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1 Introduction

Direct generalization of multivariate techniques to the realm of functional data analysis is not in general feasible,

and in this paper some procedures for the one-and multi-sample problem will be modified so as to become suitable

for functional data. For an extensive discussion of functional data see the monograph by Ramsay and Silverman

(2005). In this paper, the problem of identifying the projective shape of a planar curve will be considered as a practical

application.

The union-intersection principle of Roy and Bose (1953) provides us with a projection pursuit type technique

to construct multivariate procedures from a family of univariate procedures. A case in point is Hotelling’s (1931)

multivariateT 2-statistic that can be constructed from a family of univariate student statistics. It is easy to see that

further extension to infinite dimensional Hilbert spaces along similar lines breaks down, in particular because the rank

of the sample covariance operator cannot exceed the finite sample size and consequently cannot be injective, not even

when the population covariance operator is one-to-one.

Several alternatives could be considered. One possibilityis projection of the data onto a Euclidean subspace of

sufficiently high dimension and perform a Hotelling test with these finite dimensional data. This includes spectral-cut-

off regularization of the inverse of the sample covariance operator as a special case. Another option is a Moore-Penrose

type of regularization of this operator.

For the application to shape analysis to be considered in this paper, however, yet another modification seems more

appropriate. This modification yields at once more realistic hypothesis and a mathematically tractable procedure. In

practice “equality of shapes” will almost always refer to a satisfactory visual resemblance rather than exact corre-

spondence in every minute detail. Therefore in this paper the usual hypothesis will be replaced with a “neighborhood

hypothesis”.

This kind of modified hypothesis has a long history and has been developed in different situations. It has been,

e.g., proposed by Hodges and Lehmann (1954) for testing whether multinomial cell probabilities are approximately

equal. Dette and Munk (1998) have extended this approach forthe purpose of validating a model in a nonparametric

regression framework. For methodological aspects and a more recent discussion we refer to Goutis and Robert (1998),
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Dette and Munk (2003), and Liu and Lindsay (2005). The underlying idea is that the hypothesis is often formulated on

the basis of theoretical considerations that will never cover reality completely. Hence in practice such a hypothesis will

always be rejected if the sample size is large enough. It is therefore more realistic to test a somewhat larger hypothesis

that also includes parameters in a neighborhood of the original one. See also Berger and Delampady (1987) who

employ the term “precise hypothesis” instead of “neighborhood hypothesis”, whereas Liu and Lindsay (2005) coined

the phrase “tubular models”. Mostly related to the present approach is the work of Dette and Munk (1998) and, Munk

and Dette (1998) who considerL2-neighborhood hypotheses in nonparametric regression models.

A further advantage is that neighborhood hypotheses often lead to simpler asymptotic analyses. This in turn

makes it possible to interchange the role of a neighborhood hypothesis and its alternative without complicating the

testing procedure. This is particularly relevant for goodness-of-fit type tests, where traditionally the choice of thenull

hypothesis is usually dictated by mathematical limitations rather than statistical considerations. Accepting a model

after a goodness of fit test always leaves the statistician inthe ambiguous situation whether the model has not been

rejected by other reasons, e.g. because of lack of data, an inefficient goodness of fit test at hand, or because of a large

variability of the data. In contrast, the present approach allows one to validate a hypotheses at a given levelα, instead

of accepting a model without any further evidence in favor ofthe model. In fact, this is equivalent to reporting on a

confidence interval for a certain distance measure between models.

There is an objective, data-driven method to select the parameterδ, say, that determines the size of the neighbor-

hood hypothesis. Given any levelα ∈ (0, 1) for the test, one might determine the smallest valueδ̂ (α) for which the

neighborhood hypothesis is not rejected. It should be realized that modification of Hotelling’s test will require a more

or less arbitrary regularization parameter.

The paper is organized as follows. In Section 2 we briefly review some basic concepts for Hilbert space valued

random variables, and in Section 3 we briefly discuss the difficulties with studentization in infinite dimensional Hilbert

spaces. Sections 4 and 5 are devoted respectively to a suitably formulated version of the functional one-and multi-

sample problem. The theory is applied to the recognition of the projective shape of a planar curve in Sections 6 and

7.
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2 Random elements in Hilbert spaces

Let (Ω,W ,P) be an underlying probability space,H a separable Hilbert space over the real numbers with inner product

〈•, •〉 and norm|| • ||, andBH theσ-field generated by the open subsets ofH. A random element inH is a mapping

X : Ω → H which is(W ,BH ) - measurable. Let us writePX = P for the induced probability measure on(H,BH).

The probability distributionP is uniquely determined by its characteristic functional

(2.1) P̃ (x) = E ei〈x,X〉 =

∫

H

ei〈x,y〉dP (y), x ∈ H.

Assuming that

(2.2) E ||X ||2 <∞,

the Riesz representation theorem ensures the existence of avectorµ ∈ H and an operator̃Σ : H → H, uniquely

determined by the properties

(2.3) E 〈x,X〉 = 〈x, µ〉 ∀ x ∈ H,

(2.4) E 〈x,X − µ〉 〈y,X − µ〉 =
〈

x, Σ̃y
〉

∀ x, y ∈ H.

The operator̃Σ is linear, Hermitian, semi-definite positive; it has, moreover, finite trace and is consequently compact.

Any operator with these properties will be referred to as a covariance operator, and any covariance operator is induced

by some random element.

It follows from the Minlos-Sazanov theorem that forµ ∈ H andΣ̃ : H → H a covariance operator, the functional

(2.5) ϕ(x) = ei〈x,µ〉− 1

2
〈x,Σ̃x〉, x ∈ H,

is the characteristic functional of a probability measure on H, which is called the Gaussian measure with parameters

µ andΣ̃ and will be denoted byG(µ, Σ̃). The parameters represent respectively the mean and covariance operator of

the distribution.

Let H
p be the real, separable Hilbert space of allp-tuplesx = (x1, . . . , xp)

∗, xj ∈ H for j = 1, . . . , p. The inner

product inH
p is given by〈x, y〉p =

∑p
j=1

〈xj , yj〉, for x, y ∈ H
p.
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3 Why studentization breaks down inH

LetX1, . . . , Xn be independent copies of a random elementX in H with

(3.1) E ||X ||4 <∞,

meanµ ∈ H, and covariance operatorΣ̃ : H → H. Estimators ofµ andΣ̃ are respectively

(3.2) X =
1

n

n
∑

i=1

Xi, S =
1

n

n
∑

i=1

(Xi −X) ⊗ (Xi −X),

where fora, b ∈ H the operatora⊗ b : H → H is defined by(a⊗ b)(x) = 〈b, x〉 a, x ∈ H.

Immediate extension of the union-intersection principle would suggest to use the Hotelling-type test statistic

(3.3) T 2
n = n sup

u∈H:||u||=1

〈

X,u
〉2

〈u, Su〉 ,

for testing the classical hypothesis thatµ = 0. The studentization, however, now in general causes a problem since

under the assumption that

(3.4) P{X1, . . . , Xn are linearly independent} = 1,

it will be shown that

(3.5) P{T 2
n = ∞} = 1,

even wheñΣ is supposed to be injective.

To prove (3.5) let us first observe that (3.4) entails thatP{X ∈ linear span ofX1 −X, . . . ,Xn −X} = 0. For if

X were an element of the linear span there would exist scalarsα1, . . . , αn such thatX =
∑n

i=1
αi(Xi−X). Because

of the linear independence of theXi this means that the vectorα = (α1, . . . , αn)∗ ∈ R
n must satisfy

(3.6) (In − 1

n
1n1∗n)α = 1n,

whereIn is then × n identity matrix and1n a column ofn numbers1. This is impossible because the matrix on the

left in (3.6) is the projection onto the orthogonal complement in R
n of the line through1n. Hence with probability1
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there existX1, X2 such thatX = X1 +X2, and

(3.7)



















X1 6= 0, X1 ⊥ Xi −X for i = 1, . . . , n,

X2 ∈ linear span ofX1 −X, . . . ,Xn −X.

Choosingu = X1 we have on the one hand that
〈

X,X1

〉2
= ||X1||4 > 0, and on the other hand we haveSX1 = n−1.

∑n
i=1

〈

Xi −X,X1

〉

(Xi −X) = 0, so that (3.5) follows.

A possible modification of this statistic is obtained by replacingS−1 with a regularized inverse of Moore-Penrose

type and by considering

sup
u∈H:||u||=1

〈

X,u
〉2

〈

u, (αI + S)
−1
u
〉

= largest eigenvalue of(αI + S)−1/2
(

X ⊗X
)

(αI + S)−1/2 ,

whereI is the identity operator. We conjecture that perturbation theory for compact operators in Hilbert spaces leads to

the asymptotic distribution of(αI + S)
−1/2 and subsequently to the asymptotic distribution of this largest eigenvalue,

in the same vein as this kind of result can be obtained for matrices. See, for instance, Watson (1982) for sample

covariance matrices and Ruymgaart and Yang (1997) for functions of sample covariance matrices. Watson’s (1982)

result has been obtained for sample covariance operators onHilbert spaces by Dauxois et al. (1982). As has been

explained in the introduction, however, here we prefer to pursue the approach of modifying the hypothesis.

4 The one-sample problem inH

Let X1, . . . , Xn be as defined in Section 3 and suppose we want to test hypotheses regardingµ. This modified

hypothesis may make more sense from an applied point of view and leads, moreover, to simpler asymptotics. To

describe these hypotheses suppose that

(4.1) M ⊂ H is a linear subspace of dimensionm ∈ N0,
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and letδ > 0 be an arbitrary given number. Let us denote the orthogonal projection ontoM by Π, and ontoM⊥ by

Π⊥. It is useful to observe that

(4.2)
〈

Π⊥x,Π⊥y
〉

=
〈

x,Π⊥y
〉

∀ x, y ∈ H.

Furthermore let us introduce the functional

(4.3) ϕM (x) = ||x−M ||2 =
∥

∥Π⊥x
∥

∥

2
, x ∈ H,

representing the squared distance of a pointx ∈ H toM (finite dimensional subspaces are closed).

The “neighborhood hypothesis” to be tested is

(4.4) Hδ : µ ∈Mδ ∪Bδ, for someδ > 0,

whereMδ = {x ∈ H : ϕM (x) < δ2} andBδ = {x ∈ H : ϕM (x) = δ2,
〈

Π⊥x, Σ̃Π⊥x
〉

> 0}. The alternative to

(4.4) is

(4.5) Aδ : µ ∈M c
δ ∩Bc

δ.

The usual hypothesis would have been:µ ∈M . It should be noted thatHδ contains{ϕM < δ2} and thatAδ contains

{ϕM > δ2}. These are the important components of the hypotheses; the setBδ is added to the null hypothesis by

mathematical convenience, i.e. because the asymptotic power on that set is preciselyα, as will be seen below.

For testing hypotheses like (4.4) see Dette and Munk (1998).These authors also observe that testing

(4.6) H′
δ : µ ∈ (M ′

δ)
c ∪Bδ versusA′

δ : µ ∈M ′
δ ∩Bc

δ ,

whereM ′
δ = {x ∈ H : ϕM (x) > δ2}, can be done in essentially the same manner; see also Remark 1. This may

be very useful in practice. When, for instance,M is the subspace of all polynomials of degree at mostm − 1, it is

more appropriate to test (4.6) if one wants to establish thatthe mean value function is close to such a polynomial. In

the traditional set-up interchanging null hypothesis and alternative would be virtually impossible due to mathematical

difficulties, just as this is the case in the classical goodness-of-fit problems.
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The reason that it is mathematically easier to deal with the present hypotheses is that the test statistic, which is

based on

(4.7) ϕM (X) − δ2,

has a simple normal distribution in the limit for large sample sizes.

Lemma 1. We have

(4.8)
√
n{ϕM (X) − ϕM (µ)} →d N (0, v2), asn→ ∞,

where

(4.9) v2 = 4
〈

Π⊥µ, Σ̃Π⊥µ
〉

.

If v2 = 0 the limiting distributionN (0, 0) is to be interpreted as the distribution which is degenerateat0.

Proof. The central limit theorem forH-valued random variables yields the existence of aG(0, Σ̃) random elementG,

such that

(4.10)
√
n(X − µ) →d G, asn→ ∞,

in (H,BH). It is easy to see thatϕM : H → R is Fréchet differentiable at anyµ ∈ H, tangentially toH, with derivative

the linear functional

(4.11) 2
〈

Π⊥µ, h
〉

, h ∈ H.

According to the “functional delta method” we may conclude

(4.12)
√
n{ϕM (X) − ϕM (µ)} →d 2

〈

Π⊥µ,G
〉

.

The random variable on the right in (4.12) is normal, becauseG is Gaussian, and clearly its mean is0. Therefore its

variance equals

(4.13) E
〈

Π⊥µ,G
〉 〈

Π⊥µ,G
〉

=
〈

Π⊥µ, Σ̃Π⊥µ
〉

,

according to the definition of̃Σ (cf.(2.4)).
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Lemma 2. We have

(4.14) v̂2
n = 4

〈

Π⊥X,SΠ⊥X
〉

→p v
2, asn→ ∞.

Proof. By simple algebra we find

〈

Π⊥X,SΠ⊥X
〉

=

〈

Π⊥X,
1

n

n
∑

i=1

〈

Xi −X,Π⊥X
〉

(Xi −X)

〉

(4.15)

=
1

n

n
∑

i=1

〈

Xi −X,Π⊥X
〉2

=
1

n

n
∑

i=1

{
〈

Xi − µ,Π⊥µ
〉

+
〈

Xi − µ,Π⊥(X − µ)
〉

+
〈

µ−X,Π⊥µ
〉

+
〈

µ−X,Π⊥(X − µ)
〉

}2.

According to the weak law of large numbers and the definition of covariance operator we have

1

n

n
∑

i=1

〈

Xi − µ,Π⊥µ
〉2 →p E

〈

X − µ,Π⊥µ
〉2

=
〈

Π⊥µ, Σ̃Π⊥µ
〉

, asn→ ∞.

All the other terms tend to0 in probability. As an example consider

〈

µ−X,Π⊥µ
〉2 ≤ ||X − µ||2||Π⊥µ||2 →p 0,

asn→ ∞. The lemma follows from straightforward combination of the above.

For 0 < α < 1 let ξ1−α denote the quantile of order1 − α of the standard normal distribution. Focusing on

the testing problem (4.4), (4.5) let us decide to reject the null hypothesis when
√
n{ϕM (X) − δ2}/v̂ > ξ1−α. The

corresponding power function is then

(4.16) βn(µ) = P{√n{ϕM (X) − δ2}/v̂ > ξ1−α},

whenµ ∈ H is the true parameter.
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Theorem 4.1:Asymptotics under the null hypothesis and fixed alternatives. The power function in (4.16) satisfies

(4.17) lim
n→∞

βn(µ) =







































0, ϕM (µ) < δ2,

α, ϕM (µ) = δ2, v2 > 0,

1, ϕM (µ) > δ2.

Hence the test has asymptotic sizeα, and is consistent against the alternativesµ : ϕM (µ) > δ2.

Proof. If v2 > 0 it is immediate from Lemma’s 1 and 2 that
√
n{ϕM (X) − δ2}/v̂ −→d N (0, 1). The result now

follows in the usual way by observing that
√
n{δ2 − ϕM (µ)} tends to either∞ (whenϕM (µ) < δ2), to 0 (when

ϕM (µ) = δ2) or to−∞ (whenϕM (µ) > δ2). If v2 = 0 we still have that
√
n{ϕM (X) − δ2}/v̂ tends in probability

to∞ (whenϕM (µ) < δ2) or to−∞ (whenϕM (µ) > δ2).

To describe the sampling situation under local alternatives (including the null hypothesis) we assume now that

(4.18) X1, . . . , Xn are i.i.d.(µn,t, Σ̃),

whereΣ̃ is as above and

(4.19) µn,t = µ+
t√
n
γ, t ≥ 0,

for some (cf. (4.4) and below)

(4.20) µ ∈ Bδ, γ ∈ H :
〈

µ,Π⊥γ
〉

> 0.

Under these assumptions it follows thatµn,0 = µ satisfiesHδ, andµn,t satisfiesAδ for eacht > 0. Let Φ denote the

standard normal c.d.f.

Theorem 4.2:Asymptotic power. We have

(4.21) lim
n→∞

βn(µn,t) = 1 − Φ

(

ξ1−α − 2t

〈

µ,Π⊥γ
〉

v

)

, t > 0.
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Proof. We may writeXi = X ′
i + (t/

√
n)γ, where theX ′

i are i.i.d. (µ, Σ̃). It is easy to see from this representation

that we still have

(4.22) v̂2
n −→p v

2 > 0, asn→ ∞ ∀ t > 0.

Exploiting once more the Fréchet differentiability ofϕM (see (4.11)) we obtain

(4.23)

√
n

{

ϕM (X) − δ2

v̂

}

=
√
n

{

ϕM (X
′
) − ϕ(µ)

v̂

}

+2t

{

〈

Π⊥µ,Π⊥γ
〉

v̂

}

+op(1) →d N
(

2t

〈

µ,Π⊥γ
〉

v
, 1

)

, asn→ ∞,

and the result follows.

Remark 1. To corroborate the remark about interchanging null hypothesis and alternative made at the beginning of

this section, just note that an asymptotic sizeα test for testingH′
δ versusA′

δ in (4.6) is obtained by rejectingH′
δ when

(4.24)
√
n
{

ϕM (X) − δ2
}

/v̂ < ξα, α ∈ (0, 1).

This allows to assess the approximate validity of the model within the neighborhoodδ. Of course, from (4.24) we

immediately get a confidence interval forδ as well.

Remark 2. The expression in (4.23) remains valid fort = 0 or γ = 0. In either case the corresponding mean satisfies

the null hypothesis assumption and the limit in (4.23) equalsα.

5 The multi-sample problem inH

LetXj1, . . . , Xjnj
be i.i.d. with meanµj and covariance operator̃Σj , wherenj ∈ N, s.t.

∑

j nj = n, and let these

random elements satisfy the moment condition in (3.1): all of this for j = 1, . . . , p. Moreover thesep samples are

supposed to be mutually independent, and their sample sizessatisfy

(5.1)



















nj

n = λj + o
(

1√
n

)

, asn = n1 + · · · + np → ∞,

λj ∈ (0, 1), j = 1, . . . , p.

Let us define

(5.2) Xj =
1

nj

nj
∑

i=1

Xji, X =
1

p

p
∑

j=1

nj

n
Xj , j = 1, . . . , p.
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Furthermore, let the functionalsψn : H
p → R be given by

(5.3) ψn(x1, . . . , xp) =

p
∑

j=1

∣

∣

∣

∣

∣

∣

nj

n
xj − xn

∣

∣

∣

∣

∣

∣

2

wherex1, . . . , xp ∈ H andxn = 1

p

∑p
j=1

nj

n xj . Definingψ : H
p → R by

(5.4) ψ(x1, . . . , xp) =

p
∑

j=1

||λjxj − x||2 ,

wherex = 1

p

∑p
j=1

λjxj , it is readily verified that

(5.5)
√
n{ψn(x1, . . . , xp) − ψ(x1, . . . , xp)} → 0, asn→ ∞,

provided that condition (5.1) is fulfilled.

The neighborhood hypothesis in this model can be loosely formulated as “approximate equality of the means”.

More precisely the null hypothesis

(5.6) Hp,δ : µ = (µ1, . . . , µp)
∗ ∈Mp,δ ∪Bp,δ,

whereMp,δ = {x ∈ H
p : ψ(x) < δ2} andBp,δ = {x ∈ H

p : ψ(x) = δ2,
p
∑

j=1

λj

〈

λjxj − x, Σ̃j(λjxj − x)
〉

> 0},

will be tested against the alternative

(5.7) Ap,δ : µ = (µ1, . . . , µp)
∗ ∈M c

p,δ ∩Bc
p,δ.

Let us introduce some further notation and set

(5.8) τ2
p = 4

p
∑

j=1

λj

〈

λjµj − µ, Σ̃j(λjµj − µ)
〉

, µ =
1

p

p
∑

j=1

λjµj .

Writing Sj for the sample covariance operator of thej-th sample (cf.(3.2)) the quantity in (5.8) will be estimated by

(5.9) τ̂2
n,p = 4

p
∑

j=1

λj

〈

λjXj −X,Sj(λjXj −X)
〉

.

Theorem 5.1:The test that rejectsHp,δ for

(5.10)
√
n
{

ψn(X1, . . . , Xp) − ψn(µ1, . . . , µp)
}

/τ̂p,n > ξ1−α, 0 < α < 1,

has asymptotic sizeα, and is consistent against fixed alternativesµ = (µ1, . . . , µp)
∗ with ψ(µ) > δ2.
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Proof: Because thep samples are independent the central limit theorem in (4.10)yields

(5.11)
√
n





X1−µ1

...
Xp−µp



→d

(

G1

...
Gp

)

,

whereG1, . . . , Gp are independent Gaussian random elements inH, and

(5.12) Gj =d G
(

0,
1

λj
Σ̃j

)

.

It follows from (5.5) that

(5.13)
√
n[ψn(X1, . . . , Xp) − ψn(µ1, . . . , µp) − {ψ(X1, . . . , Xp) − ψ(µ1, . . . , µp)}] = op(1).

Moreover, a slight modification of Lemma 2 yields that
〈

Xj −X,Sj(Xj −X)
〉

→p

〈

µj − µ,
∑

j(µj − µ)
〉

and

hence

(5.14) τ̂2
n,p →p τ

2
p .

This means that the statistic on the left in (5.10) and the oneobtained by replacingψn with ψ in that expression

will exhibit the same first order asymptotics. The proof willbe continued with the latter, simpler version. A simple

calculation shows thatψ : H
p → R is Fréchet differentiable at anyx ∈ H

p, tangentially toH
p. Writing h =

1

p

∑p
j=1

λjhj , for anyh1, . . . , hp ∈ H, its derivative is equal to

(5.15) 2

p
∑

j=1

〈

λjxj − x, λjhj − h
〉

= 2

p
∑

j=1

〈λjxj − x, λjhj〉 .

Application of the delta method with the functionalψ in the basic result (5.11) yields

(5.16)
√
n{ψ(X1, . . . , Xp) − ψ(µ1, . . . , µp)} →d 2

p
∑

j=1

〈λjµj − µ, λjGj〉 .

According to (5.12) we have

(5.17) λjGj =d G
(

0, λjΣ̃j

)

,

and because of the independence of theGj it follows that

(5.18) 2

p
∑

j=1

〈λjµj − µ, λjGj〉 =d N (0, τ2
p ),
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whereτ2
p is defined in (5.8). Exploiting the consistency in (5.14) theproof can be concluded in much the same way as

that of Theorem 4.1. Just as in that theorem we need here thatτ2
p > 0 at the alternative considered in order to ensure

consistency.

6 Hilbert space representations of projective shapes of planar curves

A nonsingular matrixA = (aj
i )i,j=0,...,m defines a projective transformation inR

m given by

(y1, . . . , ym) = f(x1, . . . , xm)(6.1)

yj =

∑m
i=0

aj
ix

i

∑

i a
0
ix

i
, ∀j = 1, ...,m

Two configurations of points inRm have the same theprojective shapeif they differ by a projective transformation

of R
m. Unlike similarities or affine transformations, projective transformations do not have a group structure under

composition, since the domain of definition of a projective transformation depends on the transformation, and the

maximal domain of a composition has to be restricted accordingly. To avoid such unwanted situations, rather than

considering projective shapes of configurations inR
m, one may consider configurations in the real projective space

RPm, with the projective general linear group action that is described below. We recall that the real projective space

in m dimensions,RPm, is the set of axes going through the origin ofR
m+1. If u = (u1, . . . , um+1) ∈ R

m+1 \{0},

then

(6.2) [u] = [u1 : u2 : . . . : um+1] = {λu, λ 6= 0}

is a( projective ) pointin RPm; the notation[·] for the projective points will be used throughout. The affinespaceRm

is canonically embedded inRPm via

(6.3) (x1, . . . , xm) −→ [x1 : . . . : xm : 1]

Via this embedding, the pseudogroup action of projective transformations (6.1) onRm can be regarded as a restriction

of the action of theprojective general linear groupPGL(m) onRPm; this group and its action onRPm are defined

in terms of the natural action ofGL(m+ 1) onR
m+1 as defined bellow. To each matrixA ∈ Gl(m+ 1) we associate
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an elementα ∈ PGL(m) whose action onRPm is given by

(6.4) [u′] = α([u]) = [Au].

By way of example, let us consider the setG0(k,m) of k projective points(p1, ..., pk), k ≥ m + 2 for which

(p1, ..., pm+2) is a projective frame inRPm. PGL(m) acts diagonally onG0(k,m) byα(p1, ..., pk) = (α(p1), ..., α(pk)).

PΣk
m, space of orbits of k-tuples inRPm under this action, is theprojective shape spaceof k-ads in general position

considered in Mardia and Patrangenaru (2005).

The projective shape of a configuration made of a projective frame plus an infinite set of projective points can be

also represented as a space of configurations inRPm. Recall that aprojective framein RPm is an ordered(m+ 2)−

tuple of pointsπ = (p1, ..., pm+2), anym + 1 of which are in general position. Thestandardprojective frame

π0 is the projective frame associated with the standard vectorbasis ofRm+1, in this casep1 = [e1], . . . , pm+1 =

[em+1], pm+2 = [e1 + · · · + em+1]. The action of a projective transformation is uniquely determined by its action on

a projective frame. Given a pointp ∈ RPm its projective coordinatepπ w.r.t. a projective frameπ = (p1, ..., pm+2),

is the image ofp, under the projective transformation that takesπ to π0. The casem = 2 is illustrated in Figures 1 and

2.

Figure 1: Affine view of a projective frame in 2D.
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Figure 2: Affine view of projective coordinates of a point.

In Figure 1 the round dots yield a projective frame and in Figure 2 the square dot gives an affine representative of

the projective coordinates of the square dot in Figure 1 withrespect to that frame.

Our approach to projective shapes of planar closed curves, is based on the idea above of registration with respect

to a projective frame. To keep things simple, assume that in addition to a closed planar curve, four labelled control

points, that yield a projective frame are also known. Such a configuration will be calledframed closed curve. Two

framed closed curves have the same projective shape if they differ by a planar projective transformation that brings the

projective frame in the first configuration into coincidencewith the projective frame in the second configuration.

Remark 3. In the context of scene recognition, the frame assumption isnatural, given that a scene pictured may

contain more information than just a curved contour. Such information may include feature landmarks that can be

spotted in different images of the scene.

Assumex1, ..., xm+2 are points in general position andx = (x1, ..., xm) is an arbitrary point inRm. Note that

in our notation, the superscripts are reserved for the components of a point whereas the subscripts are for the labels

of points. In order to determine the projective coordinatesof p = [x : 1] w.r.t. the projective frame associated with

(x1, ..., xm+2) we setx̃ = (x1, ..., xm, 1)T and consider the(m+ 1) × (m+ 1) matrixUm = [x̃1, ..., x̃m+1], whose

jth column isx̃j = (xj , 1)T , j = 1, . . . ,m+ 1. We define an intermediate system of homogeneous coordinates

(6.5) v(x) = U−1
m x̃
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and writev(x) = (v1(x), . . . , vm+1(x))T . Next we set

(6.6) zj(x) =
vj(x)

vj(xm+2)
/|| vj(x)

vj(xm+2)
||, j = 1, ...,m+ 1

so that the last pointxm+2 is now used. The projective coordinate(s) ofx are given by the point[z1(x) : .... : zm+1(x)],

where(z1(x))2 + .... + (zm+1(x))2 = 1. If zm+1(x) 6= 0, the affine representative of this point with respect to the

last coordinate is(ξ1(x), ..., ξm(x)), where

(6.7) ξj(x) =
zj(x)

zm+1(x)
, j = 1, ...,m.

Assumex(t), t ∈ I is a curve inR
m, such that∀t ∈ I, zm+1(x(t)) 6= 0. Such framed curves will be said to be in a

convenient positionrelative to the projective frameπ associated with(x1, ..., xm+2).

Theorem 6.1. There is a one to one correspondence between the set of projective shapes of framed curvesx(t), t ∈ I

in a convenient position relative toπ, and curves inRm. In this correspondence, framed closed curves in a convenient

position relative toπ correspond to closed curves inR
m.

We will use the representation Theorem 6.1 for projective shapes of closed curves in the projective space that avoid

a hyperplane; they correspond to closed curves in the Euclidean space. In particular in two dimensions we consider

framed closed curves in the planar projective plane, avoiding a projective line. In particular if we assume that the

(x(t), y(t)), t ∈ [0, 1] is a closed planar curve, then[x(t) : y(t) : 1], t ∈ [0, 1] is such a projective curve, and using a

projective frameπ we associate with this curve the affine representative(ξ(t), η(t)), t ∈ [0, 1] of its curve of projective

coordinates[x(t) : y(t) : 1]π, which yield another planar curve. If two curves are obtained from a planar curve viewed

from different perspective points, then the associated affine curves are the same. This affine representative of the

projective curve of a ( closed ) curve is used in this paper. Here we are concerned with recognition of a closed curve

(6.8) γ(t) = (ξ(t), η(t)), t ∈ [0, 1], (ξ(0), η(0)) = (ξ(1), η(1))

that is observed with random errors

(6.9) Γ(t) = (ξ(t), η(t)) + (ǫX(t), ǫY (t)), t ∈ [0, 1],
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whereǫX(t) and ǫY (t) are stochastic independent error processes,(ǫX(0), ǫY (0)) = (ǫX(1), ǫY (1)), so that the

observed curve can, for instance be considered as a random element in the Hilbert spaceH = L2(S1,R2).

The distance inH = L2(S1,R2) induces a distance on the space of projective shapes of planar closed framed

curves in convenient position, and the Fréchet mean of a random closed curve in this space corresponds to the mean

of the correspondingH-valued random variable. As an application of the results obtained in Section 4, we consider

the null neighborhood hypothesisHδ : µ ∈ γ0 +Bδ, for someδ > 0; in this case the linear subspaceM is the trivial

subspace, which is the infinite dimensional analog of the classical null hypothesisH0 : µ = γ0. The constantδ > 0

in (4.4) is to be determined from the data, being estimated from (4.24), as shown in a concrete example in the next

section.

7 The one sample problem for mean projective shapes of planarcurves

Motivated by high level image analysis, projective shape analysis of a ( possibly infinite ) random configuration of

points inR
m is concerned with understanding this configuration modulo projective transformations. As described in

Ma et al. (2005) well-focused digital camera images may be assumed to have come from an ideal pinhole camera.

Thereal projective planeRP 2 is a geometric model of a pinhole camera view. Two digital images of the same planar

scene, taken by ideal pinhole cameras, differ by a composition of two central projections inR3 from an observed plane

to a receiving plane ( retina, film, etc. ) Such a map, turns outto be a projective transformation inR2. Therefore,

as far as pinhole camera acquired images is concerned, projective shape is ”the” shape of interest in high level image

analysis.

Scientists are looking for new computational algorithms, including statistical methods, to deal with digital imaging

libraries. Images of approximately planar scenes are very common, and their need being analyzed in their full com-

plexity. Until today only finite configurations were analyzed, although the actual scenes are more complex, including

curves, and regions bounded by these curves. A toy example ofsuch images, from the so called “BigFoot” data set is

displayed below. Such data leads us to considering the spaceof projective shapes of closed planar curves.

Remark 4. Thesimilarity shape of a planar curveis the orbit of the curve (viewed as a possibly re-parameterized
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Figure 3: Ten views of a scene including a natural projectiveframe (the four points) and a curve (the edge of the

footprint).

curve ) under the group of direct similarities of the plane. The space of closed similarity shapes of planar curves is a

Hilbert ( infinite dimensional ) manifold . Certain statistical aspects have been studied by Srivastava et. al. (2005) and

by Klassen et. al. (2004). A general space of projective shapes of planar curves, can be also defined in such a general

context, nevertheless a statistical analysis on such a Hilbert manifold like object goes beyond our interest.

Our approach to projective shape analysis based on the idea of Hilbert space representation of the projective shape

with respect to a projective frame is summarized in theorem 6.1. To identify the mean projective shape of a curves,

one may now use the statistical testing method for functional data, described in section 4.

In practice two curves will not have exactly the same shape, even if they should agree according to some theory.

In this case therefore, using the neighborhood hypothesis,stating the approximate equality of the shapes of the curves,

seems appropriate.

The implementation of the estimation techniques describedin Paige et. al. (2005), although straightforward, is

computationally intensive, given the large number of pixels on a curve, and will be performed in subsequent work.

The estimation technique in this section is applied to the “Bigfoot” data set and a new image not necessarily belonging

to this data set.

7.1 Image processing and shape registration using the projective frame

Image processing was performed in the Image Processing Toolbox (IPT), MATLAB 7.1. and Microsoftc©Paint 5.1.

The end result of processing the first “Bigfoot” image shown in Figure 4 is shown in Figure 5.

In generating this curve we first crop the original image to remove as much of the noise from image as possible.
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Figure 4: First “Bigfoot” Image.
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Figure 5: The Processed Footprint Image.

In this case the “noise” is the grass and the edge of the table.Next, using the projective coordinates w.r.t. the

selected projective frame we register the cropped image. After registration, the Sobel method of edge detection is

used to extract the edge of the footprint and the landmarks. Next, the landmarks and extraneous marks are removed

in Microsoft c©Paint 5.1 and the image is recropped. Finally, to define a piecewise linear projective curve, pixel

locations on curve image are put in clockwise order using MATLAB M-file sort coordpixel.m. This shareware M-file

was written by Alister Fong and is available for download from the MATLAB Central File Exchange website. A

sequence of pictures representing the steps in transforming the image in Figure 4 into the projective curve in Figure 5

are displayed in Figure 6.

Figure 6: Registered curve using the projective frame present in original images.
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Note the ordering of pixel locations in effect rotates the curve image by 90◦ since the first point on the projective

curve corresponds to the first pixel location (moving from top to bottom and from left to right) lying on the curve

image. The ten “Bigfoot” projective curves and their samplemean curve are shown in the figure below.
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Figure 7: Empirical sample mean of the observations from thefirst group.

7.2 Hypothesis testing

One of the classical problems in pattern recognition, is theidentification of a scene for which prior information is

known. As a typical example consider that a number of images of a planar scene are known, and we acquire a new

image that is apparently of the same scene. In our example, the known data are displayed in Figure 3 and the new

image is shown below in Figure 8.
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Figure 8: View of a second unknown

scene including a natural projective

frame and a curve.

For this new contourγ0, we consider the null hypothesisH0 : µ ∈ γ0 + Bδ, for someδ > 0, which is equivalent

to (4.4). Testing based upon the asymptotic pivot in(4.24), with α = 0.05, yields aδ cutoff value of312.39. This

value represents the largestδ value for which we would reject the null hypothesis.

This means that if we chooseδ < 312.39, we would then reject the equality of the mean projective shape of the

first population of curves with the projective shape of the second curve, and thus conclude that the mean of the first

“Bigfoot” planar scene is significantly different from the projective shape of the curve in Figure 8.

For a visual understanding of this significant difference, one can compare the curves in Figure 9. Here the mean

curve of the “Bigfoot” sample is plotted along with the new image curve.
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Figure 9: Plot of the mean “Bigfoot” curve and the new image curve.

Remark 5. The sample size was small, and we could have used nonparametric bootstrap, nevertheless the errors are
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quite insignificant, since they depend only on the pose of thescene, which is essentially flat. Thus even for our fairly

small sample, the result is reliable.

Remark 6. Description of projective shape spaces, even of finite configurations is a complicated task. Projective

shape analysis, including distribution parametric and non-parametric approaches of projective shape can be performed

in the context of multivariate axial data analysis ( Mardia and Patrangenaru (2005)). For recent results in this area see

also Lee et. al.(2004), Sughatadasa (2006) and Liu et. al. (2007).
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