THE ONE-AND MULTI-SAMPLE PROBLEM FOR

FUNCTIONAL DATA WITH APPLICATION TO PROJECTIVE

SHAPE ANALYSIS

A. Munk ! ¥ R. Paige*, J. Pang , V. Patrangenarti| F. Ruymgaart *

! Institute for Mathematical Stochastics, Gottingen Ursitgt Germany
2 Department of Mathematics and Statistics, Texas Tech bityeU.S.A.
3 Department of Statistics, Florida State University, U.S.A
4 Corresponding Author; r.paige@ttu.edu; 806-742-258@1fel;, 806-742-1112 (fax).

March 3, 2007

Abstract

In this paper tests are derived for testing neighborhoodthgses for the one-and multi-sample problem for
functional data. Our methodology is used to generalizengst projective shape analysis, which has traditionally
involving data consisting of finite number of points, to thmdtional case. The one-sample test is applied to the

problem of scene identification, in the context of the pridyecshape of a planar curve.

keywords functional data, precise hypotheses, validation of hypstlks, image analysis, projective shape data
analysis

AMS subiject classificationPrimary 62G35 Secondary 62H35

*Research supported by Deutsche Forschungsgemeinschai2Bns10-1
TResearch supported by National Science Foundation Grarg-D652353
fResearch supported by National Science Foundation Grar8-DR03942



1 Introduction

Direct generalization of multivariate techniques to thalme of functional data analysis is not in general feasible,
and in this paper some procedures for the one-and multiHeapnpblem will be modified so as to become suitable
for functional data. For an extensive discussion of fun@iadata see the monograph by Ramsay and Silverman
(2005). In this paper, the problem of identifying the prdieshape of a planar curve will be considered as a practical
application.

The union-intersection principle of Roy and Bose (1953)vjates us with a projection pursuit type technique
to construct multivariate procedures from a family of umiste procedures. A case in point is Hotelling’s (1931)
multivariate 72-statistic that can be constructed from a family of univaristudent statistics. It is easy to see that
further extension to infinite dimensional Hilbert spacemalsimilar lines breaks down, in particular because thk ran
of the sample covariance operator cannot exceed the fimipleasize and consequently cannot be injective, not even
when the population covariance operator is one-to-one.

Several alternatives could be considered. One possilsliprojection of the data onto a Euclidean subspace of
sufficiently high dimension and perform a Hotelling testiwitiese finite dimensional data. This includes spectral-cut
off regularization of the inverse of the sample covariarperator as a special case. Another option is a Moore-Penrose
type of regularization of this operator.

For the application to shape analysis to be consideredsrptiper, however, yet another modification seems more
appropriate. This modification yields at once more realistipothesis and a mathematically tractable procedure. In
practice “equality of shapes” will almost always refer toaisfactory visual resemblance rather than exact corre-
spondence in every minute detail. Therefore in this papeutual hypothesis will be replaced with a “neighborhood
hypothesis”.

This kind of modified hypothesis has a long history and has laieeloped in different situations. It has been,
e.g., proposed by Hodges and Lehmann (1954) for testinghg#hetultinomial cell probabilities are approximately
equal. Dette and Munk (1998) have extended this approadhdgpurpose of validating a model in a nonparametric

regression framework. For methodological aspects and a recent discussion we refer to Goutis and Robert (1998),



Dette and Munk (2003), and Liu and Lindsay (2005). The unilgglidea is that the hypothesis is often formulated on
the basis of theoretical considerations that will neveecogality completely. Hence in practice such a hypothesis w
always be rejected if the sample size is large enough. Ieiefbre more realistic to test a somewhat larger hypothesis
that also includes parameters in a neighborhood of theraligine. See also Berger and Delampady (1987) who
employ the term “precise hypothesis” instead of “neighlbadhhypothesis”, whereas Liu and Lindsay (2005) coined
the phrase “tubular models”. Mostly related to the presppt@ach is the work of Dette and Munk (1998) and, Munk
and Dette (1998) who considé&r-neighborhood hypotheses in nonparametric regressiorlsnod

A further advantage is that neighborhood hypotheses oftad to simpler asymptotic analyses. This in turn
makes it possible to interchange the role of a neighborhgpathesis and its alternative without complicating the
testing procedure. This is particularly relevant for goeskof-fit type tests, where traditionally the choice ofrié
hypothesis is usually dictated by mathematical limitagioather than statistical considerations. Accepting a mode
after a goodness of fit test always leaves the statisticidhagrambiguous situation whether the model has not been
rejected by other reasons, e.g. because of lack of datae#itient goodness of fit test at hand, or because of a large
variability of the data. In contrast, the present approdicliva one to validate a hypotheses at a given leyehstead
of accepting a model without any further evidence in favoth&f model. In fact, this is equivalent to reporting on a
confidence interval for a certain distance measure betweeiels

There is an objective, data-driven method to select thenpatexd, say, that determines the size of the neighbor-
hood hypothesis. Given any levele (0, 1) for the test, one might determine the smallest valge) for which the
neighborhood hypothesis is not rejected. It should bezedlihat modification of Hotelling’s test will require a more
or less arbitrary regularization parameter.

The paper is organized as follows. In Section 2 we brieflyawvome basic concepts for Hilbert space valued
random variables, and in Section 3 we briefly discuss thecdlffes with studentization in infinite dimensional Hilber
spaces. Sections 4 and 5 are devoted respectively to alguibaimulated version of the functional one-and multi-
sample problem. The theory is applied to the recognitiorheffrojective shape of a planar curve in Sections 6 and

7.



2 Random elements in Hilbert spaces

Let (2, W, P) be an underlying probability spadé,a separable Hilbert space over the real numbers with inoeiuat
(e, @) and norm|| e ||, andBy the o-field generated by the open subset&bfA random element ifil is a mapping
X : Q — Hwhichis(W, By ) - measurable. Let us wrifey = P for the induced probability measure (H, By).

The probability distributiorP is uniquely determined by its characteristic functional

(2.1) P(z) =E ‘=X = / TN dP(y), x € H.
H

Assuming that
(2.2) B JIX|]? < oo,

the Riesz representation theorem ensures the existenceesftar ;. € H and an operatoE : H — H, uniquely

determined by the properties

(2.3) E(z,X) = (z,p) Vo eH,

(2.4) E(z,X —p) (y,X—u)=<x,iy> Va,y e H.

The operatok is linear, Hermitian, semi-definite positive; it has, maren finite trace and is consequently compact.
Any operator with these properties will be referred to as\adance operator, and any covariance operator is induced
by some random element.

It follows from the Minlos-Sazanov theorem that fore H andY. : H — H a covariance operator, the functional
(2.5) p(z) = eilem=3{eSe) o o H,

is the characteristic functional of a probability measuméip which is called the Gaussian measure with parameters
w andX and will be denoted by (1, E). The parameters represent respectively the mean and aogarbperator of
the distribution.

LetH” be the real, separable Hilbert space ofpaluplesz = (z1,...,z,)*, z; € Hfor j = 1,...,p. Theinner

product inH? is given by(z,y), = >>\_, (z;,y;), forz,y € HP.
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3 Why studentization breaks down inH

Let X;,..., X, be independent copies of a random elem¥énh H with

(3.1) E || X||* < oo,

meany € H, and covariance operathr: H — H. Estimators of: andX: are respectively

=1

where fora, b € H the operator ® b : H — H is defined by(a ® b)(z) = (b, x) a, z € H.

@2 X- S X - o (¥, - X,
=1

S
S

Immediate extension of the union-intersection principtend suggest to use the Hotelling-type test statistic

- 2
(X, )

(3.3) T?=n sup )
weH: ||u||=1 (u, Su)

for testing the classical hypothesis that= 0. The studentization, however, now in general causes agmobince

under the assumption that

(3.4) P{Xy,...,X, are linearly independept= 1,
it will be shown that

(3.5) P{T2 = 00} =1,

even wherk is supposed to be injective.
To prove (3.5) let us first observe that (3.4) entails thgX < linear span ofX; — X,..., X,, — X} = 0. For if
X were an element of the linear span there would exist scalars . , o, such that = Yo (X — X). Because

of the linear independence of tBg this means that the vectar= (a4, ..., a,)* € R™ must satisfy
1,

(36) (In - _1n1n)a = 1p,
n

wherel, is then x n identity matrix andl,, a column ofn numbersl. This is impossible because the matrix on the

left in (3.6) is the projection onto the orthogonal complaria R™ of the line throughl,,. Hence with probability



there existX;, X» such thatY = X; + X,, and

X, #0, X LX;,—X fori=1,...,n,
(3.7)

X, € linearspanof{; — X,..., X, — X.
Choosing: = X; we have on the one hand tha¥, 71>2 = ||X1||* > 0, and on the other hand we haS& ; = n .
> (X — X, X1) (X; — X) =0, so that (3.5) follows.
A possible modification of this statistic is obtained by eghg,S—* with a regularized inverse of Moore-Penrose
type and by considering

(X,u)”
sup
weH:| [ul|=1 <u (@l +9)" u>

= largest eigenvalue ofal + S)/* (X @ X) (al +5)~ /2,

wherel is the identity operator. We conjecture that perturbati@oty for compact operators in Hilbert spaces leads to
the asymptotic distribution din + S)’l/2 and subsequently to the asymptotic distribution of thigéat eigenvalue,

in the same vein as this kind of result can be obtained forioestr See, for instance, Watson (1982) for sample
covariance matrices and Ruymgaart and Yang (1997) for immebf sample covariance matrices. Watson’s (1982)
result has been obtained for sample covariance operatadrslloert spaces by Dauxois et al. (1982). As has been

explained in the introduction, however, here we prefer tspe the approach of modifying the hypothesis.

4 The one-sample problem inH

Let X4,...,X, be as defined in Section 3 and suppose we want to test hypsthegardingu. This modified
hypothesis may make more sense from an applied point of vieads, moreover, to simpler asymptotics. To

describe these hypotheses suppose that

(4.1) M C His a linear subspace of dimensione Ny,



and letd > 0 be an arbitrary given number. Let us denote the orthogomgtgtion ontoM by IT, and ontoM + by

II+. Itis useful to observe that
(4.2) <HJ‘x,HJ‘y> = <:C,HJ‘y> Va,yeH
Furthermore let us introduce the functional

(4.3) oa(@) = ||o — M| = |[ITt2||*, « € H,

representing the squared distance of a peiatH to M (finite dimensional subspaces are closed).

The “neighborhood hypothesis” to be tested is
(4.4) Hs : p € MsU Bg, forsomed > 0,

whereM;s = {z € H: pum(z) < 6*}andBs = {z € H : pum(z) = 52,<HLI,SHLZC> > 0}. The alternative to

(4.4)is
(4.5) As 1 p € Ms N Bj.

The usual hypothesis would have begns M. It should be noted thats contains{¢,, < 4%} and that4; contains
{pnm > 62}. These are the important components of the hypothesesethgs ss added to the null hypothesis by
mathematical convenience, i.e. because the asymptotieqamthat set is precisely, as will be seen below.

For testing hypotheses like (4.4) see Dette and Munk (1988)se authors also observe that testing
(4.6) H - € (M})° U Bs versusAj : € M N B,

whereM} = {z € H : pp(x) > 6%}, can be done in essentially the same manner; see also Remahisimay

be very useful in practice. When, for instandé, is the subspace of all polynomials of degree at most 1, it is
more appropriate to test (4.6) if one wants to establishtttatmean value function is close to such a polynomial. In
the traditional set-up interchanging null hypothesis dtetaative would be virtually impossible due to mathemgitic

difficulties, just as this is the case in the classical gosdrd-fit problems.



The reason that it is mathematically easier to deal with tiesgnt hypotheses is that the test statistic, which is

based on
(4.7) ey (X) =8,
has a simple normal distribution in the limit for large samgizes.

Lemma 1. We have

(4.8) Vo (X) = par()} —a N(0,0?), asn — oo,
where
(4.9) v =4 <Hlu, EHLM> .

If v2 = 0 the limiting distribution\/(0, 0) is to be interpreted as the distribution which is degeneatie

Proof. The central limit theorem foH-valued random variables yields the existence 6{@ ) random element,

such that
(4.10) V(X —p) —q G, asn — oo,

in (H, By). Itis easy to see that,, : H — R is Fréchet differentiable at any € H, tangentially tdH, with derivative

the linear functional

(4.11) 2(Il*p,h), h e H.
According to the “functional delta method” we may conclude

(4.12) Valen(X) = ou(p)} —a 21, G) .

The random variable on the right in (4.12) is normal, becakise Gaussian, and clearly its mearDisTherefore its

variance equals
(4.13) E (I p, G) (T, G) = <Hm,inm>,

according to the definition of (cf.(2.4)). O



Lemma 2. We have
(4.14) 02 =4 <HLY, SHLY> —p v%, asn — oo.
Proof. By simple algebra we find

(4.15) (X, SII*X) = <HLY7 % zn: (X, - X X)) (X, — y)>

According to the weak law of large numbers and the definitiocoeariance operator we have

n

%Z (Xi = p )" = B(X — p T ) = <Hlu, iHLu> , asn — oo.
=1

All the other terms tend t6 in probability. As an example consider
— 2 —
(=X, )" <|IX = p| Pl 2 =, 0,
asn — oo. The lemma follows from straightforward combination of thmeae. O

For0 < a < 1 let&—,, denote the quantile of ordér— « of the standard normal distribution. Focusing on
the testing problem (4.4), (4.5) let us decide to reject tiémypothesis wher/n{pn (X) — 62} /0 > & _o. The

corresponding power function is then

(416) ﬁn(:u) = P{\/ﬁ{(pl\{(Y) - 52}/{) > 617&}7

wheny € H is the true parameter.



Theorem 4.1: Asymptotics under the null hypothesis and fixed alternatidédne power function in (4.16) satisfies

07 SOM(/'L) < 527

(4.17) Jim Gn (1) = Yo, onr(p) = 6%,0% > 0,

1, (PM(M) > 6%,

Hence the test has asymptotic sizeand is consistent against the alternativespy, (u) > §2.

Proof. If v > 0 it is immediate from Lemma’s 1 and 2 thatn{pn (X) — 62} /6 —q4 N(0,1). The result now
follows in the usual way by observing thafn{6? — (1)} tends to eithepo (Whenpy (1) < §2), to 0 (when
() = 6%) orto —oo (Wheng s (1) > 62). If v2 = 0 we still have that/n{py (X) — 62} /9 tends in probability
to oo (Whengpy, (1) < 62) or to —oo (Wheng s (1) > §2). O

To describe the sampling situation under local alternat{ircluding the null hypothesis) we assume now that
(4.18) X1, X, areiid.(pns, %),

whereY is as above and

t
4.19 it = —7,t>0,
( ) Hnt u+\/ﬁ’y >0
for some (cf. (4.4) and below)

(4.20) 1€ Bs,y € H: (p,IIMy) > 0.

Under these assumptions it follows that, = u satisfiesHs, andpu,, ; satisfies4s for eacht > 0. Let & denote the

standard normal c.d.f.

Theorem 4.2: Asymptotic power. We have

1
(4.21) lim B (i) =1 - @ (gla - 2t<“Lv7>> > 0.
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Proof. We may writeX; = X/ + (¢//n)v, where theX are i.i.d. (u,X). It is easy to see from this representation

that we still have
(4.22) 92—, v? >0, asn — oo Vit > 0.

Exploiting once more the Fréchet differentiabilityof; (see (4.11)) we obtain

(4.23)
\/ﬁ{w} — \/E{M}—F%{MW}—FOP(” —>dN <2t<ﬂ%1_7>’1> , asn — oo,
and the result follows. O

Remark 1. To corroborate the remark about interchanging null hypsithend alternative made at the beginning of

this section, just note that an asymptotic sizeest for testing; versusAj in (4.6) is obtained by rejecting; when

(4.24) V{em(X) — 6%} /i < &a, a €(0,1).

This allows to assess the approximate validity of the mod#iiwthe neighborhood. Of course, from (4.24) we

immediately get a confidence interval ibas well.

Remark 2. The expression in (4.23) remains valid for 0 ory = 0. In either case the corresponding mean satisfies

the null hypothesis assumption and the limit in (4.23) egual

5 The multi-sample problem inH

Let X1, ..., Xj,, beiid. with mearu; and covariance operatr;, wheren; € N, s.t. >_;n; = n, and let these
random elements satisfy the moment condition in (3.1): fathis for j = 1,...,p. Moreover these samples are

supposed to be mutually independent, and their sample Sitisfy

%:/\j—i-o(\/iﬁ), asn =ny +---+n, — 00,
(5.1)

Let us define

(5.2) Xj=—> Xji, X =



Furthermore, let the functionals, : H? — R be given by

P . 2
n
(5.3) Ynlos,smp) = D0 || Hay — 70
=1 "
wherezy, ..., z, € Handz, = £ >°_, “4x;. Definingy : H? — R by
z 2
(5.4) Y@, .mp) =Y [Ny — 3|7,
=1

wherez = ©>7F_| \ja;, itis readily verified that
(5.5) V{n(z1, ..., xp) — Y(z1,. .. 2p) — 0, @Sn — oo,

provided that condition (5.1) is fulfilled.

”

The neighborhood hypothesis in this model can be looselpditated as “approximate equality of the means”.

More precisely the null hypothesis
(5.6) Hps:po=(p1,....p0p)" € M, sUBys,

p
whereM, s = {z € HP : ¢(z) < 6*} andB, s = {z € HP : ¢)(z) = 52,2)\j <)\j:17j — 7,5\, —E)> > 0},
j=1

will be tested against the alternative
(5.7) Aps = (1., pp)" € My sN By 5.
Let us introduce some further notation and set

P p
(5.8) =AY N <)\ij — 785 (\jhy —ﬁ)> = % > i
j=1 j

Jj=1

Writing S; for the sample covariance operator of fhth sample (cf.(3.2)) the quantity in (5.8) will be estinmditzy
(5.9) =AY N (X - X, 80X, - X)),

Theorem 5.1: The test that reject&,, s for

(5.10) Vi {hn (X1, Xp) = Un(pa, - iip) } /T > €1-0,0 < a < 1,

has asymptotic size, and is consistent against fixed alternatiues (i1, .. ., u,)* With ¢ (u) > 6%
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Proof: Because thg samples are independent the central limit theorem in (4/i&0)s

X1—p1 G1
(5.11) ﬁ( ; >~d<;>,
Xp—tp G

whereGy, . .., G, are independent Gaussian random elemerits iand
1 =~

(5.12) Gj=a6 (0, —Ej) .
Aj

It follows from (5.5) that

(613)  VAlW(X1ree o Xp) = Galins s ttp) = {01 Xp) = i, 1p)}] = 0p(1).

Moreover, a slight modification of Lemma 2 yields tHat; — X, S;(X; — X)) —, <uj =225k — ﬁ)> and

hence
5.14) e Th-
( P

This means that the statistic on the left in (5.10) and the atained by replacing,, with ¢ in that expression
will exhibit the same first order asymptotics. The proof vl continued with the latter, simpler version. A simple

calculation shows that : H? — R is Fréchet differentiable at any € HP, tangentially toHP. Writing h =

% Y1 \jhy, foranyhy,..., h, € H, its derivative is equal to
P _ P
(5.15) 2> Nz =T Nk — Ry =2 (\jz; — T, A\hy)
j=1 j=1

Application of the delta method with the functionain the basic result (5.11) yields
. . P
(5.16) V(X X)) = ()} —a 2 Ny — NG
j=1

According to (5.12) we have
(5.17) NG =46 (0,055),

and because of the independence of@hét follows that
p

(5.18) 2 (N =T 0Gy) =a N(0,72),

J=1

13



Whererg is defined in (5.8). Exploiting the consistency in (5.14) pineof can be concluded in much the same way as
that of Theorem 4.1. Just as in that theorem we need herez;%hato at the alternative considered in order to ensure

consistency.

6 Hilbert space representations of projective shapes of prar curves

A nonsingular matrixA = (a/); j—o....m defines a projective transformationli” given by

(6.1) (' y™) = flat, . 2™)
- mogiyt
yj = 7%3—(;0;1 ,V_] = 1, ., m

Two configurations of points ifR™ have the same thgrojective shapdf they differ by a projective transformation

of R™. Unlike similarities or affine transformations, proje&itransformations do not have a group structure under
composition, since the domain of definition of a projectikensformation depends on the transformation, and the
maximal domain of a composition has to be restricted acogiyli To avoid such unwanted situations, rather than
considering projective shapes of configuration®ifi, one may consider configurations in the real projective space

RP™, with the projective general linear group action that is diésd below. We recall that the real projective space

in m dimensionsRP™, is the set of axes going through the origin®f+1. If u = (u?,...,u™*t) € R™+1\{0},
then
(6.2) [ = [u' cw? o u™ ) = {u, A #£ 0}

is a( projective ) poinin RP™; the notatiori-] for the projective points will be used throughout. The af§paceR™

is canonically embedded iRP™ via
(6.3) (..., 2™) — [zt 2™ ]

Via this embedding, the pseudogroup action of projecti@egformations (6.1) oR™ can be regarded as a restriction
of the action of therojective general linear grouf?G L(m) onRP™; this group and its action oRP™ are defined

in terms of the natural action 6fL(m + 1) onR™*! as defined bellow. To each mattike GI(m + 1) we associate

14



an elementy € PGL(m) whose action ofR P™ is given by

(6.4) [w'] = a((u]) = [Au].

By way of example, let us consider the g8§(k, m) of k projective points(p1, ...,pr),k > m + 2 for which
(p1, .-, Pm+2) IS @ projective frame iR P™. PG L(m) acts diagonally oy (k, m) by a(p1, ..., pr) = (a(p1), ..., a(pr)).
PYF | space of orbits of k-tuples iR P™ under this action, is thprojective shape spaa# k-ads in general position
considered in Mardia and Patrangenaru (2005).

The projective shape of a configuration made of a projectamé plus an infinite set of projective points can be
also represented as a space of configuratiof®ifi*. Recall that grojective framén RP™ is an orderedm + 2)—
tuple of pointst = (p1,...,pm+2), @anym + 1 of which are in general position. Thstandardprojective frame
7o is the projective frame associated with the standard vewdsis ofR™*!, in this casep; = [e1],...,Pmi1 =
[em+1], Pmt2 = [e1 + -+ - + em+1]- The action of a projective transformation is uniquely detimed by its action on
a projective frame. Given a poipte RP™ its projective coordinate™ w.r.t. a projective frame = (p1, ..., Pm+2),
is the image op, under the projective transformation that taket® my. The casen = 2 is illustrated in Figures 1 and

2.

Example of projective frame in plane ( the four round dots )

0.9

*
L]
0.8 4 . Ll

0.7

0.6

vl

054

044

0.3 4

T T T T T
0.5 1.0 15 2.0 23
®1

Figure 1: Affine view of a projective frame in 2D.
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Projective coordinates of point w.r.t. projective frame

104 » " groups

e
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0.5+

004 & ]

y2

0.5

-1.04

-1.54

T T T T T T T T T T
0.0 0.2 04 086 0.8 1.0 1.2 1.4 18 18
2

Figure 2: Affine view of projective coordinates of a point.

In Figure 1 the round dots yield a projective frame and in Fégtithe square dot gives an affine representative of
the projective coordinates of the square dot in Figure 1 véfipect to that frame.

Our approach to projective shapes of planar closed cursémded on the idea above of registration with respect
to a projective frame. To keep things simple, assume thatlditian to a closed planar curve, four labelled control
points, that yield a projective frame are also known. Suchrdiguration will be calledramed closed curve Two
framed closed curves have the same projective shape if tfieyloy a planar projective transformation that brings the

projective frame in the first configuration into coincidendgth the projective frame in the second configuration.

Remark 3. In the context of scene recognition, the frame assumptioraiaral, given that a scene pictured may
contain more information than just a curved contour. Sudbrination may include feature landmarks that can be

spotted in differentimages of the scene.

Assumery, ..., T, 12 are points in general position and= (z1,...,2™) is an arbitrary point irR™. Note that
in our notation, the superscripts are reserved for the compis of a point whereas the subscripts are for the labels
of points. In order to determine the projective coordinates = [« : 1] w.r.t. the projective frame associated with
(71, .oy Tr2) We seti = (z1, ..., 2™, 1)T and consider thém + 1) x (m + 1) matrixU,, = [#1, ..., Tm11], Whose

jthcolumnisz; = (z;,1)%,5 =1,...,m + 1. We define an intermediate system of homogeneous coordinate
(6.5) v(z) =U %

16



and writev(z) = (v(z),..., o™ (2))T. Next we set

- V@) W)
J = =
(6.6) 2 (x) Uj(xnv+2)/Hlﬂ(xnr+2)H'J 1,...,m+1
so that the last point,,, . » is now used. The projective coordinate(syaifre given by the poirjt! (z) : .... : z™1(z)],

where(z1(x))? + .... + (2™ (2))? = 1. If z™T1(z) # 0, the affine representative of this point with respect to the

last coordinate i§¢* (z), ..., £™(x)), where

(6.7) ¢(a) = (@) =1

zmtl(x
Assumer(t),t € I is a curve inR™, such thatvt € I,2™"1(x(t)) # 0. Such framed curves will be said to be in a

convenient positiorelative to the projective frame associated witiz1, ..., ,,42).

Theorem 6.1. There is a one to one correspondence between the set oftrejgltapes of framed curves$t),t € 1
in a convenient position relative ta and curves ilR™. In this correspondence, framed closed curves in a convenien

position relative tar correspond to closed curvesii®.

We will use the representation Theorem 6.1 for projectiapsis of closed curves in the projective space that avoid
a hyperplane; they correspond to closed curves in the Ratlidgpace. In particular in two dimensions we consider
framed closed curves in the planar projective plane, amgidi projective line. In particular if we assume that the
(x(t),y(t)),t € [0,1] is a closed planar curve, thén(t) : y(¢) : 1],¢ € [0,1] is such a projective curve, and using a
projective framer we associate with this curve the affine representdtive, (t)),t € [0, 1] of its curve of projective
coordinatesz(t) : y(t) : 1]™, which yield another planar curve. If two curves are obtdifiem a planar curve viewed
from different perspective points, then the associatedaffurves are the same. This affine representative of the

projective curve of a ( closed ) curve is used in this papereklee are concerned with recognition of a closed curve

(6.8) V() = (€(),n(t)), t € [0,1],(£(0),7(0)) = (£(1),n(1))

that is observed with random errors

(6.9) L(t) = (£(t),n(1) + (X (1), € (1)), t € [0,1],
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wheree™ (t) and €Y (t) are stochastic independent error procesge’s(0), ¥ (0)) = (eX(1),€¥ (1)), so that the
observed curve can, for instance be considered as a ranéomeel in the Hilbert spadé = L?(S*, R?).

The distance il = L?(S*,R?) induces a distance on the space of projective shapes ofrptosed framed
curves in convenient position, and the Fréchet mean of dorarclosed curve in this space corresponds to the mean
of the correspondingfl-valued random variable. As an application of the resultsiold in Section 4, we consider
the null neighborhood hypothesifs : 1 € vy + Bs, for somed > 0; in this case the linear subspatgis the trivial
subspace, which is the infinite dimensional analog of thesatal null hypothesi#ly : © = 7. The constant > 0
in (4.4) is to be determined from the data, being estimatenh ft4.24), as shown in a concrete example in the next

section.

7 The one sample problem for mean projective shapes of planawurves

Motivated by high level image analysis, projective shapalysis of a ( possibly infinite ) random configuration of
points inR™ is concerned with understanding this configuration modubgegtive transformations. As described in
Ma et al. (2005) well-focused digital camera images may Iseragd to have come from an ideal pinhole camera.
Thereal projective plan&R P2 is a geometric model of a pinhole camera view. Two digitalgesof the same planar
scene, taken by ideal pinhole cameras, differ by a compasititwo central projections iR from an observed plane
to a receiving plane ( retina, film, etc. ) Such a map, turnstolte a projective transformation R>. Therefore,

as far as pinhole camera acquired images is concernedcfivejshape is "the” shape of interest in high level image
analysis.

Scientists are looking for new computational algorithmsl|uding statistical methods, to deal with digital imaging
libraries. Images of approximately planar scenes are vamyneon, and their need being analyzed in their full com-
plexity. Until today only finite configurations were analgzalthough the actual scenes are more complex, including
curves, and regions bounded by these curves. A toy exampglgcbfimages, from the so called “BigFoot” data set is

displayed below. Such data leads us to considering the sjigeejective shapes of closed planar curves.

Remark 4. The similarity shape of a planar curvis the orbit of the curve (viewed as a possibly re-paramegdri
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Figure 3: Ten views of a scene including a natural projediiaee (the four points) and a curve (the edge of the

footprint).

curve ) under the group of direct similarities of the planbeBpace of closed similarity shapes of planar curves is a
Hilbert ( infinite dimensional ) manifold . Certain statcstl aspects have been studied by Srivastava et. al. (2085) an
by Klassen et. al. (2004). A general space of projective shapplanar curves, can be also defined in such a general

context, nevertheless a statistical analysis on such a&Hifbanifold like object goes beyond our interest.

Our approach to projective shape analysis based on theidi&H#ert space representation of the projective shape
with respect to a projective frame is summarized in theoreln Bo identify the mean projective shape of a curves,
one may now use the statistical testing method for functidat, described in section 4.

In practice two curves will not have exactly the same shapen & they should agree according to some theory.
In this case therefore, using the neighborhood hypoth&tsisng the approximate equality of the shapes of the curves
seems appropriate.

The implementation of the estimation techniques describd®hige et. al. (2005), although straightforward, is
computationally intensive, given the large number of mxah a curve, and will be performed in subsequent work.
The estimation technique in this section is applied to thigf@t” data set and a new image not necessarily belonging

to this data set.

7.1 Image processing and shape registration using the prajéve frame

Image processing was performed in the Image Processinggdo@lPT), MATLAB 7.1. and Microsoft©Paint 5.1.
The end result of processing the first “Bigfoot” image showirigure 4 is shown in Figure 5.

In generating this curve we first crop the original image tmoge as much of the noise from image as possible.
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Figure 4: First “Bigfoot” Image.

Figure 5: The Processed Footprint Image.

In this case the “noise” is the grass and the edge of the talkxt, using the projective coordinates w.r.t. the
selected projective frame we register the cropped imagéer Aggistration, the Sobel method of edge detection is
used to extract the edge of the footprint and the landmarlkest,the landmarks and extraneous marks are removed
in Microsoft ©Paint 5.1 and the image is recropped. Finally, to define aepise linear projective curve, pixel
locations on curve image are put in clockwise order using MAB M-file sort_coord pixel.m. This shareware M-file
was written by Alister Fong and is available for downloadnfrthe MATLAB Central File Exchange website. A
sequence of pictures representing the steps in transfgriménimage in Figure 4 into the projective curve in Figure 5

are displayed in Figure 6.

Figure 6: Registered curve using the projective frame mrtaseoriginal images.
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Note the ordering of pixel locations in effect rotates thevetimage by 90 since the first point on the projective
curve corresponds to the first pixel location (moving from to bottom and from left to right) lying on the curve

image. The ten “Bigfoot” projective curves and their samplgan curve are shown in the figure below.

300

Figure 7: Empirical sample mean of the observations fronfiteegroup.

7.2 Hypothesis testing

One of the classical problems in pattern recognition, isideatification of a scene for which prior information is
known. As a typical example consider that a number of imagespanar scene are known, and we acquire a new
image that is apparently of the same scene. In our examm@ekrtbwn data are displayed in Figure 3 and the new

image is shown below in Figure 8.
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Figure 8: View of a second unknown
scene including a natural projective

frame and a curve.

For this new contout, we consider the null hypothest, : 1 € vo + Bs, for somed > 0, which is equivalent
to (4.4). Testing based upon the asymptotic pivot4ir24), with o = 0.05, yields aé cutoff value 0f312.39. This
value represents the largéstalue for which we would reject the null hypothesis.

This means that if we choose< 312.39, we would then reject the equality of the mean projectiveoshat the
first population of curves with the projective shape of theosel curve, and thus conclude that the mean of the first
“Bigfoot” planar scene is significantly different from thegjective shape of the curve in Figure 8.

For a visual understanding of this significant differenag can compare the curves in Figure 9. Here the mean

curve of the “Bigfoot” sample is plotted along with the neweige curve.

Figure 9: Plot of the mean “Bigfoot” curve and the new imageveu

Remark 5. The sample size was small, and we could have used nonpaiabutstrap, nevertheless the errors are
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quite insignificant, since they depend only on the pose ostleme, which is essentially flat. Thus even for our fairly

small sample, the result is reliable.

Remark 6. Description of projective shape spaces, even of finite cardigpns is a complicated task. Projective
shape analysis, including distribution parametric andparametric approaches of projective shape can be pertbrme
in the context of multivariate axial data analysis ( Mardia &atrangenaru (2005)). For recent results in this area see

also Lee et. al.(2004), Sughatadasa (2006) and Liu et. @D.7(2
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