on Stratified Spaces: Manifold Stability,
Optimal Lifting, and More

4.1 Shape Spaces

Example of micromolecules. Given locations of k atom nuclei x1, . . . , xk ∈ Rm (here, m = 3),
describe their orientation preserving Euclidean (modulo translation and rotation) shape.

• X = (x1, . . . , xm) ∈ Rm×k is a landmark configuration matrix

• X ∼ Y if exists R ∈ SO(m), a ∈ Rm such that RX + a · 1Tk = Y

• here, O(m) = {A ∈ Rm×m : A−1 = AT } and SO(m) = {A ∈ O(m) : det(A) = 1},

• [X] := {Y ∈ Rm×k : Y ∼ X} and

• SΣk
m := {[X] : X ∈ Rm×k} is the size-and-shape space

• d([X], [Y ]) := infR∈SO(m),a∈Rm ∥RX + a · 1Tk − Y ∥ where

∥X − Y ∥2 := tr
(
(X − Y )T (X − Y )

)
.

Note (isometric action):

inf
Ri ∈ SO(m)

ai ∈ Rm
i = 1, 2

∥R1X + a1 · 1Tk −R2Y − a2 · 1Tk Y ∥ = inf
R∈SO(m),a∈Rm

∥RX + a · 1Tk − Y ∥ .

Hence, consider only centered configurations X, i.e. X1k = 0, or, more subtlely with any

o.g. complement H of 1√
k
1k, i.e.

(
H
∣∣ 1√

k
1k

)
∈ SO(k)

XH ∈ Rm×(k−1) ,

e.g. via Helmertizing (Dryden and Mardia, 2016).

Definition 4.1. A Lie group G (a group that is an analytic manifold with analytic group opera-
tions) acts on a smooth (C∞) manifold that is a metric space (M,d) with smooth d if

• g : M →M,p 7→ g.p is well defined and smooth or all g ∈ G,

• (gh).p = g.(h.p) for all g, h ∈ G and p ∈M ,

12



• e.p = p for all p ∈M where e is the unit element in G.

The action is

• free if Ip = {e} (unit element) for all p ∈ M , where Ip = {g ∈ G : g.p = p} (isotropy group
at p)

• isometric if d(g.p, g.p′) = d(p, p′) for all g ∈ G and p, p′ ∈M

• proper if preimages of compact sets are compact again, i.e. {(g, p) ∈ G×M : (p, g.p) ∈ K}
is compact whenever K ⊂M ×M is compact.

Set M∗ := {p ∈M : Ip = {e}}.

Theorem 4.2. If a Lie group G acts isometrically and properly on a smooth manifold M with
smooth metric d then

Q := M/G = {G.p : p ∈M} with dQ(G.p,G.p′) := min
g∈G

d(g.p, p′) , for all p, p′ ∈M

is a metric Hausdorff space and M∗ is open in M . If M∗ ̸= ∅, then moreover Q∗ := M∗/G carries
a canonical smooth structure of a manifold of dimension dim(M)− dim(G) with

TpM ∼= Tp[p]⊕ T[p]Q
∗ for all p ∈M∗

Proof. The first assertions is rather straightforward. More technically, due to the free action, the
implicit function theorem can be invoked, then providing for local charts

Definition 4.3. If, with the above assumptions, M ↪→ Rm is embedded then with extrinsic metric
de, residual distance dr and intrinsic metric di, the quotient distance

dQ(G.p,G.p′) := min
g∈G

d(p, g.p′), p, p′ ∈M

is the

Ziezold metric for d = de,

intrinsic metric for d = di, and

Procrustean distance for d = dr (Gower, 1975).

Note that for m ≥ 3, if all landmark columns of X ∈ Rm×k lie on a line through the origin,
then rotation about this axis leaves X invariant, i.e. [X] ̸∈ (SΣk

m)∗. In order to apply the CLT,
Theorem 3.6, we would want to have Fréchet means on the manifold part, though. Fortunately
this is not an issue.

Theorem 4.4 (Manifold Stability Theorem). Suppose that X is a random variable on Q with
existing intrinsic mean E(X). If P{X ∈ Q∗} > 0 then E(X) ⊂ Q∗.

A slightly less general version is in Huckemann (2012), Susovan will prove the general version
in his talk.

The reason is that proper and isometric actions, or more generally well behaved submersions,
never decrease sectional curvatures (O’Neill, 1966). So the singularities Q \Q∗ are like cones with
an opening angle < 2π.

For the bootstrap two-sample test of Section 3.3, how do we map data on Q to the orthog-
onal complement of Tp[p]? This can be done by horizontal lifts through sample means. Schould
we use separate lifts, each one for each sample? Do, under H0, such lifts converge to one-another?
This will be answered in Susovan’s talk.
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How to compute sample means? Iterate: lift data in Q into optimal position of a repre-
sentative of a candidate mean, compute their mean in M (easiest if extrinsic/Ziezold, still easy
residual/Procrustean, else see Section 2.4), lift data in Q into optimal position of this, ... (Groisser,
2005; Dryden and Mardia, 2016).

Minutiae in fingerprints, taken by scanners, are again k landmark configurations in Rm (now
m = 2). They are, again, considered modulo Euclidean motions, but, due to different scanner
types and their pixel sizes, also modulo scaling:

• X ∼ Y if exists R ∈ SO(m), a ∈ Rm and λ > 0 such that λRX + a · 1Tk = Y

• [X] := {Y ∈ Rm×k : Y ∼ X} and

• Q := {[X] : X ∈ Rm×k} is the (naive) shape space

• d([X], [Y ]) := infR∈SO(m),a∈Rm,λ1,λ2>0 ∥λ1RX + a · 1Tk − λ2Y ∥

Why naive? d ≡ 0 is not a metric (scaling acts neither properly nor isometrically).

• Workaround: consider only configurations XH ̸= 0 and their representatives XH
∥XH∥ ∈

Sm×(k−1)−1 modulo SO(m).

Definition 4.5. On Kendall’s shape spaces Σk
m := Sm×(k−1)−1/SO(m) the Ziezold metric is the

quotient of the extrinsic, the intrinsic metric of the spherical and the Procrustes metric (only for
even m, else quasi-) of the residual, cf. Theorem 4.2.

The following theorem is a straightforward (technical) consequence:

Theorem 4.6 (Kendall (1984)). Σk
2 = Ck−1/S1 = CP k−2 (complex projective space of complex

dimension k − 2) is the Hopf fibration, allowing for the Veronese-Whitney embedding

CP k−2 ↪→ C(k−2)×(k−2) ∼= R2(k−2)×2(k−2), [Z] 7→ ZZ∗

Z∗ is the Hermitian conjugate and [Z] = {eitZ : −π ≤ t < π}, Z ∈ Ck−1.
Further, the extrinsic metric w.r.t. the Veronese-Whitney metric agrees with the Procrustes

metric.

4.2 Other Stratified Spaces and Stickiness

Phylogenetic trees with N labelled taxa (including a root) = vertices with degree 1 and
internal nonlabeled vertics of degrees ≥ 3. Every edge is then a split of the label set

A|B = B|A, A,B a partition of {1, . . . , N}, A ̸= ∅ ≠ B

There are
(∣∣{0, 1}{1,...,N}

∣∣− 2
)
/2 = 2N−1 − 1 possible splits. Of these are N pendant, the other

interior. In a tree there are at most (induction) N − 3 interior edges. Modeling the length of each
split in R+

TN = RN
+ ×BHVN−1 ⊂ R2N−1−(N−1)−1

+

where BHVN−1 is a manifold stratified set containing flat orthants of dimension 0 up to N − 3.
BHV spaces are Hadamard spaces (Billera et al., 2001) and thus have unique Fréchet means,

see Theorem 2.11.
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Stickiness. Consider N = 4 where BHV3
∼=

⋃
i=1,2,3{tei : t ≥ 0} ↪→ R3 with the standard unit

vectors e1, e2, e3. Then X ∼ 1
3

∑3
i=1 δei has unique Fréchet mean 0. What about the mean of a

perturbed random variable

Xt ∼
1

3
(δ(1+t)e1 + δe1 + δe1

for some t > 0. By symmetry the mean has form se1 for some s ≥ 0. Solving

argmins≥0 F (se1) = argmins≥0

1

3

(
(1 + t− s)2 + 2(1 + s)2

)
we see that the function to be minimized attains its for minimum at 3s = t−1 which is nonnegative
only if t ≥ 1. For small 0 < t < 1, the mean of Xt sticks to the origin, and, one can show (Hotz
et al., 2013) that beyond a finite random sample size, the sample Fréchet mean also sticks to the
origin, i.e. not featuring asymptotic fluctuation. A dead end for statistics? Note quite as Lammers
et al. (2024) teaches.

Alternatively, more biologically motivated, model the correllation of taxa x, y (including
the root) via

ρ(x, y) = e−d(x,y)

with the tree graph distance d(x, y). Including forests and degree 2 labels, obtain the wald space

WN ↪→ SDP (N) = {Σ ∈ Rm×m : Σ = ΣT > 0} ,

a Riemann stratified space, if SPD is equipped with the information geometry of N (0,Σ) (Cartan-
Killing metric).

The information geometry for the parameter space Θ ⊂ Rk of a statistical model

P = {PX
θ = fθ(x) dµ(x) : θ ∈ Θ}

for vectorvalued X (dominating measure µ) equipps TθΘ with the Riemannian metric tensor

I(θ) = covθ[gradθ log fθ(X)] = −E[Hessθ log fθ(X)] .

For instance, for N (µ, σ2), Θ = {(µ, σ) : µ ∈ R, σ > 0} = H, we have

dPX
µ,θ(x) =

1√
2πσ

e−
(x−µ)2

2σ2 dx

yielding

I(µ, σ) =
1

σ2

(
1 0
0 2

)
which yields upon reparametrization σ → σ/

√
2 twice the metric tensor for the hyperbolic geom-

etry of H.

The scaling rotation geometry for SPD(N) by Jung et al. (2015) is motivated by tensor dif-
fusion imaging and gives a (not fully understood?) stratified (?) space, see Armin Schwartzman’s
talk.
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4.3 The Rabbit’s Ears and Its Scalp

If {x ∈ S1 : f(x) = (2π)−1} is not a circular null-set, strange things can happen. Choose
0 < b < π and uniformly distribute a total mass of b/π on {eit : π − b ≤ t ≤ π + b} the rest of the
corresponding probability mass, namely, 1 − b/π place on 1 = ei0. Consider X thus distributed.
Then, for 0 ≤ p < π we have

F (p)− F (0) =

∫ π

−π+p

(p− x)2 dPX(x) +

∫ −π+p

−π

(
p− (x+ 2π)

)2
dPX(x)−

∫ π

−π

x2 dPX(x)

=

∫ π

−π

((
p− x

)2 − x2
)
dPX(x)− 4π

∫ −π+p

−π

(
p− x− π) dPX(x)

= p2 − 2pE[X]− 4π

∫ −π+p

−π

(p− x− π) 1−π≤x≤b
dx

2π

=

{
p2(1− 1) = 0 if p ≤ b

p2 − b(2p− b) = (p− b)2 if p > b

since
(
p− (x+ 2π)

)2
= (p− x)2 − 4π(p− x) + 4π2, by symmetry E[X] = 0 and∫ −π+p

−π

(p− x− π) 1−π≤x≤b dx = p(p− π)− x2

2

∣∣∣x=−π+p

x=−π
=

p2

2
if p ≤ b∫ −π+p

−π

(p− x− π) 1−π≤x≤b dx = b(p− π)− x2

2

∣∣∣x=−π+b

x=−π
=

b(2p− b)

2
if p > b

since

x2
∣∣∣x=−π+b

x=−π
= (π − b)2 − π2 = b(b− 2π) .

In consequence E[X] = {eit : −b ≤ t ≤ b}. Sample Fréchet means, however, seem to accumulate
near ±b (ears) and the open interval {eit : −b < t < b} (scalp) seems to be visited less often. This
hints to

a) smeariness, discussed in Benjamin’s tutorial

b) the question whether in (3.1) strict inequality holds (Evans and Jaffe (2024) has given such
an example) ⇝ sampling measure on E(X)?
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London Mathematical Society 46 (4), 698–708.

O’Neill, B. (1966). The fundamental equations of a submersion. Michigan Math. J. 13 (4), 459–469.

Pennec, X. (2018). Barycentric subspace analysis on manifolds. The Annals of Statistics 46 (6A),
2711–2746.

Rabenoro, D. and X. Pennec (2022). A geometric framework for asymptotic inference of principal
subspaces in PCA. arXiv preprint arXiv:2209.02025 .

Romano, J. P. and E. L. Lehmann (2005). Testing statistical hypotheses. Springer, Berlin.
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