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Abstract

A unified exact approach is given for testing hypotheses of the form H0 : ϑ1 ≥ h (ϑ2)
versus H1 : ϑ1 < h (ϑ2) where ϑ1 and ϑ2 are the failure rates of two independent
groups and h is a monotone function. This includes the classical problem of test-
ing equality of ϑ1 and ϑ2 as well as the problem of showing non-inferiority and
superiority in clinical trials with respect to various commonly used measures, such
as the difference, the relative risk or the odds ratio. Conditions on h are given
in order to guarantee uniqueness of the restricted maximum likelihood estimator.
Further, it is shown that the likelihood ratio test for H0 versus H1 follows asymp-
totically a 1

2 + 1
2Fχ2

1
-law, provided h is a smooth curve. However, it is found that this

asymptotics often is not sufficiently reliable for small and moderate sample sizes,
n1, n2 ≤ 100, say, and an exact modification will be given. This test is compared
to competitors from the literature and its superiority with respect to power will be
shown numerically. Procedures will be illustrated by a clinical trial.

Key words: Non-inferiority, shifted null hypothesis, unconditional test,
order-restricted inference, restricted maximum likelihood, exact test, ordered
alternatives, equivalence testing, superiority

1 Introduction

A well known problem in statistical inference is the comparison of the effects
of two treatments (one might be placebo) in a controlled clinical trial where
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the primary endpoint is a dichotomous quantity, such as a success or failure
rate. Recently, it became also of interest to show non-inferiority of a treatment
group ”1” with respect to a control group ”2”, i.e. to show that there is at
most an irrelevant ”difference” in failure rates of the new treatment. Closely
related to this, in superiority trials the aim is to establish a relevant superiority
of a new treatment compared to a standard, say. For an extensive discussion
see Chan (1998); Chuang-Stein (2001); Dunnett and Tamhane (1997); Greco
et al. (1996); Gustafsson et al. (1996); Moulton et al. (2001); Röhmel and
Mansmann (1999b). The most common ways to deal with this problem is to
test a proper hypotheses (to be described later on) or to base a decision on a
confidence interval (see e.g. Newcombe (1998) for a survey). In this paper we
will focus solely on testing methods. We mention, however, that in principle
all procedures can be used to obtain confidence intervals by proper inversion
(Casella and Berger, 2002, ch. 9.2). We refer to Chan (1998), Farrington and
Manning (1990), Roebruck and Kühn (1995) or Skipka et al. (2004) for a
survey on testing methods for the difference of the failure rates. However,
there is a controversial discussion how to measure non-inferiority properly. In
addition to the difference ϑ1 − ϑ2 = θDI various authors suggest the relative
risk ϑ1/ϑ2 = θRR or the odds ratio ϑ1 (1 − ϑ2) / (ϑ2 (1 − ϑ1)) = θOR. The
ASSENT-2 trial (1999) compares two thrombolytic therapies with respect to
30 day mortality. Here θDI as well as θRR is evaluated.

Proper hypotheses associated with these quantities are of the form H0 : θ ≥ θ0

where θ is a measure of non-inferiority (such as θDI , θRR, or θOR) and θ0 is
a positive quantity to be specified. Typical values are θ0 = 0.1, 0.15, 0.2 for
the difference and θ0 = 1.1, 1.2, 1.5 for the relative risk or the odds ratio,
say CPMP (2003, 1999); FDA (1992, 1998); ILAE (1998); InTIME-II (2000);
Moliterno and Topol (2000). Phillips (2002) considered hypotheses with linear
inequalities ϑ1 ≥ a + b ϑ2 for fixed a and b and provided an asymptotic test
(based on a standardized z-statistic with unpooled variance estimates). Here
θ would correspond to θP = ϑ1 − a − bϑ2.

Recently, Röhmel and Mansmann (1999b) argued forcefully that even more
general hypotheses are of interest. These authors consider various types of
hypotheses which can be described as

H0 : ϑ1 ≥ h (ϑ2) versus H1 : ϑ1 < h (ϑ2) . (1)

Here h is an increasing curve h : [0, 1] → [0, 1] which has to be specified in
advance. This includes in particular the above mentioned quantities for

hDI (ϑ2) = ϑ2 + θ0, hRR (ϑ2) = ϑ2 θ0, hOR (ϑ2) =
θ0

θ0 + ϑ−1
2 − 1

(2)

or Phillips’ (2002) hypotheses.
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More general, h might take into account that different measures of discrep-
ancies as well as different values of θ0 have to be combined in one quantity,
depending on the underlying response rate.

Based on recent guidelines of the FDA (1992) and CPMP (2003; 1999), Röhmel
and Mansmann (1999b) (see also Bristol (1996)) considered such curves h.
Some of them may even discontinuous, however, always being increasing.

As an example, the FDA (1992) requires that non-inferiority can be claimed if
the two-sided 95% confidence interval around the difference in response rates
must be within θ0 with

θ0 =




20% < 80%

15% if max
{
ϑ̂1, ϑ̂2

}
∈ [80%, 90%)

10% ≥ 90%

.

If this rule is applied by replacing the observed rates with the true rates and
extrapolating the margins in a symmetric way for small rates (< 0.5) it results
in the curve displayed in Figure 1. For a careful discussion and other examples
we refer to (Röhmel and Mansmann, 1999b, p. 151-153).

In fact, the proper choice of h is a subtle problem and will depend on many
aspects, e.g. the clinical field of application. We will not pursue the issue of
the most appropriate hypotheses further, instead we will present a general
statistical methodology which allows to deal with any isotonic curve h. To
this end in Section 2 the likelihood ratio test for (1) will be constructed and
we will show that for smooth h the asymptotic distribution is 1

2
+ 1

2
Fχ2

1
, exactly

as for the case where h is the identity (cf. Robertson and Wright (1981)).
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The paper will be organised as follows. In Section 2 it is shown that uniqueness
of the MLE depends heavily on the function h. Even for strictly increasing
and smooth h uniqueness cannot be guaranteed, in general. Conditions on the
”boundary function” h will be given which guarantee uniqueness of the MLE.
This yields a unifying result for the uniqueness of the MLE for all measures of
non-inferiority discussed so far. Further, it highlights an interesting difference
between superiority and non-inferiority trials. In superiority trials often the
null hypothesis will be convex, which immediately implies uniqueness of the
MLE, whereas in non-inferiority trials convexity of H0 is not the typical case.
A simple counterexample is given, for which two solutions of the MLE exist.

Skipka et al. (2004) introduced an exact modification of the LR-test for the dif-
ference (boundary function hDI), which is based on an idea of Storer and Kim
(1990). In Section 3 we extend this unconditional exact approach to general
boundary functions h. This even applies to nonsmooth curves h (cf. Figure 1).
In Section 4 the exact LR-test is compared numerically with various competi-
tors from the literature for the relative risk and the odds ratio, respectively.
Our method is similar in spirit to Röhmel and Mansmann (1999). However,
we propose the cumulative likelihood ratio function as a criterion to order
the sample space. To this end additionally the restricted likelihood estimators
have to be determined and will be used as initial estimators for the parame-
ters of the likelihood function. It will be shown that this exact (modification of
the) LR-test in general provides a larger power than its competitors for both
specified curves hRR and hOR. This extends the results for the special case of
a difference, hDI by Skipka et al. (2004). The power enhancement can be quite
substantial (up to 10%), which implies a reduction of the sample size up to
15%. It is demonstrated that in particular for the relative risk our methods
perform very well.

In Section 5 a medical application is discussed and it is illustrated how the
presented methods perform.

The paper closes by a summary section, where possible extensions are briefly
discussed. SAS source code is available on request from the authors.

All proofs are postponed to Appendix A.

2 The likelihood ratio test for general hypotheses - asymptotic
theory

Throughout the following let

X1, . . . , Xn1

i.i.d.∼ B (1, ϑ1) and Y1, . . . , Yn2

i.i.d.∼ B (1, ϑ2)
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two independent Bernoulli samples with failure rates ϑ1 and ϑ2, respectively.
Hence the joint likelihood is given as

L(ϑ1, ϑ2) =

(
n1

x

)
ϑ1

x (1 − ϑ1)
n1−x

(
n2

y

)
ϑ2

y (1 − ϑ2)
n2−y , (3)

where x =
∑n1

i=1 xi denotes the number of negative responses in treatment
group 1 and y =

∑n2
j=1 yj in control group 2, respectively. Our approach is

based on the likelihood ratio test for hypotheses in (1), hence we are concerned
with the MLE under the restriction H0 in (1).

The next lemma ensures that the the constrained ML-estimator restricted to
H0 in (1) can be computed on the set, where ϑ1 = h(ϑ2). Furthermore, we give
conditions on h which guarantee the uniqueness of the MLE restricted to H0.
Surprisingly, we will find that this is not always the case and counterexamples
will be given. Let us write ϑ = (ϑ1, ϑ2), Θ = [0, 1]2. Let ϑ̂ = (ϑ̂1, ϑ̂2) = ( x

n1
, y

n2
),

the unrestricted MLE.

Lemma 1 Let Θ0 = {ϑ : ϑ1 ≥ h (ϑ2)} and assume X1, . . . , Xn1 ∼ B (1, ϑ1)
i.i.d. and independently Y1, . . . , Yn2 ∼ B (1, ϑ2) i.i.d., where n1, n2 ≥ 1. Let h
be continuous and increasing, and not identically 1.

a) Then, the MLE restricted to Θ0 exists and is given as ϑ̂∗ = ϑ̂ (the unre-
stricted MLE) if ϑ̂ ∈ Θ0 and if ϑ̂ /∈ Θ0

ϑ̂∗ =

{
arg max

{ϑ:ϑ1=h(ϑ2)}
L (ϑ)

}
⊆ ∂Θ0, (4)

i.e. the MLE is attained on the boundary ∂Θ0 of Θ0.
b) Let h twice differentiable; h ∈ C2[0, 1]. The restricted MLE ϑ̂∗ is unique if

the following conditions (i) and (ii) or if the condition (iii) are satisfied on
the set Θh = {ϑ1 = h (ϑ2)}:

(i) −(h′)2 + h · h′′ ≤ 0
(ii) −(h′)2 − h′′ + h · h′′ ≤ 0
(iii) h is convex.

If we apply Lemma 1 to the functions in (2) we find that the restricted MLE
can always be computed on the set Θh for h = hDI , hRR, hOR, respectively and
that the MLE is unique. This follows for hDI and hRR by (iii), where for hOR

we observe that (i) reads as

−(h′(ϑ2))
2 + h(ϑ2) · h′′(ϑ2) = − θ2

0

(1 + ϑ2(θ0 − 1))3
≤ 0 ,

and (ii) as
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−(h′(ϑ2))
2 − h′′(ϑ2) + h(ϑ2) · h′′(ϑ2) = − θ0

(1 + ϑ2(θ0 − 1))3
≤ 0 .

Explicit formulae for the MLE’s in case of hDI and hRR are given by Mietti-
nen and Nurminen (1985) and Farrington and Manning (1990). For hOR the
restricted MLE is found to be

ϑ̂∗
2 =

1

2n2 (θ0 − 1)


θ0(x + y − n1) − x − y − n2

+
√

(x + y + n2 − xθ0 − yθ0 + n1θ0)
2 + 4 (x + y)n2 (θ0 − 1)


,

ϑ̂∗
1 =

[
1 + θ−1

0 (ϑ̂∗−1

2 − 1)
]−1

.

It is interesting to note that condition (iii) is in general not satisfied by most
hypotheses for non-inferiority (see (Röhmel and Mansmann, 1999b, fig. 1d-
1f)). However, in superiority trials these hypotheses are more important, be-
cause here H0 will be a convex set in many cases. This makes a subtle distinc-
tion between non-inferiority and superiority trials: The restricted MLE in the
latter case will be typically a projection onto a convex set (the null hypothe-
sis), and hence unique, in non-inferiority trials often the alternative is a convex
set, hence uniqueness has to be checked carefully, e.g. by means of Lemma 1b)
(i),(ii). Observe finally that (i) together with (ii) guarantee that the likelihood
function is strictly concave on Θh which allows a quick computation by the
use of any standard maximization routine.

Remark 2 As mentioned above uniqueness of the MLE (albeit always located
on the set {ϑ : ϑ1 = h(ϑ2)}) is not valid for every increasing function h. In fact
various global maxima can occur for certain outcomes (x, y) and hypotheses
H0. A simple class of counterexamples is as follows. Let n1 = n2 = n and
x
n

= 1 − y
n

and consider the case where ( x
n
, y

n
) ∈ H1, i.e. where the restricted

MLE does not equal the unrestricted one. Let us define h as

h(ϑ2) =




1
γ

ϑ2 for ϑ2 ≤ γ
1+γ

γ ϑ2 + 1 − γ elsewhere
(5)

for some constant 0 < γ < 1 (cf. Figure 2, here γ = 0.33). Observe, that h
is piecewise linear and symmetric (as well as L) w.r.t. D = {(ϑ1, ϑ2) : ϑ1 =
1 − ϑ2}.

Now, it can be shown (a detailed proof can be obtained from the authors on
request) that for any γ ∈ (0, 1) there are exactly two solutions of the MLE
(denoted as ϑ̂∗

A and ϑ̂∗
B in Figure 2), which are symmetrical w.r.t. D, located

on each of the two branches A and B of h in (5), respectively.
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Fig. 2. Two solutions of the restricted MLE, where n1 = n2 = n and x = n− y, for
the hypotheses in (5). Here the contour plot of the two sample binomial likelihood
shows the existence of two MLE’s ϑ̂∗

A and ϑ̂∗
B on each branch A and B of the

boundary of the hypothesis H0, respectively

In Figure 2 the contourlines of the likelihood are displayed for this particular
case and γ = 0.33. The solutions ϑ̂∗

A, ϑ̂∗
B are such that the hypothesis function

h is tangent to the likelihood. From this it can also be drawn that various other
hypotheses may even lead to more than two solutions of the MLE.

Remark 3 Lemma 1a) is related to a theorem of Röhmel and Mansmann
(1999b p. 161) who showed that for fixed (x, y) := ϑ̂ the supremum over ϑ ∈ Θ0

of
∑

T (x,y)≤T (x,y) L (ϑ) is attained at the boundary of Θ0, provided the statistic
T satisfies a convexity condition ”C” introduced by Barnard (1947). It states
that for any (x, y) ∈ CR (the critical region of a test) holds that (x, y+1) ∈ CR
and (x − 1, y) ∈ CR. Note, however, that our result is different and the proof
relies essentially on the uniqueness of the unrestricted MLE.

The inherit of Lemma 1 is twofold. First, it allows to restrict the parameter
space to a one dimensional curve Θh for numerical computation of the re-
stricted MLE. Second, this will be the key property for the derivation of the
asymptotic distribution of the likelihood ratio statistic

λ = λ (x, y) =
supϑ∈Θ0

L (ϑ)

supϑ∈Θ L (ϑ)
. (6)

Theorem 4 Let h be increasing, h : [0, 1] → [0, 1] and h ∈ C(1)[0, 1]. Then,
under the assumption of Lemma 1a) we have for ϑ1 = h (ϑ2) and for any
solution ϑ̂∗

−2 lnλ
D−→ U ∼ 1

2
+ 1

2
Fχ2

1
,

as min {n1, n2} → ∞, s.t. n1

n2
→ c ∈ (0,∞), where Fχ2

1
denotes the c.d.f. of

the square of a standard normal random variable.
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Table 1
The actual probability (times 100) for −2 ln (λ) >

(
1
2 + 1

2Fχ2
1

)
0.95

.

exact level

difference relative risk odds ratio

n1, n2 ϑ2 θ0 = 0.1 θ0 = 1.5 θ0 = 1.5

10, 10 0.1 8.93 5.69 6.15

10, 25 10.22 9.46 10.25

25, 25 5.33 5.59 6.17

25, 10 5.27 6.27 7.01

50, 50 5.45 6.32 4.4

50, 100 5.19 5.22 6.01

100, 100 5.22 5.24 4.52

100, 50 5.37 4.86 4.31

500, 500 5.05 4.97 4.98

10, 10 0.4 5.95 4.76 5.72

10, 25 5.63 5.45 5.63

25, 25 4.46 5.26 4.36

25, 10 5.00 5.47 5.00

50, 50 4.51 5.16 4.33

50, 100 4.84 4.97 4.61

100, 100 5.05 4.86 5.05

100, 50 4.74 4.91 4.57

500, 500 5.18 4.91 5.04

Nevertheless, the approximation using the asymptotics of Theorem 4 is not
always sufficient for small and moderate sample sizes.

In Table 1 the actual exact levels are drawn for different parameter constella-
tions when using the 95% quantile

(
1
2

+ 1
2
Fχ2

1

)
0.95

of the asymptotic distribu-

tion as critical value for a level 5% test.

From Table 1 it can be seen that the nominal level is exceeded up to twice for
small sample sizes. As a very rough rule of thumb we state that the asymptotic
test can be recommended if n1, n2 ≥ 100, say. Of course, this will depend on
the underlying (unknown) response rates. Note, as ϑ1, ϑ2 → 0, Theorem 4
does not hold anymore, instead a Poisson limit is valid. In the next section,
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an exact modification of the asymptotic LR-test is presented, i.e. a test which
keeps its nominal level exactly.

3 Exact modification

Exact tests for general hypotheses (1) were first introduced in two seminal
papers by Barnard (1945, 1947). In Skipka et al. (2004) it is shown, however,
that Barnard’s original test bears intrinsically numerical difficulties due to
its specific iterative way to construct the region of rejection. During the last
two decades various other exact methods were suggested, most of them were
developed for H : ϑ1 = ϑ2 (Boschloo (1970); McDonald et al. (1977); Upton
(1982); D’Agostino et al. (1988); Berger and Boos (1994)) or for specific hy-
potheses in (1) (see e.g. Mart́ın Andrés and Silva Mato (1994); Chan (1998)).
Finally Röhmel and Mansmann (1999b) presented a general exact method for
arbitrary hypotheses in (1), based on ideas of Barnard (1947). For details see
the next section.

Our general strategy is as follows. To guarantee that the LR-test keeps its
nominal level α, a modification of the LR statistic λ in (6) is applied, which is
described by Skipka et al. (2004) for the boundary function hDI . This approach
will be transfered in the following to arbitrary boundary functions h. In a first
step, based on an idea of Storer and Kim (1990), the exact distribution of the
LR statistic is estimated by inserting the restricted ML estimates (ϑ∗

2, ϑ
∗
1) in

(3). With that, p-values can be estimated for any outcome (x, y). In a second
step these estimated p-values p∗(x, y) are used to sort all possible outcomes in
ascending order. This ordering defines the unconditional exact test, similary
as for the case of hDI (see (Skipka et al., 2004, Ch. 2) for details).

Remark 5
a) Obviously, it is computationally more feasible to calculate the maximum on
the boundary of H0, if possible. Röhmel and Mansmann (1999a) have shown
that the maximum is attained always at the boundary ϑ1 = h(ϑ2), if the test
fulfills Barnard’s convexity condition ”C”. We were not able to prove that
condition ”C” holds for the modified LR-test (denoted as exact LR-test in
the following). Therefore, the actual level α∗ has to be determined by maxi-
mizing over the entire null space, in principle. Nevertheless, note that it is
still feasible to restrict the calculation of the maximum to the boundary of the
null space in Section 4. To this end we simply check numerically condition
”C” after sorting the outcomes for every parameter setting. We mention that
in all numerical examples investigated so far we never found a violation of
condition ”C”. Hence, for a given testing problem, we recommend to check
condition ”C” numerically. If this is satisfied, numerical maximization can be
performed on the boundary. If not, maximization over the entire null space has
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to be performed.

b) It would be tempting to base the ordering of the sample space directly on the
likelihood ratio statistic λ(x, y), instead of the cumulative likelihood function.
We found, however, that this approach does lead to a test with rather low
power compared to the present approach and, hence, cannot be recommended
in practice.

c) Berger and Boos (1994) introduced an exact method where the actual level
is determined by maximization over a confidence region of the unknown pa-
rameters instead of maximization over the entire parameter space. We applied
this approach to the exact unconditional tests - mentioned in the following sec-
tion, however, we found no improvement. This is in accordance with extensive
investigations done by Chan and Zhang (1999) who argued that ”the search
of nuisance parameter over a restricted domain does not offer benefits ... as
the tail probability often peaks in the middle of the domain of the nuisance
parameter”. Agresti and Min (2001) came to the same conclusion.

4 Power investigation

The exact LR-test is compared with various commonly used exact approaches.
The competitors will be briefly introduced in the sequel.

• Chan’s test : Chan (1998) has suggested an unconditional exact approach
for hDI and hRR, where the standardized z statistic with ML variance es-
timates, restricted to ϑ1 = h(ϑ2), is used as an ordering criterion. This test
statistic was originally introduced by Farrington and Manning (1990) (see
this reference for explicit formulae). Chan’s test is constructed in a similar
way as the exact LR-test, but uses Farrington & Manning’s test statistic as
the ordering criterion.

• πlocal-test : Röhmel and Mansmann (1999a) have constructed an uncondi-
tional exact test, denoted as πlocal, by using the ”smallest possible p-value
according to condition C” stated in sect. 2,

πmin(x, y) = max
ϑ1=h(ϑ2)

P (X ≤ x, Y ≥ y|(ϑ1, ϑ2)),

as the ordering criterion. This test is applicable for all specifications of a
monotone curve h.

• Fisher’s exact test (unconditional exact adaption): If m := x + y is fixed,
the conditional exact test (see e.g. Gart (1971)) can be adapted for hOR by
using the conditional exact p-values as an ordering criterion to construct
an unconditional exact version in the same way as before. Therefore this
adaption, denoted as Fisher’s exact unconditional test in the following, is
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the generalization of the test introduced by McDonald et al. (1977) for the
classical hypothesis with ϑ1 = h(ϑ2) = ϑ2.

Remark 6 The comparison with Barnard’s test (1947) (more precise: with
Röhmel & Mansmann’s (1999a) adaption of Barnard’s test for the hypothesis
(1)) is omitted because the investigations of Skipka et al. (2004) have shown
that this test is hardly applicable in practice due to intrinsic numerical diffi-
culties.

All tests under investigation are exact methods, i.e. they all keep the nominal
level exactly. We refer to (Skipka et al., 2004, Ch. 3) for a comparison of these
exact approaches for the boundary function hDI . In the following, these tests
are compared numerically for the two distance measures relative risk and odds
ratio w.r.t. power for a broad scenario of parameter settings (θ0, n1, n2, ϑ2):

• Boundary of hypothesis: We choose θ0 ∈ {1.1, 1.25, 1.5, 2, 2.5} for hRR and
hOR.

• Sample size: We choose balanced sample sizes
n1 = n2 ∈ {20, 25, 30, 35, 40, 50, 60, 80, 100} and unbalanced sample sizes
(n1, n2) ∈ {(30, 20), (40, 20), (50, 25), (60, 30), (60, 40), (80, 40), (80, 50),
(80, 60), (100, 50), (100, 60), (100, 80)}.

• Nuisance parameter: We choose ϑ2 ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 0.9}.

This gives 600 different parameter configurations for every function h. Con-
figurations regarding the the relative risk are omitted in case of non feasible
settings (i.e. ϑ2 ≥ 1/θ0 for hRR). We have chosen the parameter θRR ≤ 1
and θOR ≤ 1 such that the resulting power is larger than 0.8, at least for one
of the tests compared. Of course, for small sample sizes and small θ0 there
exist parameter constellations, for which no test achieves a power larger than
0.8. On the other hand, for large sample sizes and large θ0 some parameter
constellations result in a power larger than 0.9 for all tests. These cases are
omitted, too. Finally, for hRR 330 parameter constellations were extracted and
for hOR 522. The resulting values of the power function are calculated exactly
for all tests under investigation by computing the exact binomial probabilities
(3) for all (x, y) ∈ CR.

The Figures 3 and 4 show the power of the exact LR-test (vertical axes) and
its competitors (horizontal axes) for the two distance measures hRR and hOR,
respectively

It is found that in general the power differences between the exact LR-test
and its competitors are small. But for both distance measures the power of
the exact LR-test tends to be larger. In some cases the power enhancement is
up to 0.1, whereas the inferiority is much smaller, if present at all. In order to
illustrate this, the differences of the exact LR-test’s power and the power of
its competitors are displayed in Figure 5. The LR-test performs better in most
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Fig. 3. The power of LRexact (vertical axis) in comparison to πmin and Chan (hori-
zontal axis) for several parameter constellations with hRR (ϑ2) = ϑ2 θ
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Fig. 4. The power of LRexact (vertical axis) in comparison to πmin, and Fisher’s
exact unconditional (horizontal axis) for several parameter constellations with
hOR (ϑ2) = θ

θ+ϑ−1
2 −1
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Fig. 5. Boxplot (whiskers are the 5% and 95% quantiles) for the power differences
(times 100) between the exact LR-test and its competitors for the two distance
measures relative risk and odds ratio.

cases of parameter constellations, even if the median power enhancement is
always near zero.
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The most extreme power differences and its parameter constellations are dis-
played in the Tables B.1 and B.2 in Appendix B. We have displayed those val-
ues separately, where the power of the exact LR-test differs from the largest
power of its competitors by more than 0.015 (for hRR) and 0.03 (for hOR),
respectively.

Finally, we briefly comment on the computational time in order to compute
the critical regions of all tests. We always have found that Chan’s test is
the fastest method. The other methods are more time consuming: Fisher’s
exact unconditional test requires about 1.5 times of the computational time
of Chan’s test, the πmin-test 4 times and the exact LR-test about 6 times.
In summary, however, all tests considered are computationally feasible and
numerically stable.

5 Example

In a multicenter randomized double-blind study in Heliobacter pylori-positive
patients, Dammann et al. (2000) compared the eradication rate of two pantoprazole-
based triple therapies of different length. One group (PCM-7) received a com-
bination of pantoprazole, clarithromycin and metronidazole during the first
7 days, followed by 7 days with placebo tablets. The other group (PCM-14)
received the same combination of drugs for 14 days. An equivalence margin
for the odds ratio of θ0 = 0.33 was specified. It results in an eradication rate of
89/121 for PCM-7 and 92/123 for PCM-14 referring to the intention-to-treat
(ITT) population. In our notation (referring to failure rates) this results in
ϑ̂1 = 32/121 and ϑ̂2 = 31/123. The tests, described above, show all the non-
inferiority of PCM-7 over PCM-14 for the odds ratio with θ0 = 3.03 ≈ 1/0.33
(p-values: 0.00021 with exact LR, 0.00025 with πlocal and Fisher’s exact uncon-
ditional test, respectively). The exact LR-test gives a slightly smaller p-value
than its competitors.

The corresponding test-based upper 95%-confidence limit for the odds ratio
(the smallest θ0, for which the p-value is smaller than 0.05) are 1.76 (exact LR)
and 1.74 (πlocal and Fisher’s exact unconditional). Interestingly, the confidence
limit based on the exact LR-test is slightly larger, albeit in general this test
was seen to be more powerful as πlocal and Fisher’s exact unconditional version.

This finding relies on the fact that the p-value as a function of the margin θ0

is not monotone which is well known for many exact procedures (cf. Röhmel
(2004)).

Dammann et al. (2000) calculated a lower 95% confidence limit (for the erad-
ication rates) of 0.579, based on the Mantel-Haenszel-test - presumably strat-
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ified for centers (it is not exactly described in their paper). In our notation it
results in 1/0.579 ≈ 1.73, which is similar to our findings, altogether.

6 Conclusions

The asymptotics for the likelihood ratio test for general hypotheses of non-
inferiority or superiority was derived as a 1

2
+ 1

2
Fχ2

1
-law, independently of the

function h. It is found that for small sample sizes this often is not sufficiently
reliable and an exact modification of the LR-test was proposed. Nevertheless,
for sample sizes larger than 100, say, the asymptotic test yields quite accurate
results. This will depend on the underlying values ϑ1, ϑ2, of course. In an
extensive numerical study it is found that the (exact) LR-test outperforms
various competitors for hypotheses concerning the odds ratio and the relative
risk. This is in accordance with the results from Skipka et al. (2004) for the
difference. Furthermore, we have given general conditions on the boundary
function h of the hypotheses to yield a unique ML estimator. This conditions
are easy to check and are satisfied by current approaches.

We have not addressed sample size issues for the exact LR-test in order to
control the type II error, which is , in general, an important task and will be
postponed to a separate paper.
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A Proofs

Proof of Lemma 1:
a) Assume that ϑ̂ /∈ Θ0. Θ0 is compact, L is continuous, and hence the supre-
mum of L is attained in Θ0, denoted as ϑ̂∗. In order to prove that the max-
imum is attained on the set Θh := {ϑ : ϑ1 = h (ϑ2)} assume that ϑ̂∗ /∈ Θh.

If ϑ1 ∈ {0, 1} or if ϑ2 ∈ {0, 1} then L (ϑ) = 0. But for all ϑ ∈ ◦
Θ0, where

◦
Θ0= Θ0\∂Θ0, L (ϑ) is strictly positive. Therefore ϑ̂∗ ∈ ◦

Θ0, which is not empty,
because h 	≡ 1.
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◦
Θ0 is open, hence there exists U0 open in [0, 1]2; s.t. ϑ̂∗ is a local maximum in

U0 ⊆
◦
Θ0. However, L ∈ C(1)(Θ) and ∂L

∂ϑ
has at most a single zero in

◦
Θ = Θ\∂Θ

because for any x, y ∈ {0, . . . , n1} × {0, . . . , n2} we have

∂

∂ϑ1
L (ϑ1, ϑ2) = 0 ⇔ ϑ2 ∈ {0, 1} ∨ ϑ1 ∈

{
0, 1,

x

n1

}
∂

∂ϑ2
L (ϑ1, ϑ2) = 0 ⇔ ϑ1 ∈ {0, 1} ∨ ϑ2 ∈

{
0, 1,

y

n2

}
.

Hence, any local maximum in
◦
Θ0 is also global, i.e. ϑ̂∗ = ϑ̂, the unrestricted

MLE. However, we have assumed that ϑ̂ /∈ Θ0, which gives a contradiction.

b) Define the function Ψ(ϑ2) = �(h(ϑ2), ϑ2) where

�(ϑ1, ϑ2) := x log ϑ1 + (n1 − x) log(1 − ϑ1) + y log ϑ2 + (n2 − y) log(1 − ϑ2)

denotes the log-likelihood, � = log L (omitting the constant term log
(

n1

x

)
+

log
(

n2

y

)
). We have

Ψ′′(ϑ2) =− y

ϑ2
2

− n2 − y

(1 − ϑ2)2
− x

h2(ϑ2)
(h′(ϑ2))

2 +
x

h(ϑ2)
h′′(ϑ2)

− n1 − x

(1 − h(ϑ2))2
(h′(ϑ2))

2 − n1 − x

1 − h(ϑ2)
h′′(ϑ2)

=− y

ϑ2
2

− n2 − y

(1 − ϑ2)2
+

x

h2(ϑ2)

(
− (h′(ϑ2))

2 + h(ϑ2) · h′′(ϑ2)
)

+
n1 − x

(1 − h(ϑ2))2

(
− (h′(ϑ2))

2 − (1 − h(ϑ2))h
′′(ϑ2)

)
.

Now, if (i) and (ii) are fulfilled, Ψ′′(ϑ2) < 0 and hence Ψ is strictly concave on
the set Θh.

In order to prove (iii) observe that � is strictly concave and hence the maxi-
mum on Θ0, which is convex because h is convex, is unique. �

Proof of Theorem 4: First, note that by means of Lemma 1 we have

λ =




1 if ϑ̂ ∈ Θ0

L(ϑ̂∗)

L(ϑ̂ )
if ϑ̂ /∈ Θ0

. (A.1)

15



Furthermore, for t ≥ 0

P (−2 ln λ ≤ t)= P
(
{−2 ln λ ≤ t} ∩

{
ϑ̂1 ≥ h(ϑ̂2)

})
+ P

(
{−2 ln λ ≤ t} ∩

{
ϑ̂1 < h(ϑ̂2)

})
=: I + II .

By means of (A.1) we have ϑ̂1 ≥ h(ϑ̂2) ⇔ λ = 1 ⇔ −2 ln λ = 0 and hence if
ϑ1 = h (ϑ2)

I = P
(
ϑ̂1 ≥ h(ϑ̂2)

)
= P

(
ϑ̂1 − ϑ1 ≥ h(ϑ̂2) − h (ϑ2)

)
n2,n1→∞−→ P (Z1 ≥ Z2) ,

where Z1 and Z2 are independent normal random variables with mean zero
and variance τ1 = ϑ1 (1 − ϑ1) and τ2 = c (h′ (ϑ2))

2 ϑ2 (1 − ϑ2), respectively.
Observe, that P (Z1 ≥ Z2) = 1

2
always, even if h′ (ϑ2) = 0. Now

II =P
(
−2 ln λ ≤ t|ϑ̂1 < h(ϑ̂2)

)
P
(
ϑ̂1 < h(ϑ̂2)

)
=

1

2
P
(
−2 lnλ ≤ t|ϑ̂1 < h(ϑ̂2)

)
+ o (1)

=
1

2
P (−2 ln λ ≤ t| − 2 lnλ > 0) + o (1)

=
1

2
P
(
χ2

1 ≤ t
)

+ o (1) ,

where in the last step we have applied a modification of a theorem of Pruscha
(2000, p. 253). In order to apply this theorem note, that −2 ln λ > 0 ensures
that ϑ̂∗ ∈ Θh and ϑ̂ ∈ [0, 1]2 \Θ0. �
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Table B.1
Relative risk: The exact power γ (times 100) for parameter constellations, which
gives the most extreme power differences between the exact LR test and the best
of it’s competitors (|γexact LR − max{γcompetitors}| > 0.015)

θ0 n1 n2 ϑ2 ϑ1 exact LR Chan πlocal

1.1 60 30 0.3 0.09 84 78.4 81.2

1.5 60 40 0.2 0.07 82.8 78.1 80

2.5 100 50 0.1 0.04 82.3 74.1 79.5

2.5 50 25 0.2 0.09 81.1 75.3 78.4

1.1 100 50 0.9 0.81 84.1 74.9 81.8

1.1 80 40 0.3 0.12 81.6 76.1 79.4

1.1 60 60 0.8 0.64 87.6 85.7 85.7

2.5 30 30 0.3 0.24 81.4 79.5 79.6

2.5 80 40 0.1 0.025 82.4 76.6 80.6

1.1 100 100 0.9 0.855 84.7 82.3 83

1.1 100 60 0.9 0.81 88.7 86.9 86.9

1.1 60 40 0.9 0.765 86.5 82.2 84.8

1.1 60 30 0.9 0.72 88.5 81.3 86.8

1.1 30 20 0.9 0.675 80 74.3 78.4

1.25 60 60 0.5 0.35 85.5 83.2 84

1.5 30 30 0.3 0.12 78.5 78.5 80.2

1.25 25 25 0.5 0.225 82.1 83.9 83.9

1.1 80 80 0.1 0.015 80.4 82.3 78.4

2 30 30 0.3 0.18 79.2 78.5 81.3

2 80 60 0.1 0.035 78.4 81.3 78.3

2 25 25 0.2 0.04 78.7 82.2 76.2

1.5 40 40 0.2 0.05 81.2 84.7 81.1

2 40 20 0.2 0.04 77.6 81.7 77.6

2 80 40 0.1 0.02 76.1 80.4 75.8

2.5 30 20 0.2 0.05 78.4 82.8 78.4

1.1 80 60 0.1 0.01 78.6 83.4 78.6

1.5 60 60 0.1 0.015 76.7 81.6 76.7
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Table B.2
Odds ratio: The exact power γ (times 100) for parameter constellations, which gives
the most extreme power differences between the exact LR test and the best of it’s
competitors (|γexact LR − max{γcompetitors}| > 0.03)

θ0 n1 n2 ϑ2 ϑ1 exact LR Fisher’s exact uncond. πlocal

1.25 100 50 0.1 0.011 85.4 77.3 77.3

2.5 40 40 0.1 0.016 81.6 74.3 74.3

1.5 80 50 0.1 0.016 82.2 75.1 75.1

2.5 50 50 0.1 0.027 81.7 74.7 74.7

1.1 35 35 0.2 0.024 83.8 77.2 77.2

2.5 20 20 0.2 0.036 81.8 75.2 75.2

1.25 30 30 0.2 0.024 80.4 74.3 74.3

2 80 80 0.1 0.043 80 74.7 74.7

1.1 60 60 0.2 0.059 81.2 76.4 76.4

2.5 80 40 0.1 0.022 82.6 78.1 78.1

2 50 50 0.1 0.011 85.2 80.7 80.7

1.5 100 60 0.1 0.022 83.2 78.9 78.9

1.25 35 35 0.2 0.024 86.3 82 82

1.1 60 30 0.2 0.024 86.6 82.5 82.5

2.5 100 60 0.1 0.048 80.8 76.8 76.8

2 80 50 0.1 0.027 81.1 77.2 76.4

2 25 25 0.2 0.024 84.9 81.1 81.1

1.1 100 80 0.1 0.016 83.8 80.2 80.2

1.25 40 40 0.2 0.036 84.4 80.8 80.8

2 100 100 0.1 0.053 81.2 77.8 77.8

1.1 40 40 0.2 0.036 80.5 77.1 77.1

1.25 80 60 0.1 0.011 85.5 82.1 82.1

1.25 60 60 0.2 0.07 80.3 77 77

2.5 60 60 0.1 0.037 80.7 77.4 77.4

1.1 50 50 0.2 0.048 81.5 78.3 78.3

2.5 100 80 0.1 0.058 82.5 79.3 78.8

1.25 100 60 0.1 0.016 80.2 77.1 77.1

2 80 50 0.2 0.121 80.5 77.5 77.3
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