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AbstratWe onsider two random populations and want to study the asymptoti behaviorof their genealogies, when the number of initital individual inreases. Both popula-tions are ontinuous-time Galton-Watson branhing proesses. The �rst population,alled atalyst, onsists of individuals whih do not branh independently. The se-ond population, alled reatant, onsists of individuals whih branh independentlyof the others but the branhing rate depends on the number of atalyst individualsalive.For the desription of the genealogy we use total mass proesses, R-tree-valuedproesses, ontour proesses and point-proesses of MRCAs (most reent ommonanestors). We present weak limit results for any of these desriptions. Moreoverwe disuss some results whih are due to the atalyti struture, espeially there,where we are lose to the extintion time of the atalyst.The ideas and tehniques used inlude R-trees with Gromov-Hausdor� metri,exursion theory, Kingman oalesent, theory of one-dimensional di�usions andStohasti averaging.



ZusammenfassungWir betrahten zwei zufällige Populationen und wollen, im Falle steigender Anzahlvon Anfangsindividuen, das asymptotishe Verhalten ihrer Genealogien beshrei-ben. Beide Populationen sind zeitstetige Galton-Watson Verzweigungsprozesse. Dieerste Population, genannt Katalyst, besteht aus Individuen, die niht unabhän-gig verzweigen. Die zweite Population, genannt Reaktant, besteht aus Individuen,die unabhängig verzweigen, jedoh hängt die Verzweigungsrate von der Anzahl derKatalyst-Individuen zu dieser Zeit ab.Zur Beshreibung dieser Genealogien verwenden wir Totale Massen Prozesse, R-Baum-wertige Prozesse, Konturprozesse und Punktprozesse von MRCAs (letztergemeinsamer Vorfahr). Wir beweisen shwahe Limes Aussagen für alle diese Be-shreibungen. Zudem besprehen wir einige Ergebnisse, die durh die katalytisheStruktur des Prozesses gegeben sind, besonders dort, wo der Katalyst fast ausge-storben ist.Unter den verwendeten Tehniken und Ideen sind R-Bäume mit Gromov-Hausdor�-Metrik, Exkursionstheorie, Kingman Koaleszent, Theorie eindimensionaler Di�usio-nen und Stohasti Averaging.



Contents1 Introdution 21.1 History of branhing proesses . . . . . . . . . . . . . . . . . . . . . . 21.2 The Catalyti Branhing Model with a modi�ed atalyst . . . . . . . 31.3 Funtionals of Branhing Proesses . . . . . . . . . . . . . . . . . . . 71.4 Main goals, methods and tools, quenhed vs. annealed and ontext . 81.4.1 Main goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.4.2 Organization of the diploma thesis, methods and tools . . . . 81.5 Catalyti branhing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5.1 Quenhed vs. annealed . . . . . . . . . . . . . . . . . . . . . . 91.5.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9I De�nitions and Results 112 The total mass proess (ηtot, ξtot) 122.1 The atalyst and the reatant total mass proess . . . . . . . . . . . 122.2 The di�usion proess (X,Y ) . . . . . . . . . . . . . . . . . . . . . . . 162.3 Convergene of the total mass proess to (X,Y ) . . . . . . . . . . . . 183 The real tree 203.1 De�nition of the real tree . . . . . . . . . . . . . . . . . . . . . . . . 203.1.1 The graph-theoretial tree and de�nition of the real tree . . . 203.1.2 Extended de�nitions of real rooted trees and genealogial trees 213.2 Operators and properties for rooted real trees . . . . . . . . . . . . . 223.3 Linearly ordered rooted real trees . . . . . . . . . . . . . . . . . . . . 244 The tree valued proess (ηfor
t , ξfort ) 254.1 The atalyst and the reatant forest . . . . . . . . . . . . . . . . . . 254.2 Tightness and Convergene of the reatant forest . . . . . . . . . . . 274.3 Comparison result between the lassial forest and the atalyti forest 285 The ontour proess (B,C) 305.1 Contour proesses and branhing populations . . . . . . . . . . . . . 305.2 The atalyst and the reatant ontour . . . . . . . . . . . . . . . . . 325.3 Convergene of the trunated reatant ontour . . . . . . . . . . . . 345.4 On top of the limit reatant tree . . . . . . . . . . . . . . . . . . . . 366 The point proess (Πt,Ξt) 376.1 Point proesses and genealogy . . . . . . . . . . . . . . . . . . . . . . 376.2 The atalyst and reatant point proess . . . . . . . . . . . . . . . . 386.3 Convergene of the reatant point proess . . . . . . . . . . . . . . . 40



Contents ivII Proofs 437 Proofs of the main results from Chapter 2 447.1 Remarks and tehniques . . . . . . . . . . . . . . . . . . . . . . . . . 447.1.1 Properties of g . . . . . . . . . . . . . . . . . . . . . . . . . . 447.1.2 The generator of the disrete total mass proess . . . . . . . . 457.2 Existene, Uniqueness and Feller-property of (ηtot,n, ξtot,n) . . . . . . 467.3 Extintion and ompat ontainment ondition of (ηtot,n, ξtot,n) . . . 487.4 Existene and Uniqueness of (X,Y ) . . . . . . . . . . . . . . . . . . . 507.4.1 The main result and the strategy of the proof . . . . . . . . . 507.4.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507.5 Simple properties of the di�usion proess . . . . . . . . . . . . . . . . 537.6 The Feller-property of the di�usion proess . . . . . . . . . . . . . . 567.6.1 The main result and the strategy of the proof . . . . . . . . . 567.6.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577.7 Convergene of the total mass proess to (X,Y ) . . . . . . . . . . . . 648 Proofs of the main results from Chapters 4 and 5 678.1 Preliminary onsiderations for the quenhed analysis . . . . . . . . . 678.1.1 Regular onditional probabilities and quenhed analysis . . . 678.1.2 Spei�ation of the quenhed atalysts . . . . . . . . . . . . . 678.2 The reatant limit forest exists: The proof strategy . . . . . . . . . . 688.3 Tightness of the reatant tree-valued proess . . . . . . . . . . . . . . 698.3.1 The main result and the strategy of the proof . . . . . . . . . 698.3.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708.4 Convergene of the trunated reatant ontour . . . . . . . . . . . . 768.4.1 The main result and the strategy of the proof . . . . . . . . . 768.4.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788.5 Convergene of the reatant limit forest . . . . . . . . . . . . . . . . 898.6 Convergene of the joint law for the reatant forest . . . . . . . . . . 918.6.1 The main result and the strategy of the proof . . . . . . . . . 918.6.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 Proofs of the main results from Chapter 6 969.1 Law and onvergene of the reatant point proess . . . . . . . . . . 969.2 The relationship between limit point proess and limit ontour . . . 1009.2.1 Main result and strategy of the proof . . . . . . . . . . . . . . 1009.2.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019.3 Comparison result between lassial forest and the atalyti forest . . 106III Appendix 111A Important theorems required in the proofs 112A.1 Theorems from the book of Ethier and Kurtz: Markov Proesses . . 112A.1.1 Semigroup theory . . . . . . . . . . . . . . . . . . . . . . . . . 112A.1.2 Convergene theorems for Markov proesses . . . . . . . . . . 113A.1.3 Martingale problems . . . . . . . . . . . . . . . . . . . . . . . 115A.2 Theorems from the book of Karatzas and Shreve: Brownian Motion and Stohasti Calulus 116



Contents 1A.3 Theorems from the book of Rogers and Williams: Di�usions, Markov Proesses and Martingales117B Additional onepts and proofs 118B.1 The Kingman oalesent . . . . . . . . . . . . . . . . . . . . . . . . . 118B.2 Di�usions and sale funtions . . . . . . . . . . . . . . . . . . . . . . 121B.3 Link between Birth-and-Death proesses and Branhing proesses . . 123B.4 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Notation 125Index 126Bibliography 127



1 Introdution1.1 History of branhing proessesIn the end of the nineteenth entury the English Reverend Henry William Watsonraised the question of extintion of noble surnames within English soiety in anartile in an English journal. He supposed that due to life onditions the fertility ofwell-situated families shrank and therefore the names disappeared. One year laterhe and Franis Galton published jointly an artile in the Journal of Anthropology[WG75℄ and took a mathematial approah to the question: In eah generation afather, who passes his surname to his sons, has probabilities p0, p1, p2, . . . to have
0, 1, 2, . . . sons. His sons, independently of eah other, have the same probabilitiesto have sons themselves as well. Galton and Watson ame to the wrong onlusionthat almost all surnames would die out. Later it was orreted to the true assertionthat the surname almost surely dies out, when the expeted number of sons is lessor equal to 1.The model just desribed was given the name Galton-Watson proess and in-ludes the following harateristis, amongst others, to be noted here: It onsidersa population onsisting of individuals that live a ertain given time and after thathave a random number of o�spring. Additionally the proess is(i) time disrete,(ii) Markovian,(iii) ounts the number of individuals not their relationships and(iv) sons evolve independently of eah other.Clearly all of these four assumptions have some problems when applying to realityor even do not seem rih enough in desription:ad (i): Time is not measured in generations but in years, so to get an idea aboutwhat happens after 200 years, the model does not help.ad (ii): If one father has already few sons due to geneti endowments, his sons mightalso su�er lesser fertility. Therefore generations might rely on eah other, sothe real evolution is probably not Markovian.ad (iii): It is not possible to answer questions suh as �When did the most reentommon anestor of two individuals die?�



1.2 The Catalyti Branhing Model with a modi�ed atalyst 3ad (iv): Overpopulation dereases the amount of food and probably the numberof hildren, so the independene of all other individuals at the same time isdisputable. Also being the brother of ten other brothers makes it more likelythat a son will be be sent to the monastery instead of having a family.During the last entury many adjustments were made to extend the originalmodels. Some of the more reent models ontain more information than the oldermodel of Galton and Watson. All of these extensions of the basi model are somehowgrouped together in the phrase Branhing Proesses.In reent years some letters written by Bienayme were disovered, who alreadytook up the problem in 1849 and was able to give a orret solution to the problem.More about the history of the (still-alled) Galton-Watson proesses an be foundin [Ken66℄ and [Ken75℄ or in a talk by Peter Jagers [Jag09℄. The lassi books aboutbranhing proesses were written by Harris [Har61℄ and Arthreya and Ney [AN72℄.The appliations of these proesses exeed the problem of surname evolution andinlude phenomena in physis, e.g. osmi rays, or in biology, e.g. phylogenetitrees. Here the appliations will play no role, but for the sake of understanding ofthe mathematis it is sometimes helpful to keep the �piture� in mind. Notationand nomenlature will be in�uened by possible appliations as well.Note that it is possible to onsider higher information models and lower informa-tion ones. Some keep trak of all of the history, others only of the reent state. Wewill say that the lower information model is a funtional of the other one. Indeed wewill in a moment introdue a rather general model and onsider various funtionalsof it.1.2 The Catalyti Branhing Model with a modi�edatalystIn this diploma thesis the fous is made on a speial kind of a population evolutionmodel. It will be a general model and di�ers from the aforementioned in severalpoints, e.g. in the fat that it onsiders two populations instead of one. We will allthem the atalyst η and the reatant ξ and both are stohasti proesses evolving intime starting with one individual. Together they form the population model (η, ξ).To get an idea of the proess a short desription is given before an exat de�nition:(i) The atalyst η evolves like an autonomous binary branhing proess. Thatmeans that eah individual lives until the �rst jump of a time hanged Poisson-proess. At this instant of time it dies and after death has zero or two o�spring.The sons evolve in the same manner.(ii) For a given atalyst realization the reatant ξ evolves like a binary branhingproess:
• Eah individual lives until the �rst jump of a time hanged Poisson-proess. At this instant of time it dies and after death has zero or twoo�spring. The sons evolve in the same manner.



1.2 The Catalyti Branhing Model with a modi�ed atalyst 4
• This time hange depends on the number of atalyst individuals presentat the urrent time. The more atalyst individuals are present, the fasterthe reatant individuals branh. That is learly why the populations arealled atalyst and reatant.This desription ontains a lot of information and needs some learer probabilistifoundation. Hene we will give a more formal de�nition of a probability spae onwhih the previous desription an be realized. The ingredients, �alarm loks andoins�, are already visible and they will beome learer in the exat de�nitions ofthe atalyst and reatant to ome. For alarms loks we ould use the a olletion ofexponential waiting times but we will use jump times of Poisson proesses instead,whih makes the formulation easier.The names starting with  or r are related to atalyst and reatant, respetively.De�nition 1.2.1 (The basi probability spae):Let (Ω,F ,P) = (Ωc × Ωr,Fc ⊗Fr,Pc ⊗Pr) be a probability spae, whih ontains

• a sequene N c
1 , N

c
2 , . . . of Poisson-1-proesses,

• a sequene N r
1 , N

r
2 , . . . of Poisson-1-proesses,

• a sequene C1, C2, . . . of 0, 2 oin-tossing random variables, i.e.P(C1 = 0) = P(C1 = 2) = 1/2 and
• a sequene R1, R2, . . . of 0, 2 oin-tossing random variables, i.e.P(R1 = 0) = P(R1 = 2) = 1/2,all of whih are independent.When looking at the formal de�nitions to ome it an be helpful to look at Figure1.1. There both populations are given in a planar embedding.We now desribe the atalyst (ηt)t≥0, where the total number of atalyst indi-viduals at a time t will be alled ηtot

t . Let a funtion g : [0,∞) → [0,∞) be given,whih shall be �xed throughout the paper. The atalyst starts with one individual(ηtot
0 = 1) and evolves as a Markovian proess. This �rst individual faes a branh-ing event at the �rst jump of N c

1(
∫ ·
0 g(η

tot
s )/ηtot

s ds) = N c
1(
∫ ·
0 g(1)ds), say after time

t1. At this branhing event t1 this �rst individual has C1 sons, i.e. either 0 or 2sons. If C1 = 0, the proess is over sine no more individuals are alive. In the ase
C1 = 2 the �rst son is labelled son00, the seond one son01. Then son00 branhesat the �rst jump of the proess N c

2(

∫ ·

t1

g(ηtot
s )/ηtot

s ds), (1.1)with o�spring C2. The same for son01. Forthoming sons are given labels by adding
0 or 1 to the label of their father, so the �rst son is alled son(label of father)0, theseond one son(label of father)1. The label does not play any role for their behavior.To be a bit more formal de�ne the following funtion

π :

{

⋃

n∈N{0, 1}n → N

(ω1, . . . , ωn) 7→ 2n + ω12
n−1 + · · · + ωn2

0
. (1.2)When, for the sake of learness, atalyst individuals are alled sons = atalystsons, then the de�nition of the general atalyst proess η is given by:



1.2 The Catalyti Branhing Model with a modi�ed atalyst 5Figure 1.1: A planar embedding of the proess
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De�nition 1.2.2 (The general atalyst proess):The atalyst (ηt)t≥0 is a ontinuous time proess starting with one individual, alledson0, where the su�x 0 is alled the label. Eah individual alive son(label), bornat time tπ(label), lives until the �rst jump time of the proess

N c
π(label)(

∫ ·

tπ(label)

g(ηtot
s )/ηtot

s ds). (1.3)Then this individual branhes, i.e. it has Cπ(label) sons, either 0 or 2. In the�rst ase individual son(label) is alled dead. Otherwise its two sons are alledson(label)0 and son(label)1.Similarly the reatant is given by the following de�nition. Here the individualsare alled rsons, b is a branhing parameter and eah of them branhes faster ifthere are more atalyst individuals �around�:De�nition 1.2.3 (The general reatant proess):For a given atalyst realization (ηt)t≥0, the reatant (ξt)t≥0 is a ontinuous timeproess starting with one individual, alled rson0, where the su�x 0 is alled thelabel. Eah individual alive rson(label), born at time t′π(label), lives until the �rstjump time of the proess
N r
π(label)(

∫ ·

t′
π(label)

bηtot
s ds). (1.4)Then this individual branhes, i.e. it has Rπ(label) rsons, either 0 or 2. In the�rst ase individual rson(label) is alled dead. Otherwise its two sons are alledrson(label)0 and rson(label)1.Be aware that ηt represents the whole atalyst evolution up to time t. By de�nitionthe proess η is Markovian, sine any information needed for the further evolutionafter time t is available in ηt, namely the number of individuals at time t: ηtot

t . Thesame is true for the reatant ξ, if a atalyst realization is given, and for the pair
(η, ξ) as well.With the means of studying di�usion limits of the atalyst and the reatant,resaled versions of the previous proesses are de�ned. The number of starting in-dividuals of atalyst and reatant is inreased to n, where n is a natural number.



1.2 The Catalyti Branhing Model with a modi�ed atalyst 6Eah individual is given mass 1/n, so that the initial total mass is n× 1/n = 1 foratalyst and reatant. For the atalyst, time is sped up by a fator n as well. Thatmeans the Poisson proess runs n times the original speed.To de�ne the resaled proess more expliitly let the following modi�ed labellingfuntion be given:
πn :

{

⋃

k∈N{1, 2, . . . , n} × {0, 1}k → {1, 2, . . . , n} × N

(ω0, ω1, . . . , ωk) 7→ (ω0, 2
k + ω12

k−1 + · · · + ωk2
0)
. (1.5)With this labelling at hand it is lear how the formal ingredients of the resaledproess need to look like.De�nition 1.2.4 (The resaled atalyst proess):The resaled atalyst ηn = (ηnt )t≥0 is a ontinuous time proess on the proba-bility spae (Ωn,Fn,Pn), whih onsists of n independent opies of the probabilityspae de�ned in De�nition 1.2.1. It starts with n individuals alled son1, son2,. . . sonn, where the su�x is alled the label. Eah individual alive son(label), bornat time tπn(label), has mass 1/n and lives until the �rst jump time of the proess

N c
πn(label)(n

∫ ·

tπ(label)

g(ηtot,n
s )/ηtot,n

s ds). (1.6)Then this individual branhes, i.e. it has Cπn(label) sons, either 0 or 2. In the�rst ase individual son(label) is alled dead. Otherwise its two sons are alledson(label)0 and son(label)1.For the reatant one needs to remember that the branhing behavior dependson the number of atalyst individuals alive at a ertain time nηtot,n
t . Thereforethe resaled reatant is given by the following de�nition, where time needs notto be resaled sine the speeding up will be automati by the number of atalystindividuals alive:De�nition 1.2.5 (The resaled reatant proess):The resaled reatant ξn = (ξnt )t≥0 is a ontinuous time proess on the proba-bility spae (Ωn,Fn,Pn), whih onsists of n independent opies of the probabilityspae de�ned in De�nition 1.2.1. It starts with n individuals, alled rson0, rson1,. . . rsonn, where the su�x is alled the label. Eah individual alive rson(label), bornat time t′πn(label), lives until the �rst jump time of the proess

N r
π(label)(n

∫ ·

t′
πn(label)

bηtot,n
s ds). (1.7)Then this individual branhes, i.e. it has Rπn(label) rsons, either 0 or 2. In the�rst ase individual rson(label) is alled dead. Otherwise its two sons are alledrson(label)0 and rson(label)1.Remark 1.2.6:When speaking about resaled proess, then the probability spae (Ω,F ,P) does notsu�e. In fat we introdued (Ωn,Fn,Pn), onsisting of n independent opies of



1.3 Funtionals of Branhing Proesses 7the original probability spae. In order to avoid onfusion, this overload of notationin e.g. P, will be suppressed in most parts of the paper.For the understanding it is often helpful to have the planar embedding as in Figure1.1 in mind. 3The de�nitions so far have given a desription of the proess, but yet there is noembedding into a good state spae. We do this in the next setion and want topresent some funtionals of the proess.1.3 Funtionals of Branhing ProessesBy the de�nitions of the general proess (η, ξ) a full genealogy of atalyst andreatant is given. But instead of looking at the proess (η, ξ) in general ertainfuntionals of it will be onsidered, whih live in some reasonable state spaes. Fourdi�erent funtionals are used and onsidered following [GPW06℄, when looking atthe non-resaled proesses:The total mass, Chapter 2: It is lose to the lassial Galton-Watson idea, sinethe proess at time t is the number of individuals of the respetive types attime t. The state spae is N2. The proess is indiated with a supersript tot:
ηtot and ξtot. (1.8)The random tree, Chapter 4: It enodes the genealogy evolution up to time t intoa metri spae, alled an R-tree, whih evolves in time. It is in fat like agenealogial tree, where the life times are made distanes. State spae is theset of R-trees. The notation will be
ηfor and ξfor. (1.9)The ontour proess, Chapter 5: It is possible to ode the full genealogial treeup to a �xed time t by a ontinuous real-valued funtion, when a linear orderis put on the individuals, i.e. it is possible to distinguish the �rst and theseond son. State spae is C[0,∞)[0,∞). This proess will be
B and C. (1.10)The point proess, Chapter 6: For a given time t > 0 onsider the extant individ-uals at time t. Any pair of them has a most reent ommon anestor (MRCA).Collet labels and death times of the MRCAs and make points in the produtspae set of labels ×[0, t). These random points onstitute the point proessdesription. State spae is the set of integer-valued measures on labels× [0, t).It will be denoted by
Πt and Ξt. (1.11)These funtionals were put in an asending order in onern of information. Infat the last two desriptions ontain the same information as the general proess

(η, ξ). Hene one ould also start from the desription given by the ontour proessor the point proess. Starting from there one ould also �nd the way to the other



1.4 Main goals, methods and tools, quenhed vs. annealed and ontext 8desriptions and we would end up with the same proess. So the proesses (η, ξ),
(B,C), (Π,Ξ) are just di�erent sides of the same oin. As intuition and the relation-ship to Galton and Watson's ideas would have been lost, this path of representationwas not seleted. The �rst two funtionals ontain less information than the generalproess (η, ξ).1.4 Main goals, methods and tools, quenhed vs.annealed and ontext1.4.1 Main goalsFirst of all we are interested in obtaining asymptoti results for the random ge-nealogy of the reatant, espeially the random tree that was the 2nd funtionalmentioned before. For this purpose we require the help of other funtionals givenin the previous setion. For some questions it is helpful to use the ontour proess,for others the point proess has advantages for the alulations.The asymptoti results are omparable to di�usion limit results. For examplethe funtional limit theorem for Brownian motion, where a resaling of spae andtime gives a limit objet (for Brownian motion: spae-time resaled random walksonverge to Brownian motion). For eah of the funtionals a saling as given inDe�nitions 1.2.4 and 1.2.5 is done. The resaled proesses will be given a supersript�n�.We will be able to show that there exist di�usion limits

• for the total mass proess (ηtot, ξtot),
• for the reatant tree-valued forest ξfor,
• for a trunated reatant ontour proess Cδ and
• for the reatant point proess Ξt.One might wonder why there are only results for the reatant proesses and notfor the atalyti ones. So far there are no results for the atalyst in the literature,sine the proofs for the reatant rely heavily on the independene of the individualsand this is only given for the reatant.During all of this work we will link the di�erent funtionals, e.g. we will omparereatant limit ontour and reatant limit point proess.Finally we want to establish some omparison results between reatant trees andordinary Galton-Watson trees in the di�usion limit.1.4.2 Organization of the diploma thesis, methods and toolsThe diploma thesis is separated into two parts: a �rst part where the results arepresented and a seond part where the proofs are given. Eah hapter ontainingthe results is related to a hapter ontaining the orresponding proofs. In order toobtain these results several tehniques are used throughout this diploma thesis.The ideas for Chapters 2 and 7, desribing the total mass proess, onsist of stan-dard probability theory, inluding Markov proesses and martingale problems. One



1.5 Catalyti branhing 9an onsult [RW79℄, [KS00℄ and [EK86℄.The hapter about the tree-valued proess (Chapters 4 and 8) relies on the de�-nition of real trees, where a superb introdution is given in [EPW06℄ and [EW06℄.The tehniques used in these hapters make use of the Kingman oalesent [Kin82℄and its onnetion with trees, e.g. in [DK96℄.The ontour-proess hapter (Chapters 5 and 8) is strongly related to the tree-hapter and hene its proofs are joined in one hapter. For some introdution seee.g. [NP89℄ or [LG96℄ and some proofs require martingale problem methods, e.g.Stohasti averaging as in [Kur92℄.The point proess hapter (Chapters 6 and 9) uses some elementary understandingof Poisson point proesses as given in [RY91, Chapter XII.1℄. The tehniques forthe proofs are Poisson approximation, loal times and exursion theory as given in[RW79, Chapter VI.57℄.1.5 Catalyti branhingIn this losing setion of the introdution we speak about an important harateristiof the atalyti branhing sheme and the ontext into whih it an be put.1.5.1 Quenhed vs. annealedAn important feature for the analysis will be the following observation. There aretwo di�erent possibilities to understand the atalyti branhing proesses and toestablish the limit results for the reatant funtionals mentioned in the previoussubsetion:Sine the atalyst evolves autonomously one ould �rst let the atalyst run. Thenthe atalyst gets frozen = quenhed and for eah atalyst sample path a reatantevolution is started. It is like onditioning on the atalyst total mass proess, wheresome justi�ations will be given later. This onditioning will be alled quenhedanalysis.On the other hand we an let the proess (ηtot, ξ) run aside. This is possible sinethe evolution of ξ at time t depends only on the atalyst total mass at time t: ηtot
t .This is alled annealed analysis.1.5.2 ContextThe formulation itself an be brought into a wider ontext of proesses with two(or more) populations. The atalyst-reatant sheme is somewhere in the middleof the independent branhing sheme and the mutually atalyti one. In the nexttable the di�erent names and referenes are presented, where A and B are stohastiproesses and A→ B means �A in�uenes B� and so on.



1.5 Catalyti branhing 10name relation i.b.r. A i.b.r. B Papersindependent A B ∆t ∆t any branhingatalyti A→ B ∆t At∆t [Pen03℄, [GPW06℄atalyti, modi�ed atalyst A→ B g(At)
At

∆t At∆t this papermutually atalyti A↔ B Bt∆t At∆t [CDG04℄Here �i.b.r.� denotes the branhing rate per individual. In the top and bottom asesalso a modi�ed version might be of interest.



Part IDe�nitions and Results



2 The total mass proess (ηtot, ξtot)This setion is devoted to onsidering the total mass proess of the atalyti branh-ing proess de�ned in the introdution. Proeeding from that de�nition the �rstsetion presents a de�nition of the total mass proess. That means that we aregoing to look at the proess ounting the number of now-living individuals.Within the �rst setion we will set onditions on g, the branhing modi�ationof the atalyst, whih will be valid throughout the diploma thesis. In the seondsetion the orresponding di�usion total mass proess will be presented. As a �nalresult we will establish a di�usion limit theorem between the disrete proess andthe di�usion. The whole hapter is independent of the introdution in one sensethat we ould also start with De�nition 2.1.1.All proofs are given in hapter 7.2.1 The atalyst and the reatant total mass proessWe reall the de�nition of (η, ξ) from Setion 1.2 in the introdution. Eah atalystindividual has attahed an alarm lok ringing after an exponential time and thenit branhes. At time t there are ηtot
t atalyst individuals alive. The �rst branhingevent of one of them happens after the minimum of these ηtot

t exponential times, i.e.for the atalyst after the �rst jump of N c(
∫ ·
t g(η

tot
s ) ds). Then one individual dies(the one where the lok rings) and gets replaed by 0 or 2, i.e. total mass inreasesby 1 or dereases by 1. For the reatant similar ideas hold true and thus we get thefollowing desription:

• The total mass funtional (ηtot, ξtot) of the general proess, is an N2-valuedMarkov-proess. The �rst oordinate ηtot is the atalyst total mass, the seondoordinate ξtot is the reatant total mass. Both proesses will have the stru-ture of a ritial binary branhing proess, i.e. in a branhing event atalystmass inreases by 1 or dereases by 1.
• The atalyst ηtot emerges autonomously like a lassial ontinuous-time Galton-Watson proess, but with a reprodution funtion g : [0,∞) → [0,∞), whihshall only depend on the individuals at time t, but not on time expliitly.That means that if there are n individuals alive then the reprodution rate isnot like in a normal Galton-Watson-proess n, but g(n), i.e. the probabilityof a branhing event ourring between time t and t+ s is

∫ t+s

t
g(ηtot(u))e−g(η

tot(u))u dufor small time steps s.
• The reatant ξ evolves depending on the atalyst. The probability of a branh-ing event taking plae in the reatant population between time t and t + s



2.1 The atalyst and the reatant total mass proess 13is
∫ t+s

t
bηtot(u)ξtot(u)e−bη

tot(u)ξtot(u)u du.Hene we write down the following de�nition of the branhing proess.De�nition 2.1.1 (The disrete total mass proess): (i) The atalyst total massproess ηtot = (ηtot
t )t≥0 is a ritial binary modi�ed Galton-Watson-branhingproess started in 1 with branhing modi�ation g ∈ C([0,∞), [0,∞)):

ηtot
t ≡ (ηtot

t ; 1) 7→
{

ηtot
t + 1

ηtot
t − 1

eah at rate 1
2g(η

tot
t ). (2.1)(ii) For a given atalyst ηtot the reatant total mass proess ξtot = (ξtott )t≥0 is aritial binary time-inhomogeneous branhing proess started in 1 with branh-ing rate bηtot

t :
ξtott ≡ (ξtott ; 1) 7→

{

ξtott + 1

ξtott − 1
eah at rate 1

2bη
tot
t ξtott . (2.2)Remark 2.1.2: • Even if throughout the paper we will speak of branhing pro-esses, when onsidering the atalyst, an important feature whih �harater-izes� branhing behavior is lost by introduing the modi�ation g: independeneof the individuals.The evolution of one atalyst individual relies on the number of other individ-uals alive by the funtion g. Only if g is linear we have independene of theatalyst individuals. The reatant, however, evolves as a branhing proess.

• The reatant branhes in an �environment� given by the atalyst. The questionarises arises whether this branhing is somehow onneted to what is under-stood as �branhing in random environments�, i.e. the branhing events ariseas in ontinuous-time Galton-Watson branhing, but the o�spring distributionsare random. We do not disuss that question deeper, but refer the reader to[AK72℄ for elementary results about that question.
• The de�nition desribes behavior in small time steps. Indeed this will allow usto denote a pre-generator U1. This pre-generator de�nes a uniquely determinedproess (ηtot, ξtot), for a broad range of g. Hene the de�nition given is detailedenough. This is made more preise in Lemma 2.1.6.

3In the de�nition of the atalyst the funtion g emerges. In the forthoming wewill speify this funtion but let us �rst mention that we will already onsider gde�ned as a funtion for all x ≥ 0. This might seem umbersome sine so far we areonly dealing with an integer-valued proess, but later we will sale the masses of theindividuals from 1 to 1
n . Then the state spae beomes ( 1

nN)2 and then it makessense to already have a funtion de�ned for all non-negative real numbers ratherthan non-negative integers. Additionally we require some more �loal� properties,whih are useful in the di�usion limit approximation.



2.1 The atalyst and the reatant total mass proess 14Condition 2.1.3:Let g : [0,∞) → [0,∞) be a funtion, whih satis�es the following riteria:(G1) g loally Lipshitz-ontinuous on [0,∞),(G2) g(x) = 0 ⇔ x = 0 and ∃ g0 > 0 ∃x0 s.t. g(x) ≥ g0 ∀x ≥ x0,(G3) ∃C > 0 and α ∈ [0, 2) s.t. g(x) ≤ C(1 + xα) and(G4) ∃ 0 ≤ β < 1, c′ > 0 s.t. limx→0
x1+β

g(x) = c′ .For some justi�ation of these onditions, we refer the reader to Setion 7.1.1.Only let us mention that G2 and G3 let the atalyst total mass live in a worldbetween Brownian motion with absorbing boundary at 0 and Anderson di�usion.We will sometimes speak of the usual onditions on g.As already mentioned before we are interested in the behavior of resaled pro-esses. Here we give the de�nition of the resaled total mass proesses. We willdo time and spae resaling as when onsidering random walk limits for Brownianmotion. Here time is related to time and spae is related to individual masses.
• For the spae resaling we will onsider the mass of one individual asm = 1/n,but starting at time t = 0 with total mass 1, eah for atalyst and reatant.Therefore n starting individuals are present at time t = 0. So if we all ηtot,nthe resaled atalyst total mass and ξtot,n the resaled reatant total mass, westart with:

ηtot,n
0 = 1, ξtot,n0 = 1. (2.3)

• The time resaling is a bit di�erent. Bear in mind that the number of ata-lyst individuals is given by nηtot,n, and the number of reatant individuals is
nξtot,n.� The time resaling for the atalyst is given by speeding up by fator n.Note that there are nηtot,n atalyst individuals. All of them have assem-bled a Poisson-proesses running with speed ng(ηtot,n)/ηtot,n. Hene the�rst jump, the �rst branhing, arises after an exponential n2g(ηtot,n)-time.� There is no time resaling for the reatant. There are nξtot,n reatantindividuals and eah of them has a Poisson-proess with nbηtot,n-speedassembled. Hene the �rst jump, i.e. the �rst branhing emerges afteran exponential n2bηtot,nξtot,n-time.The onoming de�nitions an be made on the probability spae as given in De�-nitions 1.2.4 and 1.2.5.De�nition 2.1.4 (Resaled total mass proess): (i) The resaled atalyst totalmass proess ηtot,n = (ηtot,n

t )t≥0 is a ritial binary modi�ed Galton-Watson-branhing proess started in 1 with branhing modi�ation g ∈ C([0,∞), [0,∞)):
ηtot,n
t ≡ (ηtot,n

t ; 1
n) 7→

{

ηtot,n
t + 1

n

ηtot,n
t − 1

n

each at rate n2

2 g(η
tot,n
t ). (2.4)



2.1 The atalyst and the reatant total mass proess 15(ii) For a given atalyst ηtot,n the resaled reatant total mass proess ξtot,n =
(ξtot,nt )t≥0 is a ritial binary time-inhomogeneous branhing proess startedin 1 with individual branhing rate nηtot,n

t :
ξtot,nt ≡ (ξtot,nt ; 1

n) 7→
{

ξtot,nt + 1
n

ξtot,nt − 1
n

each at rate n2

2 bη
tot,n
t ξtot,nt . (2.5)Remark 2.1.5:It is worth having a look at the saling idea of the atalyst with branhing modi�ation

g. Consider sample paths for di�erent n, so a di�erent individual mass. By thede�nition just made we think of the branhing behavior not hanging for onstanttotal mass of the proess. That means if we hange n, then the branhing behavior isonly dependent on the total mass of the atalyst ηtot,n, sine g is diretly a funtionof the atalyst total mass. Hene the atalyst individuals evolve like in a mediumgiven by the total mass of the atalyst.Another possibility of saling would be to think of the branhing behavior dependingon the number of atalyst individuals alive. That means for mass m = 1
n to thinkof ng(nηtot,n) as the atalyst's branhing rate. This might math more the idea ofthe reatant's behavior, whose branhing events are determined by the number ofatalyst and reatant individuals alive. But learly for onvergene (given the timeresaling) it is ruial that either the resaling depends on the ∞-lose behavior of

g or we restrit ourselves to g(x) = O(x). Hene one either needs to adapt the timeresaling or restrit oneself in the hoie of funtions g. 3After the de�nitions it is time to speak about existene and uniqueness of thetotal mass atalyti branhing proess.Lemma 2.1.6: There is a unique proess (ηtot,n, ξtot,n) (up to indistinguishability)with sample paths in the Skorokhod spae DR2
+
[0,∞) satisfying the de�nitions (2.4)and (2.5). Moreover (ηtot,n, ξtot,n) is a martingale and a Feller-proess.This existene and uniqueness theorem also holds for the proess de�ned in De�-nition 2.1.1, as then n = 1. The proof is done by denoting a generator orrespondingto the jump proess behavior given in the de�nitions. This generator an then beshown to reate a strongly ontinuous ontration semigroup S(n)

t . The proof anbe found in Lemma 7.2.1 with the help of Setion 7.1.2.With the lemma at hand we will heneforth only talk about the modi�ation withàdlàg paths. As the proess is a Feller-proess, there exists a Feller-semigroup,whih we will denote by
S

(n)
t f(x, y) := E[f(ηtot,n

t , ξtot,nt )|ηtot,n
0 = x, ξtot,n0 = y], (2.6)when f ∈ C0(R

2
+,R) and x, y ∈ R2

+.From the de�nition of the proesses it is obvious that if the atalyst or the re-atant reah 0, they never leave again. As we onsider a branhing proess, thedisrete (time) theory says that extintion depends on the expetation of the o�-spring distribution. For the atalyst we have the following lemma:



2.2 The di�usion proess (X,Y ) 16Lemma 2.1.7: Every (disrete) atalyst proess, de�ned as in (2.4) with g satis-fying the usual onditions dies out almost sure, i.e.
T n,0 := inf{t ≥ 0 : ηtot,n

t = 0} <∞ a.s. (2.7)and 0 is an exit boundary.The proof of this lemma is given in Lemma 7.3.1.We fae a speial problem, when the atalyst reahes zero: Not only the atalystbranhing rate is zero, but the reatant branhing rate is zero as well. So there willnot be any more branhing events. From that point on, the proess is frozen, i.e.the atalyst stays in zero and the reatant will remain onstant. This point will beof great importane throughout the diploma thesis.Remark 2.1.8:With the previous lemma at hand we already know that almost surely only a �nitenumber of branhing events take plae for atalyst and reatant up to time T n,0,sine T n,0 <∞ almost sure. 32.2 The di�usion proess (X, Y )Like Brownian motion an be introdued as a di�usion limit of simple random walkswith appropriate time- and spae-saling, the total-mass-proess (ηtot, ξtot) has adi�usive limit proess. By a look at De�nition 2.1.4 we get an idea of what thegenerator for the di�usion ould look like. We will de�ne the di�usion proess nowby means of a system of SDEs. Later we will also disuss the proess as a solutionto a martingale problem.Let a probability spae (Ω̂, F̂ , P̂) with two independent Brownian motions begiven.De�nition 2.2.1 (The di�usion total mass proess):A di�usion total-mass proess (X,Y ) is given as a solution of the following systemof SDEs
dXt =

√

g(Xt) dW
1
t , (2.8)

dYt =
√

bXtYt dW
2
t , (2.9)where W 1 and W 2 are two independent Brownian motions.The �rst question is, if there exist solutions for this SDE-system at all. Herethe atalyst-reatant-type of the problem helps obtaining a positive answer. Wewill show that there exists a strong unique solution X for equation (2.8), sine g isloally Lipshitz-ontinuous. That means for any Brownian motion path W 1(ω) ona probability spae (Ω,A,P) there exists a path X(ω) whih solves the atalyst'sSDE for this spei� ω ∈ Ω. Then we an solve (2.9) for this single path X(ω) andwe get a strong unique solution for the seond equation.This means that given two independent Brownian motions W 1 and W 2 thereexists a strong unique solution (X,Y ) for the SDE system. So the De�nition 2.2.1gives a well-de�ned total-mass-di�usion proess (X,Y ) for two independent Brow-nian motions on a given probability spae:



2.2 The di�usion proess (X,Y ) 17Lemma 2.2.2 (Existene, uniqueness and Feller-property of the di�usion totalmass): If g satis�es Condition 2.1.3, the total-mass-di�usion-proess (X,Y ) is aontinuous unique strong solution of (2.8) and (2.9). Moreover (X,Y ) is a Fellerproess and we denote the Feller-semigroup as (St)t≥0:For x, y ∈ R+, f ∈ C0(R
2
+,R) : Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y]. (2.10)The proof of this lemma is split in several parts and an be found in Chapter 7 intwo di�erent setions. The �rst (Setion 7.4) is showing existene and uniquenessaording to the program presented before stating the lemma. The seond setion(Setion 7.6) deals with the Feller-property. It is proven in several steps via ouplingarguments using the atalyti setting of the system.As we now know that there exists a unique strong solution, we an also speak ofthe total-mass-di�usion proess. The proess (X,Y ) ould have been introdued aswell as a solution of the martingale problem (U, δ1 × δ1), where U is given by

Uf(x, y) =
1

2
g(x)

∂2f

∂x2
(x, y) +

b

2
xy
∂2f

∂y2
(x, y), (2.11)for f ∈ C2

0(R2
+,R).Proposition 2.2.3: The total-mass-di�usion proess (X,Y ) is given as the uniquesolution of the martingale problem (U, δx × δy), i.e. (X,Y ) is a proess, s.t.

f(Xt, Yt) −
∫ t

0
Uf(Xs, Ys)ds, (2.12)is a P̂ -martingale for any given f ∈ C2

0 (R2
+,R), where P̂ is the law related to Xand Y on CR2

+
[0,∞).There is a result, similar to the one given for the disrete setting, desribing theextintion behavior of the atalyst:Lemma 2.2.4 (Extintion of the atalyst total mass): Every atalyst proess Xwith g satisfying the usual onditions dies out almost sure in �nite time, i.e.

τ0 := inf{t ≥ 0 : Xt = 0} <∞ a.s. , (2.13)and 0 is an exit boundary for X.After this extintion time, the reatant will remain onstant, whih is obvious bythe Strong Markov property of the proess. The proof of this lemma relies mainlyon looking at the speed measure of the atalyst.As in the lemma just before we will sometimes only onsider one oordinate ofthe pair (X,Y ). In this ase we will not always be totally stringent in desriptionand will just say �the reatant proess� Y , but we will understand �reatant proess
Y for a given atalyst X�.



2.3 Convergene of the total mass proess to (X,Y ) 182.3 Convergene of the total mass proess to (X, Y )The main result of this hapter states the onvergene of the disrete total massproess (ηtot,n, ξtot,n) to the ontinuous total mass proess (X,Y ). It is the �rststep towards obtaining �asymptoti results� for the atalyti branhing proess.As both proesses have àdlàg paths, they both indue a measure on the set ofàdlàg paths DR2
+
[0,∞). This spae equipped with the Skorokhod-metri dSk isa omplete and separable metri spae. Then the set of probability measures on

(DR2
+
[0,∞), dSk) an be equipped with the Prohorov metri (for more, see [EK86,Chapter 3℄). The Prohorov metri generates a topology on the set of probabilitymeasures on DR2

+
[0,∞), for whih the following theorem needs to be understood.Theorem 2.3.1 (Weak onvergene of the total masses):When g satis�es Condition 2.1.3, then

L[(ηtot,n, ξtot,n)] =⇒ L[(X,Y )] as n→ ∞, (2.14)where onvergene is weak onvergene in the path spae DR2
+
[0,∞).The proof is done by applying some martingale problem results from the book ofEthier and Kurtz [EK86℄. As an easy onsequene we get the following orollary:Corollary 2.3.2 (Convergene of atalyst killing times): The atalyst killing timesonverge weakly as random variables on the state spae R+:

L[T n,0] =⇒ L[τ0] as n→ ∞, (2.15)Proof: This is true by onvergene of the �nite dimensional distributions of ηtot,nto X: Let t > 0:P(T n,0 ≤ t) = P(ηtot,n
t = 0) → P̂(Xt = 0) = P̂(τ0 ≤ t) (2.16)As always when having weak onvergene we an reate a probability spae wherealmost sure onvergene holds. Formally this an be done by Theorem 3.1.8 from[EK86℄:There is a realization of ηtot,n and X on a probability spae (Ω̃, F̃ , P̃) suh thatfor a given T > 0:

lim
n→∞

sup
t≤T

|ηtot,n
t −Xt| = 0, (2.17)Note that the Skorokhod metri was not used here, but the metri indued bythe ∞-norm on the ompat set [0, T ]. This is possible sine the atalyst X isontinuous.By these onsiderations it is possible to attah a (general) reatant proess to theatalyst. That means for eah ω ∈ Ω̃ we �nd reatants ξn(ω) s.t. ξn(ω) is a reatantproess for a atalyst with total mass proess ηtot,n(ω). That is the basis for thequenhed analysis and we give a de�nition of this probability spae, whih is givena produt struture.



2.3 Convergene of the total mass proess to (X,Y ) 19De�nition 2.3.3 (The quenhed reatant proess):For eah n ∈ N let the probability spae (Ω̃ × Ωn
r , F̃ ⊗ Fn

r , P̃ ⊗ Pnr ) be given. Itsupports atalyst total mass proesses ηtot,k for eah k ∈ N, a limit atalyst totalmass X and the general reatant proess ξn, whih is de�ned as in De�nition 1.2.5.Additionally it holds
lim
k→∞

sup
t≤T

|ηtot,k
t −Xt| = 0. (2.18)



3 The real treeTo desribe the genealogy of branhing proesses some tree-like-struture is needed.With this aim in mind in a �rst setion motivation and de�nition of real treesare given. Next some simple properties and operators on real trees are de�ned.Additional onepts suh as linearly ordered trees are treated in a third setion.3.1 De�nition of the real tree3.1.1 The graph-theoretial tree and de�nition of the real treeThis setion is devoted to show that the onept of real trees (R-trees) is a goodway to desribe a genealogy. Think of a genealogial tree of an ordinary binaryontinuous-time Galton-Watson proess starting with one individual. It onsistsof a set of verties V representing the individuals and edges E representing therelations between fathers and sons. One vertex root ∈ E is distinguished as the�rst individual. Additionally we know the lifetime of eah individual, so somehowa funtion L : V → [0,∞). This is all the information we want to have for thetree-valued proess and it is oded into
• a graph-theoretial tree (E,V ),
• a root ρ ∈ E and
• a lifetime funtion L : V → [0,∞).This onept of representing a genealogy ontains some di�ulties. Who are theindividuals being alive 100 years after the start? One needs to add up lifetimes ofall anestors to get the atual time. The lue whih helps is to use the edges formore. One has to swith a bit ideas: Up to now the verties were understood as theindividuals, now the edges will be the individuals, the verties are the birth-and-death (or branhing) events. That means the root individual is related to an edge,whih either ends (0 sons) or splits into two edges (two sons) and so on. As beforewe assemble the lifetime of eah individual to its edge. A good way to do this isnot just to introdue another funtion L̃ : E → [0,∞), but to use the fat that theone-dimensional edges an ode the lifetime muh better than the zero-dimensionalverties. So we introdue distanes: length of the father edge =lifetime of father.This onept is rather something analytial than graph-theoretial. We have anobjet, the genealogial tree with distanes and it will be the right idea to onsidermetri spaes that have a tree-like shape. These metri spaes are introdued nowand get the name R-tree or real tree.De�nition 3.1.1 (The real tree):A omplete metri spae (T, d) is alled an R-tree if it satis�es the following twoonditions:



3.1 De�nition of the real tree 21
• For every x, y ∈ T there exists a unique isometri embedding

φx,y : [0, d(x, y)] → T, (3.1)suh that φx,y(0) = x and φx,y(d(x, y)) = y.
• For every injetive ontinuous map ψ : [0, 1] → T , it is true that

ψ([0, 1]) = φψ(0),ψ(1)([0, d(ψ(0), ψ(1))]). (3.2)The �rst ondition in fat says that the tree is one-dimensional and that all pointsare onneted by a ontinuous path in the tree. The seond ondition guaranteesthat there are no loops inluded in the tree. So in fat this de�nition gives whatone might suspet to be a tree.There is an equivalent de�nition whih says that a metri spae (T, d) is an R-treeif it is path-onneted and satis�es the four-point-ondition. The latter means thatfor all x1, . . . , x4 ∈ T it is true that
d(x1, x2) + d(x3, x4) ≤ max{d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)} (3.3)If T ontains a point ρ, alled the root, then we will say that (T, d, ρ) is a rooted

R-tree. Yet this point ρ does not need to have any speial properties.It is now possible to think of the set of all rooted R-trees. In fat a lot of them willbe �the same� in the sense that for two rooted R-trees (T1, dT1 , ρ1) and (T2, dT2 , ρ2)there exists an isometri isomorphism ι : T1 → T2, s.t. ι(ρ1) = ρ2. Therefore we willdenote by Troot the set of all equivalene lasses of rooted R-trees. Heneforth wewill not distinguish between a member of an equivalene lass and the equivalenelass itself.For more about real trees onsult [Chi01℄, [EPW06℄ or [EW06℄.3.1.2 Extended de�nitions of real rooted trees and genealogial treesFor a rooted R-tree some more terminology is used. The motivations for the namesomes from tree-ideas or a genealogial point of view, whih should be kept in mindfor further onsiderations.De�nition 3.1.2 (Tree terminology):Let (T, d, ρ) ∈ Troot be given.
• Write [x, y] for the set

φx,y([0, d(x, y)]), (3.4)whih is the unique path onneting x and y. Sometimes the term geodesi isused for this path.
• The path [ρ, x] onneting the root ρ and an arbitrary point x ∈ T is alled anar.
• If x ∈ T is suh that no other points lie beyond x, i.e. if for any y ∈ T :
x ∈ [ρ, y] ⇒ x = y, then x is alled a leaf.



3.2 Operators and properties for rooted real trees 22
• For two points x, y ∈ T there are the two paths going to the root and the pointwhere they �rst meet is denoted by x∧ y. This point is alled the most reentommon anestor(MRCA). Clearly this point is de�ned well, sine there areunique geodesis.
• The degree of the root is de�ned as the number of di�erent edges leaving theroot, if there are �nitely many. Otherwise the degree is ∞.There is a onstrution whih allows to �build� trees, whih we desribe in thefollowing remark.Remark 3.1.3 (Gluing together rooted trees):Let two rooted R-tress (T1, dT1 , ρ1) and (T2, dT2 , ρ2) be given, where the tree sets

T1, T2 are disjoint. The seond tree T2 shall be glued to a point a ∈ T1, and this newrooted R-tree is alled (T, d, ρ), where learly T = T1 ∪ T2, ρ = ρ1. Additionally themetri d is de�ned to be the metri of single trees if both points are ontained ineither T1 or T2 and to be d(x1, x2) = d1(x1, a) + d2(ρ2, x2) for x1 ∈ T1, x2 ∈ T2. Itan easily be heked that this onstrution still is a rooted R-tree. 3Consider a family history with a starting individual and known lifetimes of eahindividual until it vanishes and has an o�spring. Then it is possible to onstruta rooted R-tree T representing the family history by giving to eah individual arooted R-tree, (in fat only a line with length equals lifetime) whih is then gluedto the anestor's death point.By this onstrution we get a rooted R-tree, were the root ρ is the birth pointof the starting individual. The distane within the tree is the so alled genealogialdistane metri dgen, represented for two points x, y ∈ T by:
dgen(x, y) = d̂(x, ρ) + d̂(y, ρ) − 2d̂(x ∧ y, ρ), (3.5)where d̂(x, ρ) is the �age� of x, measured from the birth of the �rst individual on.The very simple tree onsisting only of a line with a ertain length will in theforthoming sometimes be alled line segment of length L. By this is meant a rooted

R-tree (T, d, ρ) with a leaf point t, s.t.: T = φρ,t([0, L]).3.2 Operators and properties for rooted real treesOn the set of rooted trees Troot some operations are required. Later some basiproperties about this set of real trees will be given.De�nition 3.2.1:For (T, d, ρ) ∈ Troot de�ne:(i) the height h(T ) = sup{d(ρ, x) : x ∈ T},(ii) the ut operator Qt : Troot → Troot, whih uts the tree at height t:
Qt(T, d, ρ) = ({x ∈ T : h(x) ≤ t}, d, ρ), (3.6)(iii) the border operator ∂Qt : Troot → {set of labels}, whih takes all elements ofthe tree with height t:
∂Qt(T, d, ρ) = {x ∈ T : h(x) = t}, (3.7)



3.2 Operators and properties for rooted real trees 23(iv) the ǫ-trimming Sǫ : Troot → Troot of T :
Sǫ(T ) = {ρ} ∪ {x ∈ T : ∃y ∈ Ts.t. x ∈ [ρ, y] and d(x, y) > ǫ} (3.8)There are some possible ways to make the spae Troot a metri spae. One wayis to start with the Hausdor� metri dH for ompat subsets A and B of a singlemetri spae (X, r):

dH(A,B) := inf{ǫ > 0 : B ⊂ Aǫ, A ⊂ Bǫ} (3.9)where Aǫ = {x ∈ X : r(x,A) < ǫ}. Two rooted R-trees are metri spaes themselvesand do normally not �live� on a ommon metri spae. So for omparing two trees weneed to embed them in a ommon metri spae (Z, dZ). It is useful to remember thatwe were only going to think of root-invariant equivalene lasses of trees. The rootedGromov-Hausdor�-distane between two rooted trees (T1, dT1 , ρ1) and (T2, dT2 , ρ2)is de�ned by:
dGHrooted(T1, T2) := inf{d(Z,dZ )

H (T ′
1, T

′
2) ∨ dZ(ρ′1, ρ

′
2)}, (3.10)where the in�mum is taken over all rooted R-trees T ′

1, T
′
2 that are root-invariantisomorphi to T1, T2 as metri spaes and that are subspaes of a ommon metrispae (Z, dZ).With this metri at hand we will list some results whih were proven in [EPW06℄and an be found as Theorem 2, Lemma 2.5 and Lemma 2.6. They are put togetherin the following propositionProposition 3.2.2: • The metri spae (Troot, dGHrooted) is separable and om-plete.

• A subset T ⊂ Troot is pre-ompat if for every ǫ > 0 there exists a positiveinteger N(ǫ) suh that eah T ∈ T has an ǫ-net with at most N(ǫ) points. An
ǫ-net for T is a set of points in T , s.t. that every x ∈ T is ǫ-lose to at leastone of these points.

• For any (T, ρ) ∈ Troot:
dGHrooted(T, Sǫ(T )) ≤ ǫ. (3.11)Later on we are going to onsider �resaled populations� in the sense that we willstart with n individuals. Thus we need to onsider various trees but the followingremark tells that this does not make a new de�nition neessary:Remark 3.2.3 (The forest):A set of real trees {(Ti, di, ρi) : i ∈ I} an be put together into one real tree (T, d, ρ)by gluing together all the trees to the new root ρ. The distane between ρ and ρiis hosen to be a non-negative onstant. Suh a set of trees is alled a real forest.But the tehniques for handling it are the same as the ones for trees by the previousonsiderations. 3More advaned ideas about rooted trees an be found in [EPW06℄ and [GPW07℄.In the latter additionally a measure on a tree is given in the de�nition of metrimeasure spaes. We do in fat not need this more advaned desription, but forsomebody interested in a dynami desription of the onoming proesses we referto that paper.



3.3 Linearly ordered rooted real trees 243.3 Linearly ordered rooted real treesReal trees do so far not allow to distinguish �family names�. That means, if twotrees are mirrored opies of eah other, then they are onsidered the same. Ifone assembles labels to the verties of the tree then the before �same� trees mightdi�er. Hene this is a possible way to reate a higher information funtional thanan ordinary real tree. In this setion we are not too deeply interested in an exatlabelling, but we are satis�ed to have an ordering on these labels and onsider onlythis order relation. We will indeed give an ordering for all elements of the tree notonly for single ars.Therefore we will think of ways to haraterize an ordering on the tree. This willbe neessary for the ontour proess and the point proess given in later hapters.In fat we will see that we just extend the ordering given as su�xes of the sons (e.g.son011001) in De�nition 1.2.2 and 1.2.3.The �rst intuitive idea of an order is to de�ne that x ≤partial y if x ∈ [ρ, y], butof ourse this only ompares points on the same ar from the root, so it is a partialorder. But we will require that the total order respets this partial order. Theseond idea is that when thinking of traversing the tree along the ordering thenan already started subtree should be ��nished� before starting to traverse the nextdisjoint subtree.De�nition 3.3.1 (Rooted, linearly ordered trees):The metri spae (T, d, ρ,≤lin) is alled a rooted, linearly ordered R-tree, if (T, d, ρ)is a rooted R-tree and the linear order ≤lin on T respets for all x, y ∈ T :(i) If x ≤partial y, then x ≤lin y.(ii) If x ≤lin y and for any x′, y′ ∈ T , s.t. x ∧ y <partial x
′ ∧ x and x ∧ y <partial

y′ ∧ y, then x′ ≤lin y
′.The set of equivalene-lasses of suh trees is alled Troot,lin. Clearly the isometryhere is required to onserve the linear order.Additionally we will say that a rooted, linearly ordered R-tree is �nite, if it hasonly �nitely many branh points. The set of all these trees is then denoted by

T
root,lin
fin .The operators given in the previous setion are also de�ned here. It is oftenhelpful to think of a planar embedding of the rooted linearly ordered tree where theorder is �left-to-right�.One should note that the set of �unordered� trees an be embedded into the set ofordered trees by putting a random ordering on all trees. So ordered trees are moreompliated and therefore an somehow �store� more information. This will omebak to our mind, when we look at the ontour proess and the point proess onone side and the random tree on the other side.



4 The tree valued proess (ηfor
t , ξfor

t )In this hapter the tree-valued atalyti branhing proess will be introdued. Forthis the onept of R-trees, developed in the previous hapter will extensively beused. In a �rst setion the de�nitions for the tree-valued atalyst and reatantrandom-variable are made. Resaled forests, i.e. olletions of trees, are presentedin a next setion. Then we will talk about basi properties and a onvergene resultfor the reatant tree proess. A last setion ontains a result omparing the reatanttree with the lassial Galton-Watson forest.This hapter is the �ore� of the diploma thesis sine it states results about theasymptoti genealogy of the atalyti branhing proess. All proofs are given inChapters 8 and 9.4.1 The atalyst and the reatant forestIn this setion we are interested in desribing the atalyst and the reatant forestin the disrete setting.It is tempting to write down a desription of the tree-valued reatant proess as inthe de�nition of the total mass proesses in De�nition 2.1.1: extending leafs in smalltime steps a bit or in a branhing event assembling two new ars to the branhingleaf. The problem of this idea, is that it does not su�e the strong Markov propertyany more. Stopping the �rst time it jumps to two individuals two ar stubs, but oflength zero, are attahed to the tree. But distinguishing the two stubs ontraditsthe properties of metri spaes.There are several attempts to solve this problem of giving a dynami desriptionof the proess. A good idea is to assemble weights to the individuals, whih meansextending the state spae from metri spaes to metri measure spaes. Consult thepaper of Greven, Pfa�elhuber and Winter ([GPW07℄) for more information aboutthat.But here the dynami approah to over the problem will not be taken. Forthe results to be proven it is su�ient to onsider the �already done� tree. Thatmeans that from the general proess (η, ξ) and a �xed t > 0 the tree an alreadybe squeezed out. It an be onstruted via the gluing tehnique desribed in theprevious hapter. So we make the following de�nition on the probability spaementioned in De�nition 1.2.1:De�nition 4.1.1:The tree-valued proess (ηfor
t , ξfort )t≥0 with state spae Troot × Troot is de�ned asfollows:(i) The atalyst tree ηfor
t for a �xed t > 0 is obtained by gluing together theindividuals desribed in the De�nition 1.2.2 of η whih live until time t to aroot ρcat. The metri is the genealogial distane metri.



4.1 The atalyst and the reatant forest 26(ii) The reatant tree ξfort for a given atalyst realization (ηs)s≥0 and time t > 0 isobtained by gluing together the individuals desribed in the De�nition 1.2.3 of
ξ whih live until time t to a root ρreac. The metri is the genealogial distanemetri.Remark 4.1.2: • Dynamially the trees look like Markov proesses growing, butin fat a dynami de�nition would fae the problems mentioned before thede�nition.

• Up to a �xed time t only a �nite number of branhing events will arise almostsurely. Therefore ηfor
t and ξfort are �nite trees almost surely and hene the statespae (ompat metri spaes) was desribed orretly.

• It is possible to onsider the tree pair and then not having a reatant relyingon the general proess η, sine the funtional ηtot an be obtained from ηforwith the help of #∂Qt.
3Clearly sine the total mass proess is a funtional of the tree-valued one, theresults from Chapter 2 on page 16 will play a role. As the atalyst dies out after analmost sure �nite time T 1,0, the tree does not grow any more then. So all interestingthings happen up to that time. Therefore it makes sense to onsider the atalysttree at that time. Moreover the reatant individuals keep on living without anybranhing after that killing time, if there are still some alive (for linear g see forexample (2.8) in [Pen03℄). Thus the reatant tree will neither show any interestingbehavior after that killing time of the atalyst. Hene speial interest in that hapterwill be laid on the tree-valued random variable:

(ηfor
T 1,0 , ξ

for
T 1,0). (4.1)We take up the resaling presented in De�nition 1.2.4 and 1.2.5 from the Intro-dution. We reapitulate brie�y that the number of starting individuals is inreasedfrom 1 to n. Therefore we have n single trees and we will all suh an objet a forest,even if all of the n resaled trees in the forest are glued to the same root, whih hasthen degree n. The individual mass is hanged to 1

n and the atalyst is sped up bya fator n.The resaled proesses are again de�ned in a stati way on the probability spaementioned in De�nitions 1.2.4 and 1.2.5:De�nition 4.1.3:For n ∈ N the proess (ηfor,n
t , ξfor,nt )t≥0 with state spae Troot × Troot is de�ned asfollows:(i) The resaled atalyst forest ηfor,n

t for a �xed t > 0, is obtained by gluingtogether the individuals desribed in the De�nition 1.2.4 of ηn whih live untiltime t to a root ρcat. All n starting individuals are glued to the root ρcat, withdi�erent ars, so that the root has degree n. The metri is the genealogialdistane metri.(ii) The resaled reatant forest for a given atalyst realization (ηns )s≥0 for a �xed
t > 0, ξfor,nt , is obtained by gluing together the individuals desribed in the



4.2 Tightness and Convergene of the reatant forest 27De�nition 1.2.5 of ξ whih live until time t to a root ρreac. All n startingindividuals are glued to the root ρcat, so that the root has degree n. The metriis the genealogial distane metri.Again we fae a problem after the extintion of the atalyst as in (4.1).4.2 Tightness and Convergene of the reatant forestNow we have to separate the two proesses ηfor,n and ξfor,n. We will give a on-vergene result for the latter, the reatant forest, and will leave the �rst one. Thisis done, beause atalyst individuals do not evolve independently and applying theproofs whih work for the reatant is not possible. When we will talk later aboutthe ontour proess, then a atalyst proess would not even be Markovian and itslimit learly not a di�usion.The result, however, will not be a result for the whole proess ξfor,n. It will de-sribe the behavior of the ��nished� reatant forest, i.e. the forest ut, when theatalyst has died out as in (4.1). We will give �rst a quenhed result and later anannealed one.For the quenhed result introdue the following notation for onditional proba-bility:
L(ξfor,n; η) := L

[

ξfor,n
Tn,0 |ηtot,n = η

]

. (4.2)Note that this is the law of a Troot-valued random-variable.We �x an ω ∈ Ω̃ as in De�nition 2.3.3. That means we have a onvergent sequeneof atalyst total mass proesses (ηtot,n(ω))n∈N:
lim
k→∞

sup
t≤T

|ηtot,k
t (ω) −Xt(ω)| = 0. (4.3)We will leave out the ω in what follows and will just use the word �quenhed�.Then the following proposition holds:Proposition 4.2.1 (Tightness of the reatant forest): The sequene of the quenhedresaled atalyti forest {(ξfor,n

Tn,0 ; ηtot,n)}n∈N is tight in the topology of the spae
(Troot, dGHroot).Sine the spae Troot with the Gromov-Hausdor� metri is omplete and sepa-rable it is true that {(ξfor,n; ηtot,n)}n∈N is sequentially ompat and therefore hasa onvergent subseries. Clearly one would like to extend that result by desribinga unique limit and this an be done in the next theorem. For that purpose the
δ-hitting time of the atalyst

τ δ = inf{t ≥ 0 : Xt ≤ δ} (4.4)needs to be de�ned. Then the following quenhed result holds:Theorem 4.2.2 (The reatant limit forest exists):There exists a random variable Y for ∈ Troot (depending on X), s.t.:
L
[

ξfor,n; ηtot,n
]

n→∞−−−→ L
[

Y for;X
]

. (4.5)



4.3 Comparison result between the lassial forest and the atalyti forest 28The law of Y for is given by
L
[

Y for;X
]

= lim
δ→0

L
[

T ((ζδu)0≤u≤α4/b
)
]

, (4.6)where onvergene is in the Prohorov-metri of probability measures, T is the map-ping desribed on page 31.The di�usion ζδ is the unique solution of the (Aδ,D(Aδ)) martingale problem, where
D(Aδ) is given by:

D(Aδ) = {h ∈ C1([0, τ δ ],R) : h′|{0,τδ} = 0,
h′(·)
X·

∈ C2
[0,τδ]([0,∞))} (4.7)and for eah f ∈ D(Aδ):

Aδf(c) =

(

f ′

bXc

)′
(c), (4.8)Furthermore α4/b is the loal time inverse at level 0 of ζδ of 4

b .Note that when we write L [Y for;X
] it is not yet lear that this an be understoodin the spirit of (4.2). So far we ould say that we use this notation to express thedependene of the law on X. After the next annealed theorem we will see that wealso an understand that expression as a onditional probability.The proof oupies the biggest part of Chapter 8. First we ut the resaledreatant forest and relate it to a ontour proess. The ut ontour proess sequeneonverges to a di�usion. As we an reover the ut tree from the ontour and wehave tightness of the forest sequene we get the result.It it is even possible to extend this result to an annealed point of view. As weannot state a limit result for the atalyst tree we have to restrit ourselves to aonvergene theorem of the joint law of atalyst total mass and reatant forest.Theorem 4.2.3 (Convergene of the joint law for the reatant forest):The sequene of the pair of resaled atalyst total mass and resaled reatant forestonverges:

L(ηtot,n, ξfor,n
Tn,0 ) ⇒ L(X,Y for) as n→ ∞. (4.9)Here onvergene is understood as weak onvergene on the set of probability mea-sures on DR1

+
[0,∞) × Troot with the produt topology.The proof of this theorem an be found in Setion 8.6 due to the tehniques used,whih are developed in the point proess Chapter.4.3 Comparison result between the lassial forest andthe atalyti forestIn this last setion we want to ompare the forest of an ordinary Galton-Watsonbranhing forest, whih will be alled Z for, and the atalyti forest Y for. Results forthe lassial (=Galton-Watson = Continuum Random Tree = CRT) forest are given



4.3 Comparison result between the lassial forest and the atalyti forest 29in [LG96℄ and [Ald93℄. For Z for the ontour proess is easily given as the exursionproess of a Brownian motion β until loal time at level zero reahes 2 (this an beseen for the ase of a �xed atalyst X ≡ 1 and b = 2 by the arguments in the proofof the limit ontour).For this setion �x a atalyti bakground (Xr)0≤r≤τ0 . The way to ompare thetwo trees is to take a �xed time t and to relate the extant individuals of Y at time
t to the extant individuals of Z at a non-random time s(t), depending on the �xedatalyst. If the metri is also hanged, then in the end we see that Y for looks like astrethed CRT Z for.We de�ne the saling funtion st for t < τ0:

st :

{

[0, τ0] → [0,∞)

h 7→ b
2

∫ t
t−hXs ds

. (4.10)By an easy argument one an show (see Lemma 9.2.2) that the ontour proessesof the CRT, whih is equal to β and the reatant ontour ζδ are related by st:
(ζδu)u≥0

d
= (s−1

t (βγ−1(u)))u≥0, (4.11)where γ is the time hange depending on st (see (9.24) for the de�nition of γ).For the trees things are similar and we get the following proposition:Proposition 4.3.1 (Strething tree metri): Let Z for be a lassial Galton-Watsonforest and Y for a atalyti branhing forest with �xed atalyst (Xs)0≤s≤τ0. Then forany t < τ0 let
Ỹ for
t := ∂Qst(t)(Z

for) (4.12)and for u1, u2 ∈ Ỹ for
t , i.e. u1, u2 ∈ ∂Qs(t)(Z

for) de�ne:dỸ for(u1, u2) := 2s−1
t

(

1
2dZfor(u1, u2)

)

. (4.13)Then it holds that
(Ỹ for,dỸ for)

d
= (∂QtY

for;X), (4.14)where equality in distribution is meant to be on the set of ultrametri spaes.The proof is done via the point proesses πt and πβ,t, whih desribe distanesbetween extant individuals.Remark 4.3.2: • The idea for a statistiian is to have a sample of extant in-dividuals that are known to evolve aording to an inhomogeneous branhingmehanism. The question is whether it is possible to determine the unknowninhomogeneity, i.e. the atalyst. But the atalyst is enoded in the sale fun-tion st and one an ompare the distanes with the CRT-distanes.
• The metri spae desribing the extant individuals is in fat an ultra-metrispae, that means for any u1, u2, u3 ∈ ∂QtY for it holds that:dY for(u1, u3) ≤ max{dY for(u1, u2),dY for(u2, u3)}. (4.15)

3



5 The ontour proess (B,C)Closely related to the forest-valued proesses is the desription of the populations
(η, ξ) as ontour proesses. By this a oding of the tree-struture into a positiveontinuous funtion is meant. The major di�erene to the preeding two funtionalsis that the ontour proess keeps trak of all information available from the generalproess (η, ξ). In omparison to the tree-valued proess it also remembers �familynames�. That means that the ontour proess allows to distinguish senarios wherein the �rst one son00 has a long history, son01 a short history and in the seondsenario the other way round. The proess desription we will give is not a dynamione.5.1 Contour proesses and branhing populationsImagine a (�nite) genealogial tree with names (=labels) at the verties be given.Additionally an ordering of the names should be available, e.g. like in an addressbook. One an traverse the tree starting from the root visiting the verties aordingto the order, i.e. visiting the individuals as listed in the telephone book, along theirlifetimes. This walk through the tree visits every point in the tree.The idea now is to ode this walk into a funtion e : [0,∞) → [0,∞) by traversingthe genealogial tree. We go along the unique geodesis following the ordered labelsand denote on the ordinate the distane to the root. By this proedure a ontin-uous positive funtion is given. Shortly, the ontour is the funtion where elapsedtransversal time is mapped to reent height of the traversal, i.e. the distane fromroot to the reent point of the tree. Of ourse to walk ontinuously one also hasto walk in the opposite diretion of the total order at some times to reah the nextpoint, with a higher order. After �nishing the walk through the tree, the heightstays zero. See Figure 8.1 to get an idea of the proedure.It is true that the linearly ordered trees in Troot,lin have a speial ordering respet-ing De�nition 3.3.1. Therefore we an understand the ontour as the walk �around�the tree. This walk around the tree an be done with a given speed σ > 0 anddi�erent σ results in a di�erent ontour. We will denote this mapping from �niteompat linearly ordered rooted R-trees to ontinuous funtions by C(· : σ):De�nition 5.1.1 (Tree to ontour mapping):For a σ > 0 the mapping C(· : σ) : T

root,lin
fin → C0

[0,∞)[0,∞) is de�ned as the mappingwhih maps a �nite linearly-ordered rooted tree (T, d, ρ,≤) to the ontinuous funtion
C(T : σ) : [0,∞) → [0, h(T )] in the following way:Denote the number of branh points of T in asending linear order: x0 = ρ ≤ x1 ≤
x2 ≤ · · · ≤ xN̂ . Whenever ρ ∈ [xn, xn+1], then add ρ to the sequene of branh



5.1 Contour proesses and branhing populations 31points x1, . . . , xn, ρ, xn+1, . . . xN̂ . Then C(T : σ) is given by
u 7→



































d(ρ, φρ,x1(ũ)) for 0 ≤ ũ := σu ≤ d(ρ, x1)

d(ρ, φx1,x2(ũ)) for 0 ≤ ũ := σu− d(ρ, x1) ≤ d(ρ, x2)... ...
d(ρ, φxN ,ρ(ũ)) for 0 ≤ ũ := σu− d(ρ, x1) − . . . d(xN−1, xN ) ≤ d(xN , ρ)

0 otherwise .(5.1)For another onstrution of this mapping even for non-�nite trees see remark 3.2of [EW06℄.Remark 5.1.2:By the ontour proess we have indeed a planar embedding of a real tree. For moreabout that, see [NP89℄. 3One also an go the other diretion: Let a ontinuous funtion e : [0, 1] → [0,∞)be given with e(0) = e(1) = 0 and e(x) ≥ 0 for all x ∈ (0, 1). Then de�ne anequivalene relation ∼e on [0, 1] by
x ∼e y if e(x) = min

z∈[x∧y,x∨y]
e(z) = e(y). (5.2)The metri spae ([0, 1]/ ∼e, d), where

d(x, y) = e(x) + e(y) − 2 min
z∈[x∧y,x∨y]

e(z), (5.3)is then easily heked to be a rooted ompat R-tree (see Lemma 3.1 of [EW06℄).To be more formal we introdue a mapping from the following set of funtions
C0,∗

[0,∞)[0, L] := {f ∈ C([0, L], [0,∞)) : f(0) = f(L) = 0, f(x) ≥ 0 ∀x ∈ (0, L)}(5.4)with the previously desribed properties, where L replaes 1 and make the followingde�nition:De�nition 5.1.3 (Contour to tree mapping):The mapping T : C0,∗
[0,∞)[0, L] → Troot,lin is de�ned for a ontinuous e ∈ C0,∗

[0,∞)[0, L]by:
T (e) = ([0, L]/ ∼e, d,≤lin), (5.5)where the equivalene relation ∼e and the metri d are de�ned as in (5.2) and (5.3).The root ρ is the equivalene lass orresponding to zero and ≤lin is the linear orderindued from the interval.Additionally de�ne the mapping
Tunord : C0,∗

[0,∞)[0, L] → Troot, (5.6)whih does the same as T , but gives up the ordering of the tree.Remark 5.1.4: • Both mappings are ontinuous by de�nition (quotient map-ping!).
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• For �nite rooted linearly ordered R-trees and arbitrary σ > 0 it is then truethat T ◦ C = id. The same is true the other way round if the traversal speed
σ is adjusted orretly. But we will in fat use the �rst identity only; thus thetraversal speed is not a�eting the tree struture. For more information, see[EW06℄.

3For our purposes the tree-valued proess does not yet give an ordered tree, whihould be put into the mapping C(· : σ) and would give us a ontour. This problemneeds to be taken up now. So, when starting with the non-linearly ordered tree-valued proess from the previous hapter we ould think of C as a multi-valuedmapping. This multi-valued mapping would transport equal weights to eah possibleordering of a given �nite tree ηfor
t or ξfort . But in fat it will be easier to extratthe funtional �ontour� diretly from the general proess (η, ξ). Therefore de�neanalogously to the previous hapter a atalyst and reatant proess (η̃, ξ̃), but withvalues in linearly ordered trees Troot,lin:De�nition 5.1.5:For n ∈ N the random-variable (η̃n, ξ̃n) with values in Troot,lin × Troot,lin is de�nedas follows:(i) The �rst oordinate η̃n, is obtained by gluing together the individuals desribedin De�nition 1.2.4 of ηn, whih live until time T n,0, to a root ρcat. All nstarting individuals are glued to the root ρcat, with di�erent ars, so that theroot has degree n. The metri is the genealogial distane metri and the linearorder is the one obtained from the labels of the general proess η.(ii) The seond oordinate ξ̃n, for a given atalyst realization (ηns )s≥0, is obtainedby gluing together the individuals desribed in De�nition 1.2.5 of ξ, whih liveuntil time T n,0, to a root ρreac. All n starting individuals are glued to the root

ρreac, so that the root has degree n. The metri is the genealogial distanemetri and the linear order is the one obtained from the labels of the generalproess ξ.This de�nition gives us the full genealogial tree of atalyst and reatant, at leastuntil the time T n,0, after whih nothing interesting happens any more.We will leave out the supersripts n sometimes and will understand this as the ase
n = 1.5.2 The atalyst and the reatant ontourThe atalyst and the reatant ontour are now de�ned. With the mapping C and therandom variable (η̃, ξ̃) from the previous setion we an give a preise de�nition ofthe ontour proess. Before starting remember that the killing time of the atalyst
T 1,0 is<∞ almost surely. We de�ne the ontour proesses by traversing the atalystand the reatant tree eah with speed 1.De�nition 5.2.1 (The disrete ontour proess):The atalyst and the reatant ontour proess (Bu, Cu)u≥0 is a R2

+ valued proessde�ned by:
(Bu)u≥0 = C(η̃ : 1), (5.7)
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(Cu)u≥0 = C(ξ̃ : 1). (5.8)Note that in the de�nition the height of the ontour is random, it is T 1,0. If weonsider a atalyst realization to be given, then the reatant ontours all have thesame maximum height. The ontour proess onsists of line segments with slope

+1 and −1 whih have random length.We note that this ontour proess leaves zero (the root) one and returns to zero(one). After this returning time the ontour stays at zero. So the reatant ontouris zero after a time L(C, 4/b) given by the following random-variable:
L(C, 4

b ) := inf{u ≥ 0 : lim
ǫ→0

1

ǫ

∫ u

0
1{Cv∈[0,ǫ)}

2

bηtot
Cv

dv =
4

b
}. (5.9)Even if this seems to be a quite di�ult desription of the time until whih thereatant ontour runs, it is in fat the easiest way to obtain a loal time harater-ization of the limit ontour.The same is true for the atalyst and a similar time L(B, 4). Later we will takethat idea up. Next a remark about the linear ordering on extant individuals isdesribed:Remark 5.2.2:By the de�nition of the ontour a linear ordering on the reatant individuals

y1, y2, . . . ym ∈ ∂Qt(ξ
for)alive at time t an be given:

yi ≤lin yj is true, (5.10)if the point yi is traversed by the ontour before yj. We will use this idea for thepoint proess. 3Now we give the resaled ontour proesses.The resaled reatant ontour proess is de�ned analogously, only one has toonsider what speed σ to hoose for traversing the tree. The total population sizeis of order O(n2) and the length of eah line segment is of order O( 1
n). Hene theright hoie to get a non-trivial limit-ontour is traversal speed σ = n for the n-thapproximation step.De�nition 5.2.3 (The resaled ontour proess):The atalyst and the reatant ontour proess (Bn

u )u≥0 and (Cnu )u≥0 are R+-valuedrandom variables de�ned by
(Bn

u )u≥0 = C(η̃n : n), (5.11)
(Cnu )u≥0 = C(ξ̃n : n). (5.12)The reatant ontour is zero after a time L(Cn, 4/b) given by the followingrandom-variable:

L(Cn, 4
b ) := inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cn

v ∈[0,ǫ)}
2

bηtot,n
Cn

v

dv =
4

b
}. (5.13)



5.3 Convergene of the trunated reatant ontour 34Outgoing from these de�nitions we an establish some properties but most of themrestrit to the reatant. The next result shows what happens for a �xed atalystrealization (ηnt )t≥0.Before stating the lemma it is a good idea to de�ne the slope sign V of the reatantontour as an proess:
V n
u := sign(slope(Cnu )) ∈ {−1, 1}, (5.14)for all 0 ≤ u ≤ T 0, where Cu does not hange diretion. If it is hosen to haveàdlàg paths then the following lemma holds:Lemma 5.2.4: The proess (Cnu , V

n
u )u≥0 is a [0, T n,0] × {−1, 1}-valued Markov-proess, whose generator is given by the losure of the operator (An,D(An)), where:

Anf(c, v) = nv
∂

∂c
f(c, v) +

b

2
n2ηtot,n

c (f(c,−v) − f(c, v)), (5.15)for all f ∈ D(An), when
D(An) = {h ∈ C1,0([0, T n,0] × {−1, 1}, R) :

∂h

∂c
|{0,Tn,0}×{−1,1} ≡ 0}. (5.16)until the time, when the n trees in the reatant forests have been traversed, i.e. until

L(Cn, 4
b ) given as in (5.13). After that time the reatant ontour stays zero.For the proof, see Lemma 8.4.2.We note that the atalyst ηtot plays a big role in the behavior of the ontour.The higher ηtot is, the faster the ontour hanges its diretion. That means thatthe line segment in the ontour with onstant slope get shorter. In the ase whenwe get lose to the extintion time of the atalyst then ηtot gets very low and thears in the tree get longer and grow until they are re�eted at the extintion time.This fat will play a role when we want to extend the limit result we give in thenext setion.For the atalyst ontour we see that non-independene of the individuals disallowsthe ontour to be Markovian. Even if g is a pieewise linear funtion one does notneessarily get a Markov proess for the atalyst ontour.5.3 Convergene of the trunated reatant ontourWithin this setion a quenhed onvergene result for the reatant ontour proessis given. We assume to be in a situation as in (4.2), i.e. we have a �xed onvergentsequene of atalyst realizations. Unfortunately it is not possible to state a onver-gene theorem for the whole ontour. We need to ut the tree before the extintionof the atalyst. Therefore de�ne the δ-hitting times of the resaled atalyst totalmass proess ηtot,n:

T n,δ = inf{t ≥ 0 : ηtot,n
t ≤ δ}, (5.17)and of the limit atalyst X:

τ δ = inf{t ≥ 0 : Xt ≤ δ}. (5.18)



5.3 Convergene of the trunated reatant ontour 35Remember that both of these stopping times are almost surely �nite by Lemmas2.1.7 and 2.2.4. Then one an de�ne the δ-ut ontour Cn,δ by:
Cn,δ := C(QTn,δ (ξ̃n,δ) : n). (5.19)With these de�nitions the following onvergene result for the ut ontour holds:Theorem 5.3.1 (Reatant limit ontour):Let a realization of the atalyst be given suh that (2.18) holds. Consider the linearoperator (Aδ,D(Aδ)), where

Aδf(c) =

(

f ′(·)
bX·

)′
(c), (5.20)for all f ∈ D(Aδ), when

D(Aδ) = {h ∈ C1([0, τ δ ], R) : h′|{0,τδ} = 0,
h′

X·
∈ C1

[0,τδ][0,∞)}. (5.21)Then:(i) The (Aδ,D(Aδ)) martingale problem is well-posed and(ii) if ζδ is the solution of the (Aδ ,D(Aδ)) martingale problem, then:
L[(Cn,δu )0≤u≤L(Cn,δ ,4/b)]

n→∞−−−→ L[(ζδu)0≤u≤α4/b
], (5.22)where onvergene is weak onvergene of ontinuous proesses.Here α4/b is the shortut for (l0· (ζ

δ))−1(4
b ), the inverse of loal time at level zero.The proof is given in Setion 8.4. The onvergene is shown via Stohasti Averagingtehniques. Uniqueness is done by transforming the martingale problem to an easierone without drift.Remark 5.3.2:Looking bak at the disrete proess we see that higher atalyst total mass is speedingup the hange of diretion. In the limit ase it seems to be the other way round:High atalyst total mass dereases the quadrati variation. In fat there is a mistakein the �rst sentene: When going to limits the part where atalyst total mass oursruns with high speed (n2) and it is better if it does not hange diretion too often inorder not to disappear in the limit.One ould ask whether there is an annealed result as well. If in the previoushapter we had an annealed result for the onvergene of the trees, then there alsoshould be one in that ase. The proof of the following orollary is in fat part ofthe annealed result for trees:Corollary 5.3.3: For �xed δ > 0 the sequene

((ηtot,n
t )0≤t≤Tn,δ , Cn,δ)n∈N (5.23)onverges weakly to an R2-valued proess. Topology is the produt topology in theSkorokhod spae of àdlàg funtions.



5.4 On top of the limit reatant tree 365.4 On top of the limit reatant treeNaturally after Theorem 5.3.1 one has the question if it is possible to extend the
τ δ-ut reatant limit ontour to the ase δ → 0. We will regard that as a quenhedquestion and in fat there is not a single answer: all depends on the given atalystand the height of eah ontour path. To speak about that we de�ne the reatantextintion time

ρ0 := inf{t > 0 : Yt = 0}. (5.24)We di�erentiate between two ases:
{ρ0 < τ0} and {τ0 < ρ0}. (5.25)The �rst one means that the entire reatant ontour ζδ lies below the given hori-zontal line τ0. This ase will be easy to deal with, sine no extension of the ontouris neessary. That means in this ase we have, when for example ρ0 < τ δ:

(ζ0; ρ0 < τ0) := ζδ. (5.26)We wonder if the ase ρ0 < τ0 arises and will give a partial answer in the onomingproposition.The seond event desribed above is more di�ult to deal with, sine the reatanttree was ut at height τ δ and even for δ → 0 there remain some branhes above thatline. Then something interesting happens: Approahing τ0 the atalyst approahes
0 and hene the reatant loses branhing likelihood, i.e. its branhes get longer.Sine there are �many� individuals alive the reatant ontour gets looking like ahedgehog and this an be expressed by quadrati variation going to in�nity.Both aspets get re�eted in the following proposition:Proposition 5.4.1: Let a �xed atalyst (Xt)t≥0 and its killing time τ0 be given.For δ > 0 let ζδ be the reatant limit ontour. ThenP[lim

δ→0
〈ζδ, ζδ〉α4/b

<∞|X] = P[ρ0 < τ0] (5.27)and P[lim
δ→0

〈ζδ, ζδ〉α4/b
= ∞|X] = P[ρ0 > τ0]. (5.28)Sine di�usions have a well-de�ned �nite quadrati variation, we obtain the fol-lowing orollary:Corollary 5.4.2: The reatant tree Y for an be assoiated with a di�usion ζ0 via

T only on the event:
{ρ0 < τ0}. (5.29)For linear branhing modi�ation g(x) = ax this event has probability (4a/b+1)−

1
2 .Otherwise in the ase {ρ0 > τ0} the reatant forest Y for annot be assoiated with adi�usion proess.



6 The point proess (Πt, Ξt)Another way to desribe the genealogy of the atalyti branhing model is the pointproess. To do that we �rst introdue a short general desription of point proessesin the branhing setting. Then we will speify this for the atalyst and the reatantsetting. Finally the hapter ends with a onvergene result for the resaled reatantpoint proess.6.1 Point proesses and genealogyLet a genealogy starting with one individual be given, for example as in De�nition1.2.2 or 1.2.3. Then a linearly ordered tree, say T , as η̃n in De�nition 5.1.5 an beonstruted.Now �x a time t > 0. At this time t the population onsists of #∂Qt(T ) extantindividuals. If one onsiders the minimal subtree spanned by these extant individ-uals, there are exatly #∂Qt(T ) − 1 most reent ommon anestors (MRCAs) ofthem. We label the MRCAs in asending linear order and then they are given by asubset of T onsisting of the following points:
x1 ≤lin x2 ≤lin · · · ≤lin x#∂Qt(T )−1. (6.1)These points and a onstant ν > 0 are the ingredients of the point proess Pt. Wewant to make a point in (kν, s) ∈ R2, when xk dies at time s. Hene the pointproess just denotes the extintion times of the MRCAs, one after another. Thuswe make the following de�nition:De�nition 6.1.1 (Point proess of a genealogy):For a �xed t > 0, a given genealogy T the point proess Pt(T ; ν) is an integer-valuedrandom measure on the set
{ν, 2ν, . . . , (#∂Qt(T ) − 1)ν} × [0, t). Its distribution for 0 ≤ a < b < t, m ≤ #∂Qt(T ) − 1 is given by:

Pt(T ; ν)({ν, 2ν, . . . ,mν} × [a, b]) = #{i ∈ {1, 2, . . . ,m} : a ≤ xi ≤ b}. (6.2)We would like to point out that this point proess should not be understood as aproess in the variable t. But in fat with the olletion (Pt)t≥0 the whole genealogyan indeed be reovered.Sometimes we will refer to the �rst oordinate of the random measure as the timeoordinate and the seond one as the level oordinate.Indeed we will also fae the fat, that we are dealing with a set of genealogies, asin the situation of a genealogial forest onsisting of genealogial trees. Then thequestion is where the MRCA of two individuals alive at time t, whih are not inthe same tree of the forest, is loated. The MRCA is then at the level of the root,



6.2 The atalyst and reatant point proess 38Figure 6.1: Point proess obtained from the tree t
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where the trees are glued together (see Remark 3.2.3). Therefore in these ases thetime level 0 an, in the resaled setting, ontain a positive mass, di�erent to anyother �xed level.In the next setion we will apply this de�nition to the atalyti branhing setting.6.2 The atalyst and reatant point proessFor the whole setion let a �xed t > 0 be given. To de�ne the atalyst pointproess we remember that the atalyst genealogy with ordering of the individualswas desribed either in the ontour proess (see Remark 5.2.2) or in De�nition 5.1.5by the ordered tree η̃. We take the seond desription and de�ne the atalyst pointproess by:De�nition 6.2.1 (Catalyst point proess):The atalyst point proess is an integer-valued random measure Πt on
{1, 2, . . . , ηtot

t − 1} × [0, t), (6.3)given by
Πt := Pt(η̃1; 1). (6.4)The same is done for the reatant proess where we also make use of De�nition5.1.5, where ξ̃1 is introdued. Hene we de�ne the following:De�nition 6.2.2 (Reatant point proess):The reatant point proess is an integer-valued random measure Ξt on

{1, 2, . . . , ξtott − 1} × [0, t), (6.5)given by
Ξt := Pt(ξ̃1; 1). (6.6)As already mentioned we also ould have extrated the genealogy from the ontourproess. The ontour will be quite helpful for the proofs we are going to give. Theessential onnetion between MRCAs and the ontour is given by the followingobservation, whih is put into a remark:Remark 6.2.3:For a �xed atalyst ηtot and t < T 1,0, i.e. less than the atalyst extintion time, letthe reatant ontour proess (C1

u)u≥0 be given as in De�nition 5.2.1. The reatant



6.2 The atalyst and reatant point proess 39individuals alive at time t are orresponding to the starting points and endpoints ofa downward exursion of the ontour from level t. The set of MRCAs of these extantindividuals are orresponding to the in�ma of the downward exursions of C1 fromlevel t. See Figure 8.1 for more details. 3For the reatant point proess we an desribe the distribution of the most reentommon anestors by the following lemma:Lemma 6.2.4: For a �xed atalyst (ηtot
s )s≥0 realization and �xed t < T 1,0 thereatant point proess Ξt has total mass

Ξt(N × [0, t)) = ξtott − 1. (6.7)The point proess Ξt is given by the random points {(i, σi) : 1 ≤ i ≤ ξtott − 1}, wherethe σi are independent and identially distributed [0, t)-valued random-variables.They have distribution given by
P (σ1 ≥ h) =

2
b +

∫ t
0 η

tot
s ds

∫ t
0 η

tot
s ds

∫ t
h η

tot
s ds

2
b +

∫ t
h η

tot
s ds

, (6.8)for every 0 ≤ h < t.The idea is to resale the point proesses from the beginning of this setion toobtain the resaled atalyst and reatant point proess. This resaling will be on-sistent with the previous resaling proedures.Think of the resaled reatant forest ξfor,n and its ontour Cn. For large n theontour looks like a di�usion proess. For a �xed time level t the number of indi-viduals alive at time t is nξtot,nt − 1 and hene the number of MRCAs diverges with
n.Keeping the distane ν in the point proess equal to 1 would result in the informa-tion diverging to the right. Only low-linear-order information would stay available.We will do a spatial resaling and set ν = 1

n . This will be the right hoie to keepinformation available and to make the limit proess a σ-�nite point proess.The interesting fat that we might also have mass at time level 0 was alreadymentioned in the �rst setion of this hapter. Therefore we give the followingde�nition:De�nition 6.2.5 (Resaled Catalyst point proess):The atalyst point proess Πt,n is an integer-valued random measure on
[0, ηtot,n

t − 1
n ] × [0, t), (6.9)given by

Πt,n := Pt(η̃n;
1

n
). (6.10)And the resaled reatant is given by the following de�nition:De�nition 6.2.6 (Resaled Reatant point proess):The atalyst point proess Ξt,n is an integer-valued random measure on

[0, ξtotnt − 1
n ] × [0, t), (6.11)given by

Ξt,n := Pt(ξ̃n; 1/n). (6.12)



6.3 Convergene of the reatant point proess 40For further purposes we will de�ne the killing time of the reatant:
Rn,0 := inf{t ≥ 0 : ξtot,nt = 0}. (6.13)This time will be helpful in the onoming onsiderations, sine after this time, thereare no reatant individuals alive any more and the reatant point proess degener-ates to a point proess without points.We give now a quenhed result desribing the distribution of the reatant pointproess for a given �xed atalyst. The law for a random atalyst an then beobtained by mixing binomially distributed proesses. Therefore let a t > 0 and a�xed atalyst path ηtot,n (and with this a �xed atalyst extintion time) be given.Condition the reatant point proess on the event {t < T n,0 ∧ Rn,0} and on thereatant total mass at time t: ξtot,nt . Then the following result holds:Proposition 6.2.7: We an speify the distribution of the reatant point proess

Ξt,n at time t. For k ∈ {1, 2, . . . , nξtot,nt − 1}(i) the number of points at level 0 is given by
κn := Ξt,n({ 1

n ,
2
n , . . . ,

kn
n } × {0}) d

= Bin (k,P(σn ≥ t)) and (6.14)(ii) the number of points between 0 and t− h is given by
Ξt,n({ 1

n ,
2
n , . . . ,

k
n} × (0, t− h))

d
= Bin (k − κn,P(σn ≥ h|σn < t)) . (6.15)Here Bin(n, p) is the law of a binomially distributed random variable with parameters

n, p and σn is the extintion time of a birth-and-death proess with reprodution anddeath rate (nb2 η
tot,n
t−s )0≤s≤t.This proposition prepares the limit theorem of the point proess. We will give aremark to explain the previous proposition a bit more:Remark 6.2.8: • Sine we are starting with n individuals there arise two possi-bilities: The �rst line represents branh points at level 0, that means separatedtrees. The seond line are death points of MRCAs within one tree.

• The probabilities denoted by P an be alulated more expliitly by the help ofLemma 6.2.4 adjusting ηtot to nηtot,n.
36.3 Convergene of the reatant point proessIn this setion the limit point proess of the reatant is alulated. We will therefore�x t > 0 throughout this setion, but we will also require some restritions on t,explained later. The limit point proess will be a point proess on [0, Yt] × [0, t),whih onsists of two di�erent types of domains as in the proposition just before:

• the line at time level zero representing the division into di�erent trees and
• the branh points within the trees.



6.3 Convergene of the reatant point proess 41We �rst give a quenhed result with the following prerequisites. Let ρ0 be thereatant extintion time:
ρ0 = inf{t > 0 : Yt = 0}. (6.16)Let tn, t > 0 and assume atalyst paths ηtot,n,X, s.t.:

tn → t as n→ ∞, (6.17)
sup

0≤s≤t∧tn
|ηtot,n
s −Xs| → 0 as n→ ∞, (6.18)be given (see De�nition 2.3.3 and (4.3)). Then onditioned on the event {tn <

Rn,0 ∧ T n,0} and t < ρ0 ∧ τ0, the following holds:Theorem 6.3.1:The point proess Ξtn,n onverges to a point proess πt on [0, Yt] × [0, t). The dis-tribution of πt is given by:
πt([0, uYt] × {0}) =Poisson( 2uYt

∫ t
0 bXs ds

)

, (6.19)
πt([0, uYt] × (0, h)) =Poisson(uYt( 2

∫ t
h bXs ds

− 2
∫ t
0 bXs ds

))

, (6.20)for u ∈ [0, 1] and 0 < h < t.Remark 6.3.2: • The theorem shows us that for a positive time there are only�nitely many trees surviving in the forest. This is beause the number ofMRCAs at time level zero in (6.19) is a Poisson number and therefore almostsurely �nite.
• This reatant limit point proess is σ-disrete as de�ned in [RY91, ChapterXII.1℄. Only �nitely MRCAs are below time level t−h′ for �xed time h′. Thatmeans almost all of the branh points are very lose to the top of the ut tree.
• The faster the reatant branhes, i.e. the greater b is, the less points an beexpeted far from the top-level, i.e. far below level t.
• In the seond line onsider t lose to the atalyst extintion time τ0 and hlose to t. Then the �rst summand gets very big and we have the situationthat many points lie below h. This is true, sine an almost killed atalystmakes the reatant rather lazy to branh and its branhes get long. Hene theMRCAs are far below level t.

3One would expet that there is a strong link between this limit point proess πand the limit ontour proess ζδ (see Remark 6.2.3). Before we start with desribingthat link we give some de�nitions from exursion theory (see [RY91, Chapter XII℄or [RW79, Chapter VI℄):For a �xed atalyst X let ζδ be the limit ontour proess. It is given as thesolution of the martingale problem Aδ as in Theorem 5.3.1. Fix a level t < τ δ.



6.3 Convergene of the reatant point proess 42Let (ltu(ζ
δ))u≥0 denote its loal time proess at level t. The inverse of the loaltime is de�ned as:

αtu(ζ
δ) := (lt· (ζ

δ))−1(u) = inf{r > 0 : ltr(ζ
δ) > u}, (6.21)where we sometimes omit the relation to ζδ, if no onfusion arises. To desribe anexursion we denote the set of downward exursions from level t by:

U−
t := {f : [0,∞) → (−∞, t] : f(0) = t and f(a) = t⇒ f(a+s) = t ∀s > 0}∪{∆},(6.22)where ∆ denotes the no exursion state. The downward exursion ǫ−u from level t(at loal time u) is given as an element of U−

t by:
ǫ−u (s) :=

{

ζδ
(αt

u−+s)∧αt
u

if αtu− 6= αtu

∆ if αtu− = αtu
. (6.23)Additionally we set

α4/b := α0
4/b(ζ

δ), (6.24)as the time, when loal time at level 0 reahes 4/b for the �rst time, or speakingabout populations, when the total initial mass of the population has reahed 1. Thisrather awkward 4/b omes from the quadrati variation term of the limit ontourwhih is needed to alulate loal time (onsult (5.9) and Setion 9.2.The point proess of maximal depths of downward exursions is then de�ned as
πζ

δ,t := {(u, inf(ǫ−u ) :, when αtu− 6= αtu and u ≤ α4/b}. (6.25)For this onstrution the following relation between ontour and point proessholds:Proposition 6.3.3 (Quenhed ontour and point proess): Let a �xed atalyst Xand t < τ0 be given. Choose δ > 0 suh that t < τ δ and let ζδ denote the solutionof the (Aδ,D(Aδ)) martingale problem. Then it holds that
πt

d
= πζ

δ,t. (6.26)Be aware that the proess πt measures the time in Lebesgue measure, whereasthe proess on the right hand side is related to inreasing loal time of the ontour.After this quenhed result the question arises if also an annealed result holds. Onemight think of ahieving that for a speial lass of branhing modi�ations g, wherethe proof an be omparable to the one in Setion 8.6. But we are not intending aproof of this result.



Part IIProofs



7 Proofs of the main results fromChapter 2In this hapter we put together the main proofs from Chapter 2 and try to lead thereader through the struture of the problems. Some of the theorems were put inthe appendix.7.1 Remarks and tehniques7.1.1 Properties of gWe will try to justify the onditions set on g on page 14:
• Continuity makes sense sine the branhing behaviour should not hange sig-ni�antly if there is a slight hange in the population size.
• Lipshitz-ontinuity is neessary to reeive solutions for the atalyst SDE inSetion 2.2.
• Vanishing of g in 0 expresses the fat that branhing stops, when all individualshave died out, sine there is nobody left to branh.
• The third ondition G3 is required to be in a �sub-Anderson-model�, sine oth-erwise the branhing behaviour annot be ontrolled easily and the di�usionwould not die out.
• The last ondition makes it possible that 0 is an exit boundary and we anobtain Lemma 2.1.7 and so we do not get into the following situation:The atalyst is lose to zero but not dying out. Then the rea-tant faes almost no more branhing events and therefore does nothange.As later want to fous on ontour proesses and trees, we want to avoid thatsituation.Let us also note that Lipshitz-ontinuity in 0 and (G4) imply that g must ap-proah zero faster than �x 7→ x�, but slower than �x 7→ x2 �.Remark 7.1.1:In some proof we will not need to use ondition G2 from page 14, but a weakerrequirement on g:

g(x) ≤ C(1 + x2) ∀x ∈ [0,∞) (7.1)whih is ertainly true, probably for a di�erent onstant C. 3



7.1 Remarks and tehniques 45For the further analysis it will be helpful to extend the de�nition of g to negativereal numbers. There we will set g = 0. This assumption does neither violate theLipshitz-ontinuity nor the estimates just presented. In fat this extension is onlyof theoretial use, sine it will allow us to use some theorems whih were designedfor problems de�ned on R rather than on R+, e.g. in Chapter 2.2 dealing withdi�usions.7.1.2 The generator of the disrete total mass proessWe refer to the de�nition of the disrete total mass proess (ηtot,n, ξtot,n) in De�-nition 2.1.4 for �xed n and want to explain how to derive a generator Un for thisMarkov jump proess. After having done this we will see that this generator Un isuniquely losable in C0(R
2
+,R) and there is a unique proess (ηtot,n, ξtot,n) orre-sponding to the generator for a given initial distribution. So we are invited to speakof the disrete atalyti branhing proess.First we extrat the in�nitesimal generator Un of the total mass funtional fromthe De�nitions 1.2.4 and 1.2.5 (for a �ne introdution see the book of Breiman[Bre68, page 332℄). From then on we will understand the generator Un as thepreferable desription of the proess.If the proess (ηtot,n

t , ξtot,nt )t≥0 starts in ηtot,n
0 = x, ξtot,n0 = y, where x and y aremultiples of 1/n and greater than zero.Eah atalyst individual (and there are nx of them dies after an exponential timewith rate ng(x)

x . Just after that zero or two individuals with mass 1
n eah are born.So either the total dereases by 1

n or it inreases by 1
n , eah with probability 1

2 .Hene after an in�nitesimal time step ∆t we expet the following situation:
(ηtot,n, ξtot,n) with probability

(x+ 1
n , y)

n2

2 g(x)∆t+ O(∆t)

(x− 1
n , y)

n2

2 g(x)∆t

(x, y + 1
n) n2

2 bxy∆t

(x, y − 1
n) n2

2 bxy∆t
(x, y) 1 − n2g(x)∆t − n2bxy∆tSo the generator Un ats on a given funtion f ∈ C0(R

2
+,R) as follows:

Unf(x, y) = lim
∆t→0

1

∆t
E[f(ηtot,n

∆t , ξtot,n∆t ) − f(x, y)] =

= lim
∆t→0

1

∆t

[

f(x+
1

n
, y)

n2

2
g(x)∆t+ f(x− 1

n
, y)

n2

2
g(x)∆t

+ f(x, y +
1

n
)
n2

2
bxy∆t+ f(x, y − 1

n
)
n2

2
bxy∆t

+f(x, y)(1 − n2g(x)∆t− n2bxy∆t) − f(x, y)
]

=

=
n2

2

[

g(x)

(

f(x+
1

n
, y) − 2f(x, y) + f(x− 1

n
, y)

)

+ bxy

(

f(x, y +
1

n
) − 2f(x, y) + f(x, y − 1

n
)

)]

.

(7.2)
We will need to be a bit more preise about the aforementioned to write down theexat generator. What happens if we already start with y = 0? Then we annot go



7.2 Existene, Uniqueness and Feller-property of (ηtot,n, ξtot,n) 46to ξtot,n∆t = − 1
n . If one onsiders all the problemati ases we get

Unf(x, y) =
n2

2
g(x)[f(x+

1

n
, y) − 2f(x, y) + f(x− 1

n
, y)],

+
n2

2
bxy[f(x, y +

1

n
) − 2f(x, y) + f(x, y − 1

n
)], for x, y ≥ 1

n
,

Unf(0, y) =0 for y ≥ 0,

Unf(x, 0) =
n2

2
g(x)[f(x+

1

n
, 0) − 2f(x, 0) + f(x− 1

n
, 0)] for x ≥ 1

n
,

D(Un) =C0(R
2
+,R).

(7.3)
Now with the generator Un at hand it is possible to show that, for g su�ingthe ondition g(x) ≤ C(1 + x2), from (7.1), there is only one proess satisfyingDe�nition 2.1.4. The other onditions on g do learly not play a role, sine they areloal, but here we are dealing with a proess on a disrete grid 1

nN2.Within the next setion we will takle this uniqueness problem, but will use anarbitrary mass m, sine this makes the arguments and the looking learer.7.2 Existene, Uniqueness and Feller-property of
(ηtot,n, ξtot,n)We start with the proof of Lemma 2.1.6. The proof will be done without givingspeial attention to the parameter n, but it will be done with an arbitrary mass mof any individual. To get the fator n2 in Un just multiply the onoming µ with n2.Lemma 7.2.1: [Existene, Uniqueness and Feller-property of (ηtot,n, ξtot,n)℄ Forany g : [0,∞) → [0,∞) satisfying Condition 2.1.3 in Setion 2.2 the losure ofgenerator Un from Setion 2.2 is single-valued and generates a Feller-semigroup on

C0(R
2). Moreover Cc(R2) is a ore for this generator. So there exists (ηtot, ξtot),uniquely determined by Un and this proess is a Feller-proess.Proof: The proof relies on Theorem 8.3.1 in [EK86℄, whih an be found in theappendix. As funtion λ and measure µ we use:

λ(x, y) = g(x) + xy,

µ((x, y), (x̃, ỹ)) =

{

g(x)
2λ(x,y) for |x− x̃| = m, y = ỹ
bxy

2λ(x,y) for x = x̃, |y − ỹ| = m
,

(7.4)where x, x̃, y, ỹ ≥ 0. Then
Unf(x, y) = n2

∑

x̃,ỹ

f(x̃, ỹ)λ(x, y)µ((x, y), (x̃, ỹ)). (7.5)In the ase of the atalyst being 0, the reatant being y, the measure µ((0, y), ·) isonentrated on this point.The state spae E = mN2
+ is a loally ompat, nonompat, separable metrispae. The one-point-ompati�ation of E will be denoted by E∆ = E ∪∆, where

∆ is the point at in�nity. The real-valued funtion λ is nonnegative and ontinuouson N2
+ and µ is ontinuous in the �rst oordinate pair, sine the preimage spae



7.2 Existene, Uniqueness and Feller-property of (ηtot,n, ξtot,n) 47is disrete. We have to de�ne some funtions γ and η. There should not be anyonfusion with the η whih is the atalyst population during the rest of this work.We set γ and η as funtions whih are positive, ontinuous and the inverse vanishingat in�nity:
γ(x, y) = η(x, y) = x2 + y2 + 1. (7.6)Now we have to hek the properties (3.2) to (3.5) from [EK86, Theorem 8.3.1℄.We start with ondition (3.2) of [EK86, Theorem 8.3.1℄:

sup
x,y≥0

λ(x, y)

γ(x, y)
= sup

x,y≥0

g(x) + bxy

x2 + y2 + 1

≤ sup
x,y≥K

C(1 + x2)

x2 + y2 + 1
+ sup
x,y≥0

bxy

x2 + y2 + 1

≤ C + sup
x,y≥K

Cx2

x2
+
b

2
= 2C +

b

2
= C1 <∞.

(7.7)
So the �rst ondition is ful�lled. Next we onsider ondition (3.3) of [EK86, Theorem8.3.1℄:

lim
(x,y)→∆

λ(x, y)µ((x, y),K) = 0 for every ompat K ⊂ R2
+. (7.8)This is ertainly true sine µ((x, y), ·) only has positive measure at the neighbouringpoints having distane not more than m from (x, y) Then for diverging (x, y) therewill be no more suh neighbour point in any ompat K. So the µ-fator vanishes.Conditions (3.4) and (3.5) of [EK86, Theorem 8.3.1℄ are basially similar in theirproof. For both ases we will only hek values of x, y ≥ m, sine the other asesare even easier to verify and would make the proof only lengthier. Indeed it makessense to hek them separately. Let us start with (3.4), keeping in mind that weonly wanted to allow m ≤ 1 and g(x) ≤ C(1 + x2) (G3):

sup
x,y≥m

λ(x, y)|
∫

γ(x, y) − γ(x̄, ȳ)

γ(x̄, ȳ)
µ((x, y), d(x̄, ȳ))| =

= sup
x,y≥m

g(x)

2

x2 + y2 + 1 −
(

(x+m)2 + y2 + 1
)

(x+m)2 + y2 + 1

+
g(x)

2

x2 + y2 + 1 −
(

(x−m)2 + y2 + 1
)

(x−m)2 + y2 + 1

+
bxy

2

x2 + y2 + 1 −
(

x2 + (y +m)2 + 1
)

x2 + (y +m)2 + 1

+
bxy

2

x2 + y2 + 1 −
(

x2 + (y −m)2 + 1
)

x2 + (y −m)2 + 1

≤ sup
x,y≥m

g(x)

2

m2

(x−m)2 + y2 + 1
+
bxy

2

m2

x2 + (y −m)2 + 1

(7.9)
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≤ sup
x,y≥m

g(x)

(x−m)2 + y2 + 1
+

bxy

x2 + (y −m)2 + 1

≤ sup
x,y≥m

C
1 + x2

(x−m)2 + y2 + 1
+ b

x2 + y2

x2 + (y −m)2 + 1

≤ sup
x≥m

C
1 + x2

(x−m)2 + 1
+ sup
x≥m

bx2

x2 + 1
+ sup
y≥m

by2

(y −m)2 + 1

≤C + sup
x≥m

(C + b)x2

(x−m)2 + 1
+ sup
y≥m

by2

(y −m)2 + 1

≤C + (C + 2b) sup
x≥m

x2

(x−m)2 + 1
<∞,

(7.10)
where the last inequality is easily believed sine the denominator stays stritly awayfrom 0. This is the desired result.Now at last we have to show (3.5):

sup
x,y≥0

λ(x, y)

∫

γ(x, y) − γ(x̄, ȳ)

γ(x, y)
µ((x, y), d(x̄, ȳ)) <∞. (7.11)But this an be shown the same way as (3.4) with even less problems in the denom-inator.7.3 Extintion and ompat ontainment ondition of

(ηtot,n, ξtot,n)As a next result we show Lemma 2.1.7:Lemma 7.3.1: Every (disrete) atalyst proess, de�ned as in (2.1) with g satis-fying the usual onditions dies out almost sure, i.e.
T n,0 = inf{t ≥ 0 : ηtot,n

t = 0} <∞ a.s. (7.12)Furthermore 0 is an exit boundary ( = absorbing point), i.e. the atalyst does notleave 0 after having reahed it.Proof: We will onsider the situation for a �xed n and do a proof by ontradi-tion.Clearly the disrete atalyst ηtot,n is a non-negative martingale, so there existsa limit proess ηtot,n
∞ s.t. ηtot,n onverges almost sure to this proess. That meansthat for a given ǫ > 0 there exists a T > 0 withP[ |ηtot,n

t − ηtot,n
∞ | ≤ ǫ ∀t ≥ T ] ≥ 1 − ǫ. (7.13)If we selet ǫ < 1

n , then the event in onsideration means that no more jumps ourafter time T , exept probably on a set of measure ǫ.We assume that for given 0 < a < b the indued probability measure on [0,∞) ofthe limit proess is given as:P ◦ (ηtot,n
∞ )−1([a, b]) = r, with 0 ≤ r ≤ 1.



7.3 Extintion and ompat ontainment ondition of (ηtot,n, ξtot,n) 49Let us now assume that
2ǫ < rand we will lead this to a ontradition for any ǫ.Then by (7.13) we get that there must be a set A in Ωn with measure at least

r− ǫ, s.t. for ω ∈ A the atalyst ηtot,n(ω) faes no more branhing events after time
T (ǫ) and

ηtot,n
t (ω) ∈ [a, b] ∀t ≥ T (ǫ).But the probability of no branhing event from time T (ǫ) to T (ǫ)+t is bounded fromabove by maxx∈[a,b] e

−g(x)t. If t tends to in�nity, the no-branhing probability P(A)goes to zero, as g stays away from zero in any interval [a, b] not ontaining 0 (G1and G2). This ontradits that it would be more than r− ǫ. So the assumptionthatP ◦ (ηtot,n
∞ )−1([a, b]) = r annot hold for any positive r and we have that P ◦

(ηtot,n
∞ )−1([a, b]) = 0 for any positive a and b. So all the mass of ηtot,n

∞ is onentratedin zero.Additionally we have shown that T n,0 is almost surely �nite, sine by (7.13)P[T n,0 ≤ t] = P[ηtot,n
t = 0] > 1 − ǫ if we hoose t ≥ T (ǫ) and ǫ < 1

n .Clearly 0 is absorbing, sine g(0) = 0.Remark 7.3.2:It is well known that in disrete time the population gets extint depending on theexpetation of the o�spring distribution. This also ould have been a way to provethe previous lemma.Another result will desribe how far the disrete total mass proess moves awayfrom the origin when starting in (ηtot,n
0 , ξtot,n0 ). As an additional result we getthe ompat ontainment ondition for the set of proesses (ηtot,n, ξtot,n)n∈N, whihstates this set moves within a ompatum with a probability lose to 1 up to a giventime t. Therefore let ‖ · ‖2 denote the Eulidean norm on R2.Lemma 7.3.3 (Compat ontainment ondition): Let (ηtot,n

t , ξtot,nt )t≥0 be a proessorresponding to the solution of the disrete martingale problem (Un, δηtot,n
0

⊗δξtot,n0
).Then for T > 0, k > 0, it is true that:P[ sup

0≤t≤T
‖(ηtot,n

t , ξtot,nt )‖2 > k

]

≤
√

2

k
(ηtot,n

0 + ξtot,n0 ). (7.14)Additionally the ompat ontainment ondition holds:When ηtot,n
0 = ξtot,n0 = 1 for all n, then for any λ > 0 and t > 0 there exists a

Γλ, T ⊂ R2
+ suh that:

inf
n∈N

P [(ηtot,n
t , ξtot,nt ) ∈ Γλ, T ∀ 0 ≤ t ≤ T

]

≥ 1 − λ. (7.15)Proof: Sine ηtot,n and ξtot,n are martingales by Lemma 7.2.1, the maximum



7.4 Existene and Uniqueness of (X,Y ) 50inequality holds and expetation values are onserved.P[ sup
0≤t≤T

‖(ηtot,n
t , ξtot,nt )‖2 > k

]

≤ P[ sup
0≤t≤T

|ηtot,n
t | > k√

2

]

+P[ sup
0≤t≤T

|ξtot,nt | > k√
2

]

≤

≤
√

2

k

(E[ηtot,n
T ] +E[ξtot,nT ]

)

=

√
2

k
(ηtot,n

0 + ξtot,n0 ).

(7.16)
The seond statement is just a reformulation.7.4 Existene and Uniqueness of (X, Y )7.4.1 The main result and the strategy of the proofWithin this setion a proof of the main result of setion 2.2 is given. This theoremstated thatTheorem 7.4.1:If g satis�es Condition 2.1.3 the SDE system

dXt =
√

g(Xt) dW
1
t , (7.17)

dYt =
√

bXtYt dW
2
t , (7.18)where W 1 and W 2 are two independent Brownian motions has a unique strongsolution.Here the atalyst-reatant-type of the problem helps obtaining a proof for thistheorem. In a �rst step we will show that there exists a strong unique solution

X for equation (7.17), sine g is loally Lipshitz-ontinuous. That means for anyBrownian motion path W 1(ω) on a probability spae (Ω′,A′,P′) there exists a path
X(ω) whih solves the atalyst's SDE for this spei� ω ∈ Ω′. After that we showin the seond step that the solutions of the atalyst die out after almost sure �nitetime. Then in the last step we take a �xed atalyst path X(ω) and onsider (7.18)for this single path. This �xed reatant SDE has a strong unique solution andaltogether we get that whenever starting with two independent Brownian motionswe an onstrut a solution (X,Y ) of the SDE system.The proof of this theorem is split up in three parts. We will put the proof of thistheorem in the next subsetion and denote the steps here in a short overview:Step 1: The atalyst SDE has a unique strong solution.Step 2: The atalyst dies out after almost sure �nite time.Step 3: The reatant SDE for �xed atalyst has a unique strong solution.7.4.2 The proofStep 1: The atalyst SDE has a unique strong solutionLet us start with a lemma about the atalyst:



7.4 Existene and Uniqueness of (X,Y ) 51Lemma 7.4.2 (The atalyst SDE has a unique strong solution): The SDE dXt =
√

g(Xt) dW
1
t has a unique strong solution, for g satisfying Condition 2.1.3.Remark 7.4.3:The theorems used for the proof in this �rst step are due to Engelbert and Shmidtand are well presented in [KS00℄. Their approah to one-dimensional problemsallows deeper results than the multi-dimensional theory via Lipshitz-ontinuity. Thelatter is presented in Theorem 5.2.1 in the SDE book [Øks05℄ of Øksendal. Theyannot be used as there was not postulated a global Lipshitz-ontinuity for g. Wedid not postulate that, sine we also wanted to treat ases where g grows faster thanlinear. 3Proof: This proof relies on Corollary 5.10 of [KS00℄, whih says that there existsa strong unique solution to dXt = σ(Xt)dWt, if the four onditions (E) and (i)-(iii)hold for funtions f : R → [0,∞] and h : [0,∞] → [0,∞]:(E)

I(σ) ⊆ Z(σ), i.e. : {x ∈ R : ∃ǫ > 0 s.t. ∫ x+ǫ

x−ǫ

dy

σ2(y)
= ∞} ⊆ {x ∈ R : σ(x) = 0}(7.19)(i) at every x ∈ I(σ)c, the quotient (f/σ)2 is loally integrable; i.e., there exists

ǫ > 0 (depending on x) suh that
∫ x+ǫ

x−ǫ

(

f(y)

σ(y)

)2

dy <∞; (7.20)(ii) the funtion h is stritly inreasing and satis�es h(0) = 0 and
∫ ǫ

0
h−2(u)du = ∞; ∀ǫ > 0 (7.21)(iii) there exists a onstant a > 0 suh that

| σ(x+ y) − σ(x) |≤ f(x)h(| y |); ∀x ∈ R, y ∈ [−a, a]. (7.22)Assertion (E) is relatively easy to prove: Sine g is ontinuous, g(x) must be zero,if x ∈ I(σ). The remaining three points will be proven in reverse order, sine itseems more intuitive: As g is loally Lipshitz-ontinuous, for any ompatum Kthere will be a onstant LK , s.t.:
| g(x) − g(y) |≤ LK | x− y |; ∀x, y ∈ K. (7.23)See the Appendix B.4 for a proof. Set K(x) := [x− a, x+ a]. Then LK(x) is �nitefor any x and a sine the interval is ompat.Next de�ne f(x) = L
1/2
K(x) and we have:

|
√

g(x + y) −
√

g(x) |2 ≤ | g(x + y) − g(x) |≤ LK(x) | y | ∀y ∈ [−a, a]. (7.24)But this is the squared version of (iii) for h(u) = u1/2. This funtion h also satis�esondition (ii) sine u 7→ 1/u is not integrable in a neighbourhood of zero and the



7.4 Existene and Uniqueness of (X,Y ) 52other onditions being learly satis�ed.It remains to show (i). But the integral will be �nite if one hooses x− ǫ > 0, sinethe denominator stays stritly away from zero and the nominator is bounded fromabove by LK for K = [x− ǫ− a, x+ ǫ+ a].Step 2: The atalyst dies out after almost sure �nite timeIn the third step we want to prove that for a given sample path Xt(ω) = x(t)of the atalyst, there is a solution to the reatant SDE. Before we an do that weneed to know a bit more about the atalyst. The following lemma shows that italmost surely dies out after �nite time and this will prove Lemma 2.2.4 about theextintion time of the atalyst:Lemma 7.4.4: Every atalyst proess X with g satisfying the usual onditions diesout almost sure in �nite time, i.e.
τ0 = inf{t ≥ 0 : Xt = 0} <∞ a.s. , (7.25)and 0 is an exit boundary for X.Proof: We will use the notations and theorems from [RW79, Setions V.44-51℄.Another �ne aount for boundary behavior of di�usions is given in [KT81℄.Sine the atalyst SDE (7.17) has no drift, X is on the natural sale (i.e. thesaling funtion is the identity). From equation (47.30) in [RW79℄ we see that thespeed measure m is given by:

m(dx) =
1

g(x)
dx. (7.26)First we need to hek that τ0 < ∞ a.s. by Theorem 51.2(ii) and for that purposealulate by taking into aount (G4) from page 14:

∫

0+

xm(dx) =

∫

0+

x
dx

g(x)
≤
∫ δ(ǫ)

0
x
c′ + ǫ

x1+β
dx =

= (c′ + ǫ)

[

x1−β

1 − β

]δ(ǫ)

0

=
c′ + ǫ

1 − β
δ1−β <∞,

(7.27)where one should remember that 0 ≤ β < 1. Thus it follows that P x[τ0 < ∞] =
1 ∀x > 0.Now let us hek that 0 is an exit boundary by De�nition (51.3): Sine P x[τ0 <
∞] = 1 > 0, we have that 0 is aessible. However with

∫

0+

m(dx) > (c′ − ǫ)

∫ δ

0
x−1−β dx = ∞, (7.28)it follows that 0 is an exit boundary.Step 3: The reatant SDE for �xed atalyst has a unique strong solution



7.5 Simple properties of the di�usion proess 53With the lemma from the previous step at hand we will now show existene anduniqueness of the reatant SDE for a �xed atalyst realization x(t) = Xt(ω). Wealready know that almost surely x(t) will go to zero after �nite time T . For suh afuntion the following lemma holds:Lemma 7.4.5 (The reatant SDE has a unique strong solution): For any ontin-uous funtion x : [0,∞) → [0,∞), with x([T,∞)) = {0} for a T <∞ the SDE
dYt =

√

bx(t)Yt dW
2
t (7.29)has a unique strong solution.Proof: Sine x is a ontinuous funtion on a ompatum and identially zerooutside, it is bounded from above by a onstant k, i.e. x(t) < k ∀t ∈ [0,∞).Then due to the ontinuity of σ(t, y) =

√

bx(t)
√
y in both oordinates there existsa weak solution to (7.29), see e.g. [EK86, Theorem 5.3.10℄. Sine σ is Hölder-

1/2-ontinuous in the seond oordinate, pathwise uniqueness follows by a theoremof Yamada and Watanabe for one-dimensional SDEs [EK86, Remark 5.3.9℄. Butpathwise uniqueness and weak existene imply existene and uniqueness of a strongsolution (e.g. [Kle08, Theorem 26.18℄ or [KS00, Corollary 5.3.23℄ ).Combining the three previous steps we have shown existene and uniqueness of astrong solution to the SDE system 7.17 and 7.18.7.5 Simple properties of the di�usion proessWe will introdue some notation when we start the proesses. If X0 = x > 0 and
Y0 = y > 0, then we will denote the solution of the SDE (or the martingale problem)for these initial values by (Xx

t , Y
x,y
t ). This makes sense, sine the atalyst evolvesautonomously of the reatant and so the initial value of the reatant does not in�u-ene the evolution of the atalyst. Sometimes we also might onsider probabilitiesor expetations for given initial values. Then it sometimes is helpful not to �ll theformula with two many supersripts and we will denote the probability as P(x,y)and the expetation as E(x,y). If not required for our onsiderations at all we try toavoid the sub- and supersripts for a better reading.We begin with some expetation values of the atalyst and the reatant di�usions:Proposition 7.5.1: [Expetation values of the SDE system℄ If (Xx, Y x,y) is aunique strong solution for the martingale problem (A, δx × δy), then we get the fol-lowing expetation values, where γ is a onstant only depending on g and α, C is asin (G2) from page 14:

0 < α < 2: E [Xx
t ] = x, E [Y x,y

t ] = y,E [Xx
t Y

x,y
t ] = xy,

(7.30)
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0 ≤ α < 1: E [(Xx

t )α] ≤ 1 + x, (7.31)E [g (Xx
t )] ≤ C(2 + x), (7.32)

1 ≤ α < 2: E [(Xx
t )α] ≤

(

xα +
C + γ

C

)

eCα(α−1)t − C + γ

C
, (7.33)E [g (Xx

t )] ≤ (Cxα + C + γ) eCα(α−1)t − γ. (7.34)Proof: The �rst statements in (7.30) are lear, sine X and Y are martingales.Additionally XY is also a martingale, sine U does not ontain any ross-derivativesof x and y.More interesting are the other results. It is lear that (7.31) implies (7.32) and(7.33) implies (7.34), sine from the ondition (G2) on g (in page 14), we have:E [g (Xx
t )] ≤ E [C(1 + (Xx

t )α)] ≤ C + C E [(Xx
t )α] . (7.35)So now we will show (7.31)

0 ≤ α < 1 : An easy alulation gives:E [(Xx
t )α] = E [(Xx

t )α 1{Xx
t ≤1} + (Xx

t )α 1{Xx
t >1}

]

≤

≤ 1 +E [Xx
t 1{Xx

t >1}
]

≤ 1 + x.
(7.36)

1 ≤ α < 2 : For this ase we will apply It�'s rule for the funtion x 7→ xα and takeexpetations:E [(Xx
t )α] =xα +E [∫ t

0
α(Xx

s )α−1
√

g(Xx
s ) dWs

]

+E [∫ t

0
α(α − 1)(Xx

s )α−2g(Xx
s ) ds

]

=

=xα + α(α− 1)

∫ t

0
Ex [1{Xs≤1}(Xs)

α−2g(Xs)
]

ds

+ α(α − 1)

∫ t

0
Ex [1{Xs>1}(Xs)

α−2g(Xs)
]

ds ≤

≤xα + α(α− 1)

∫ t

0
Ex [1{Xs≤1}(Xs)

α−2γ(Xs)
1
]

ds

+ α(α − 1)

∫ t

0
Ex [1{Xs>1}(Xs)

α−2C(1 + (Xs)
2)
]

ds.

(7.37)
Here γ is a real number, s.t. g(x) ≤ γx holds on [0, 1]. This exists by theonditions set on g on page 14:If a is s.t. [0, a) is a neighbourhood of zero, where the Lipshitz-onstant L0in zero bounds g(x)/x, then we have

g(x) ≤ L0x for x ∈ [0, a) (7.38)



7.5 Simple properties of the di�usion proess 55on the other hand g(x)/x is ontinuous on [a,1℄, so bounded by a onstant c0.If γ is hosen to be the maximum of L0 and c0/a, then we are done.To ontinue with (7.37), we look at the �rst summand of the expetation anduse the fat that the random variable was trunated to be smaller than 1. Forthe seond summand use that α− 2 < 0:E[(Xx
t )α] ≤ xα + α(α − 1)(γ + C)t+ α(α− 1)

∫ t

0
CE[(Xx

s )α] ds (7.39)This already makes you look for Gronwall's inequality, whih we adapt nowto get:E[(Xx
t )α] ≤ xα + α(α − 1)(γ + C)t

+ Cα(α− 1)

∫ t

0
(xα + α(α− 1)(γ + C)s)eCα(α−1)(t−s) ds

=xα + α(α− 1)(γ + C)t+ Cα(α− 1)xαeCα(α−1)t [e
−Cα(α−1)s]t0

−Cα(α− 1)

+ Cα2(α− 1)2(γ + C)eCα(α−1)t

∫ t

0
se−sCα(α−1) ds =

=xα + α(α− 1)(γ + C)t+ xα(eCα(α−1)t − 1)

+ Cα2(α− 1)2(γ + C)eCα(α−1)t

([

s
e−Cα(α−1)s

−Cα(α− 1)

]t

0

+

+
1

Cα(α− 1)

∫ t

0
e−Cα(α−1)sds

)

=

=α(α − 1)(γ + C)t+ xα(eCα(α−1)t) − tα(α− 1)(γ +C)

+
γ + C

C
eCα(α−1)t

[

−e−Cα(α−1)s
]t

0
=

=(xα +
γ + C

C
)eCα(α−1)t − γ + C

C
.

(7.40)

Then we are done and have shown the proposition.Another easy to verify onsequene of the SDE-struture is the following propo-sitionProposition 7.5.2 (Quadrati Variations): If (Xx, Y x,y) is a strong unique solu-tion for the martingale problem U with initial values X0 = x and Y0 = y, then wehave:
〈X,X〉t =

∫ t

0
g(Xs) ds,

〈Y, Y 〉t =

∫ t

0
XsYs ds,

〈X,Y 〉t =0.

(7.41)We will omit the proof of this proposition, whih an be done as in [Kle08℄, page555. The third statement an already be onluded by proposition 7.5.1.



7.6 The Feller-property of the di�usion proess 567.6 The Feller-property of the di�usion proessThe next a bit more tedious thing to prove is the existene of a Feller semigroup forthe di�usion proess (X,Y ).7.6.1 The main result and the strategy of the proofWith the onoming lemma the proof of Lemma 2.2.2 will be omplete:Lemma 7.6.1: If g satis�es Conditions 2.1.3, then the di�usion proess (X,Y ) isa Strong Markov proess and moreover a Feller proess.We will do the proof in several steps and separate them in some subsetions.Very fast we will see that the proess is Markovian and this will not ost us alot of time. It will be a bit more exhausting to show the Feller-property expliitly.From the Markov property we are given a Markov-semigroup St:
St :C0(R

2,R) → {h : R2 → R}, where
Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y] ∀f ∈ C0(R

2,R).
(7.42)Unfortunately we annot onlude the Feller-property of this semigroup easily,sine we neither have boundedness nor elliptiity of the di�usion matrix. So wetake a di�erent approah and prove the Feller-property in a diret way. For this wewill use the abbreviation C0 for C0(R

2,R). And we need to show the following twostatements:(i) ∀f ∈ C0,∀x, y ≥ 0 : limt→0(Stf)(x, y) = f(x, y) .(ii) St(C0) ⊆ C0 ∀t > 0.They are a su�ient ondition for St being a strongly ontinuous ontrationsemigroup on C0. This an be found in [RY91, Proposition III.2.4℄. Then we knowthat (X,Y ) is a Feller-proess.Before these two statements are proven a ompat ontainment ondition isshown. The proof of the seond property is split up in two parts as well: van-ishing at in�nity and ontinuity. The �rst requires one step the latter four steps.Altogether we get the following proo�ng sheme in eight steps:Step 1: (X,Y ) is a Markov proess and has the Markov-semigroup St.Step 2: (X,Y ) satis�es a ompat ontainment ondition.Step 3: Proof of (i). Convergene of the sequene (Stf)(x, y) for t tending to zeroto f(x, y).Step 4: If f vanishes at in�nity, then so does Stf for any t ≥ 0.Step 5: If f is ontinuous, then so is Stf : Preparation.Step 6: If f is ontinuous, then so is Stf in a point (x, y) with x > 0, y > 0.Step 7: If f is ontinuous, then so is Stf in a point (x, 0) with x > 0.Step 8: If f is ontinuous, then so is Stf in a point (0, y) with y ≥ 0.



7.6 The Feller-property of the di�usion proess 57The proof is not put into a �proof environment�, but held within these steps. Somelemmas and propositions will arise, but all will be belonging to the orrespondingparts of the proof.7.6.2 The proofStep 1: The proess (X,Y ) is Markov proess with Markov semigroup StDue to the existene of a unique strong solution for the SDE
dXt =

√

g(Xt) dW
1
t ,

dYt =
√

bXtYt dW
2
t ,the proess (X,Y ) is a Markov-proess. Hene there is a Markov-semigroup St,whih satis�es:

Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y] ∀f ∈ C0(R
2,R). (7.43)Step 2: Compat ontainment ondition of (X,Y )In this step we will write an estimate desribing how far the bivariate proess (Xt, Yt)an go away from a starting point (x, y) for a given �nite time t. We will �nd itappropriate to use the notation a ∨ b for indiating that in the ase α < 1 we have

a and for α ≥ 1 we have b. We start with an easy alulation about the modulus of
X and Y : E[‖(Xx

t ,Y
x,y
t ) − (x, y)‖2] = E[(Xx

t − x)2 + (Y x,y
t − y)2]

=E[(

∫ t

0

√

g(Xx
s ) dW 1

s )2 + (

∫ t

0

√

bXx
t Y

x,y
t dW 2

s )2]

= E[

∫ t

0
g(Xx

s )ds +

∫ t

0
bXx

s Y
x,y
s ds]

=

∫ t

0
(E[g(Xx

s )] + bE[Xx
s Y

x,y
s ]) ds.Now we will use what we alulated in Proposition 7.5.1 :E[‖(Xx

t ,Y
x,y
t ) − (x, y)‖2] ≤

∫ t

0

[

(1 + x) ∨
(

(Cxα + C + γ)eCα(α−1)s − γ
)

+

=bxyt+ t(1 + x) ∨ C(1 + xα) + γ

Cα(α− 1)
(eCα(α−1)t − 1) − γt.(7.44)Now we an use the Doob-inequality for p = 2, sine (Xx

t , Y
x,y
t ) − (x, y) is amartingale with expetation 0 and we get the following estimate:P[ sup

0≤s≤t
‖(Xx

t , Y
x,y
t ) − (x, y)‖ > k0] ≤

≤ 1

k2
0

(

xyt+ t(1 + x) ∨ C(1 + xα) + γ

Cα(α− 1)
(eCα(α−1)t − 1)

)

.
(7.45)



7.6 The Feller-property of the di�usion proess 58Remark 7.6.2:Note that the right hand side is stritly inreasing in t. 3Lemma 7.6.3: For any given ǫ > 0, t ≥ 0, (x, y) ∈ R2
+, there is a ompatum

K = K(ǫ, t, x, y) s.t. the proess (Xx
s , Y

x,y
s ) stays within K with probability ≥ 1− ǫ,whenever 0 ≤ s ≤ t.Proof: The proof is lear by (7.45).Step 3: Continuity of St for t→ 0We start by showing the �rst ondition (i) for the Feller-property. Let therefore

f ∈ C0 a funtion, (x, y) ∈ R2
+ a starting point and an ǫ > 0 be given. Then all weneed to show is that we an �nd a t0, s.t.

|(Stf)(x, y) − f(x, y)| < ǫ ∀t < t0. (7.46)By ontinuity of f in the point (x, y) it is true that for given ǫ we an �nd a δ s.t.for all (x̃, ỹ) with ‖(x, y) − (x̃, ỹ)‖ ≤ δ:
|f(x, y) − f(x̃, ỹ)| < ǫ

2
. (7.47)Additionally hoose t0 in (7.45), s.t. for k0 = δ, the right hand side is smaller than

ǫ/2‖f‖∞. Then we get by the isotonity of (7.45) for t ≤ t0:
|(Stf)(x, y) − f(x, y)| = |E(x,y)[f(Xt, Yt) − f(x, y)] | ≤

≤E(x,y)

[

|f(Xt, Yt) − f(x, y)|(1{‖(Xt ,Yt)−(x,y)‖≤δ} + 1{‖(Xt,Yt)−(x,y)‖>δ})
]

≤
≤ ǫ

2
+ 2‖f‖∞

ǫ

2‖f‖∞
= ǫ. (7.48)This is already what we needed to show for (i).Step 4: If f vanishes at in�nity, then so does StfLet us onsider the behaviour of Stf lose to in�nity. Therefore let an f ∈ C0, a�xed time t and an ǫ > 0 be given. We need to hek whether Stf vanishes lose toin�nity:

lim
(x,y)→∞

(Stf)(x, y) = 0. (7.49)Or equivalently:
∀ǫ ∃n s.t. (Stf)(x, y) < ǫ ∀(x, y) with either x > n or y > n. (7.50)It is lear that we need to onsider two ases, one where x is diverging and anotherone, where y is diverging. We will only deal with the �rst one, sine the methodsfor both ases would be the same and the seond one is even easier to show.



7.6 The Feller-property of the di�usion proess 59So let x0 > 0 be given. We will use the Doob-inequality estimate in (7.45) with
k0 = x0/2 to get:P [‖(Xx0

t , Y x0,y
t ) − (x0, y)‖ >

x0

2

]

≤ P [ sup
0≤s≤t

‖(Xx0
s , Y x0,y

s ) − (x0, y)‖ >
x0

2

]

≤ 4

bx2
0

(

x0yt+ t(1 + x0) ∨
C(1 + xα0 ) + γ

Cα(α− 1)
(eCα(α−1)t − 1)

)

=

=
4byt

x0
+ 4t

1 + x0

x2
0

∨ 4
C(1 + xα0 ) + γ

x2
0 Cα(α− 1)

(eCα(α−1)t − 1). (7.51)Now it is lear that for given t the right hand side an be bounded from above byany positive bound if x0 is su�iently large (remember that α < 2). Intuitively weshowed that if we start in x0 far away from zero, (Xt, Yt) an reah an area with
Xt < x0/2 within a short time with only small probability and we shall use that nowto get (7.49). Therefore we hoose x0 so large that (7.51) is smaller than ǫ/2‖f‖R2

+and s.t. ‖f‖[x0/2,∞)×R+
< ǫ/2 (remember f ∈ C0). Then we get

(Stf)(x0, y) =E[f(Xx0
t , Y x0,y

t )] =

=E(x0,y)

[

f(Xt, Yt)(1{‖(Xt,Yt)−(x0,y)‖≤x0
2
} + 1{‖(Xt,Yt)−(x0,y)‖>x0

2
})
]

≤

≤‖f‖[x0/2,∞)×R+
+ ‖f‖R2

+

ǫ

2‖f‖R2
+

≤ ǫ

2
+
ǫ

2
≤

≤ǫ. (7.52)Clearly the argument still holds for any any other starting point > x0. So for given
ǫ > 0 there is a x0 s.t. (7.50) is true for all x > x0. For the seond oordinate a y0an be found the same way. Then n = max(x0, y0) makes (7.50).Step 5: If f is ontinuous, then so is Stf : PreparationThe most di�ult thing to show is that for given f ∈ C0, the image under St is aontinuous funtion for any t. Hene for the onoming steps keep t > 0 and f ∈ C0�xed.Suppose the points x and y are �xed. Assume that x̃ and ỹ are lose to xand y and we have solutions to the martingale problem (2.2.3) with initial values
(Xx

0 , Y
x,y
0 ) = (x, y) and (X x̃

0 , Y
x̃,ỹ
0 ) = (x̃, ỹ). What we need to show is the following:

∀ǫ > 0 ∃δ > 0 s.t. ∀x̃, ỹ with ‖(x̃, ỹ) − (x, y)‖ < δ : |Stf(x, y) − Stf(x̃, ỹ)| < ǫ(7.53)We will do that by showing that the solutions �ome together� as time goes on.To do that we require a oupling argument:
|Stf(x, y) − Stf(x̃, ỹ)| ≤|E [f(Xx

t , Y
x,y
t ) − f(Xx

t , Y
x,ỹ
t )

]

|+

+ |E [f(Xx
t , Y

x,ỹ
t ) − f(X x̃

t , Y
x̃,ỹ
t )

]

| (7.54)
≤‖f‖E [P (Ty,ỹ > t|Xx)] + ‖f‖P(Tx,x̃ > t̃ ∪ T̂y,ỹ > t),(7.55)



7.6 The Feller-property of the di�usion proess 60where the following oupling times are used
Ty,ỹ := inf{s > 0 : Y x,y

s = Y x,ỹ
s },

Tx,x̃ := inf{s > 0 : Xx
s = X x̃

s },
T̂y,ỹ := inf{s > Tx,x̃ : Y x,ỹ

s = Y x̃,ỹ
s } and

t̃ < t, where t̃ is �xed. (7.56)The idea is to ouple the proesses mentioned in the previous lines aording tothe tehnique presented in [Lin92, page 214℄. To desribe the idea shortly we letthe proesses in (7.54) run independently until its oupling times, i.e. the �rst timethey meet. Then the proesses run together and that is why we only need to worryabout the question whether the oupling times an be bounded from above by anypositive ǫ, if we hoose the initial points x̃ and ỹ su�iently lose to x and y.We will bene�t from the atalyti setting of the problem and we note that for theseond summand we �rst want the atalyst to ouple at time Tx,x̃, whih will be avery small time and then as the reatants have not moved apart to dramatially wean still be sure that the reatant ouples su�iently fast.We treat several ases in the next steps and start with the most di�ult one.Step 6: If f is ontinuous, then so is Stf in a point (x, y) with x > 0, y > 0(A) We start with the �rst summand and give a preparatory lemma:Lemma 7.6.4: Let a Brownian motion W be given. In the ase x > 0, y > 0 thefollowing holds:For all s > 0, ǫ > 0 there exist δ1 > 0, δ2 > 0 s.t.P(〈Y x,y, Y x,y〉s > δ1) > 1 − ǫ, (7.57)P(W (r) < δ2 ∀r ≤ δ1) <ǫ. (7.58)Proof. The proof is given by simple alulations using (7.45):
〈Y x,y, Y x,y〉s =

∫ s

0
Xx
r Y

x,y
r dr ≥ (7.59)

≥ s̃
xy

4
1{|Xx

r −x|<x
2
,|Y x,y

r −y|< y
2

∀r<s̃}. (7.60)And by (7.45) and a hoie of s̃ su�iently small (note that the quadrati variationis monotonous in s) this an be bounded from below with a onstant δ1 with prob-ability > 1 − ǫ.Additionally by the distribution of level-hitting times for Brownian motion (om-pare [RY91, p.107℄) it is lear that the seond laim also holds by hoosing δ2appropriately.Then we an start thinking about the oupling time Ty,ỹ for a given atalyst
Xx started in a �xed point x. By the Martingale Representation Theorem for themartingale Y x,y

s − Y x,ỹ
s it holds for a Brownian Motion W that:

{Ty,ỹ > t} = {Y x,y
s 6= Y x,ỹs ∀s ≤ t} = (7.61)

= {W (〈Y x,y − Y x,ỹ, Y x,y − Y x,ỹ〉s) 6= y − ỹ ∀s ≤ t} (7.62)



7.6 The Feller-property of the di�usion proess 61and sine 〈A−B,A−B〉s ≥ 〈A,A〉s for independent proesses, we have:
{Ty,ỹ > t} ⊆ {W (〈Y x,y, Y x,y〉s) 6= y − ỹ ∀s ≤ t}. (7.63)By the preeding lemma we get by the �rst line for a good hoie of δ1 thatP(Ty,ỹ > t) ≤ (1 − ǫ)P(W (s) 6= y − ỹ ∀s ≤ δ1) + ǫ, (7.64)and then by the seond line for hoosing y − ỹ < δ2:P(Ty,ỹ > t) ≤ (1 − ǫ)ǫ+ ǫ < 2ǫ. (7.65)So the right hoie of ỹ is already done to bound the �rst summand in (7.55).(B) To ontrol the seond summand we need to follow some more ompliatedpaths. First we give a lemma similar to the one before:Lemma 7.6.5: Let a Brownian motion W be given. In the ase x > 0 the followingholds:For all t̃ > 0, ǫ > 0 there exist δ1 > 0, δ2 > 0 s.t.P(〈Xx,Xx〉t̃ > δ1) > 1 − ǫ, (7.66)P(W (r) < δ2 ∀r ≤ δ1) <ǫ. (7.67)Proof. The proof uses (7.45) and Condition 2.1.3 ((C2) and (C4)) and is similar tothe one before. For ˜̃t < t̃ < t and α < 1:
〈Xx,Xx〉t̃ =

∫ t̃

0
g(Xx

r )dr

≥
∫ ˜̃t

0
g(Xx

r )1{|Xx
s −x|<αx ∀s≤˜̃t} + 1{|Xx

s −x|≥αx ∀s≤˜̃t}dr

≥
∫ ˜̃t

0
min

z∈[x−αx,∞)
g(z)1{|Xx

s −x|<αx ∀s≤˜̃t} dr

≥ ˜̃t(c′(x− αx)1+β ∧ g0)1{|Xx
s −x|<αx ∀s≤˜̃t}.

(7.68)
But by the Doob estimate in (7.45) the right hand side an be bounded from belowby a positive onstant with probability > 1 − ǫ as in the previous lemma.The seond line is proven the same way as above.The idea is not to let the reatant move too far apart its starting point until time
t̃. Hene, for given ǫ > 0, δ̃ > 0 �x 0 < t̃ < t s.t. (by (7.45)):P(|Y x,ỹ

s − ỹ| < δ̃ ∀s < t̃) > 1 − ǫ andP(|Y x̃,ỹ
s − ỹ| < δ̃ ∀s < t̃) > 1 − ǫ.

(7.69)Then �nd, by Lemma 7.6.5 and the ideas at the end of part (A), x̃ in the neighbor-hood of x s.t.: P(Tx,x̃ > t̃) < ǫ. (7.70)(C) To bound the seond expression in (7.55) note that:
P (Tx,x̃ > t̃ ∪ T̂y,ỹ > t) ≤ P (Tx,x̃ > t̃) + P (Tx,x̃ > t̃ ∩ T̂y,ỹ > t). (7.71)



7.6 The Feller-property of the di�usion proess 62The �rst summand an be bounded by part (B). For the seond summand observethe following:At time t̃ the proesses Y x,ỹ and Y x̃,ỹ di�er at most by 2δ̃ by (7.69) and theatalysts have already �merged�. Hene at time t̃ we are in the situation of ase(A) where we need to wait for the merger of two reatants with �xed atalytibakground. But this an be done with a probably di�erent hoie of x̃.Step 6: If f is ontinuous, then so is Stf in a point (x, 0) with x > 0We will argue similar as in the previous step, but we annot apply Lemma 7.6.4:we annot bound Y x,ỹ from below.We go bak to (7.53) and write for x̃ > 0, ỹ > 0:
|Stf(x, 0) − Stf(x̃, ỹ)| ≤|E [f(Xx

t , Y
x,0
t ) − f(X x̃

t , Y
x̃,0
t )

]

|+

+ |E [f(X x̃
t , Y

x̃,0
t ) − f(X x̃

t , Y
x̃,ỹ
t )

]

| (7.72)
≤‖f‖P(Tx,x̃ > t) +E[f(X x̃

t , 0) − f(X x̃
t , Y

x̃,ỹ
t )]. (7.73)The bound on the �rst summand is lear by part (B) of the previous step. Theseond summand is not too di�ult to bound sine it is just a one-dimensionalproblem. Hene set

T0 := inf{s > 0 : Y x̃,ỹ = 0} and (7.74)
T√ỹ := inf{s > 0 : Y x̃,ỹ

s =
√

ỹ}. (7.75)Now we divide the probability spae into the following three (not neessarily disjoint)sets:
{T0 < T√ỹ, T0 < t} ∪ {T√ỹ < T0, T√ỹ < t} ∪ {T0 > t, T√ỹ > t}. (7.76)Clearly we want to bound the seond summand from above with the help of thesesets. Note that P[T√ỹ < T0|X x̃

s ] =
√

ỹ. (7.77)Hene,E[f(X x̃
t ,0) − f(X x̃

t , Y
x̃,ỹ
t )] (7.78)

≤ 0 + 2‖f‖P[T√ỹ < T0|(X x̃
s ] +E[ sup

z∈(0,
√
ỹ)

|f(X x̃
t , 0) − f(X x̃

t , z)|]. (7.79)And sine f is ontinuous in the seond oordinate 0, we an hoose ỹ so lose tozero, s.t. the right hand side is bounded by ǫ. If additionally for the �rst summandwe had hosen x̃ so lose to x that
‖f‖P (Tx,x̃ > t) < ǫ, (7.80)then we obtain:

|Stf(x, 0) − Stf(x̃, ỹ)| ≤ 2ǫ. (7.81)Hene this step is done.Step 7: If f is ontinuous, then so is Stf in a point (0, y) with y ≥ 0This step involves similar problems as the previous one: non-appliability of Lemma



7.6 The Feller-property of the di�usion proess 637.6.5. The advantage, however, is that we only have to deal with some sort of one-dimensional problem. We have:
|Stf(0, y) − Stf(x̃, ỹ)| ≤|f(0, y) − f(0, ỹ)| + |E [f(0, ỹ) − f(X x̃

t , Y
x̃,ỹ
t )

]

|. (7.82)The �rst summand an be bounded by the right hoie of ỹ and the seond oneneeds a similar argument as just before: Let us �rst ouple the atalyst X x̃ to zeroand after that �short� time the reatant has not left ỹ too muh:
T0 := inf{s > 0 : X x̃

s = 0}, (7.83)
T√x̃ := inf{s > 0 : X x̃

s =
√
x̃}. (7.84)Then we divide the probability spae as in the step just before in (7.76) and get:

|E [f(0, ỹ) − f(X x̃
t , Y

x̃,ỹ
t )

]

| ≤E[|f(0, ỹ) − f(0, Y •,ỹ
t )|] + 2‖f‖P(T0 > T√x̃)

+E[ sup
z∈[0,

√
ỹ]

|f(0, ỹ) − f(z, Y •,ỹ
t )].

(7.85)Here we introdued Y •,ỹ
t as a stohasti proess given as a reatant, whose atalysttotal mass is in between 0 and √

x̃. We need to show that Y •,ỹ
t is not too far from

ỹ. By the Doob-inequality:P[ sup
0≤s≤t

|Y •,ỹ
t − ỹ| > δ1] ≤

1

δ21
E[

∫ t

0
bXrY

•,ỹ
r dr]

≤ bt

δ21

√
x̃ỹ.

(7.86)And if we hoose x̃ so lose to zero s.t.
√
x̃ <

δ21ǫ

3btỹ‖f‖ ∧ ǫ

2‖f‖ (7.87)and ỹ s.t.
|f(0, y) − f(0, ỹ)| < ǫ/3, (7.88)we get that by (7.85):
|Stf(0, y) − Stf(x̃, ỹ)| ≤ ǫ. (7.89)And that was all we needed to show.Step 8: If f is ontinuous, then so is Stf in the point (0, 0)The shortest and easiest step is hopefully a good time to reover for the reader:

|Stf(0, 0) − Stf(x̃, ỹ)| ≤ |f(0, 0) − f(0, ỹ)| + |f(0, ỹ) − Stf(x̃, ỹ)|. (7.90)The �rst summand an be bounded by ontinuity of f and the seond summandan be done as the previous Step 7.Now all the steps we needed to prove the Feller-property of (X,Y ) are taken.Therefore Lemma 7.6.1 is proved. ���



7.7 Convergene of the total mass proess to (X,Y ) 647.7 Convergene of the total mass proess to (X, Y )Now we will prove the onvergene of the total-mass-proesses, Theorem 2.3.1:Theorem 7.7.1 (Weak onvergene of the total masses):When g satis�es Condition 2.1.3, then
L[(ηtot,n, ξtot,n)] =⇒ L[(X,Y )] as n→ ∞, (7.91)where onvergene is weak onvergene in the path spae DR+ [0,∞).The proof of this theorem an be put into a wider ontext. For di�usion limitsthere is a wide number of theorems available, some of whih an be found in [EK86℄.We will give a rather general proposition, whih does not use the Feller-propertyshown in the previous setion. We will show the following proposition:Proposition 7.7.2: Let (Zn)n∈N be a sequene of martingales in Rd orrespondingto losable pregenerators Ωn on Cc(R

d,R). Zn has àdlàg paths and satis�es theompat ontainment ondition:For every λ > 0 and T > 0, there exists a ompat set Γλ,T ⊂ Rd,independent of n suh that
inf
n
P [Zn(t) ∈ Γλ,T for 0 ≤ t ≤ T ] ≥ 1 − λ. (7.92)Let additionally Z be the Rd-valued unique solution of the (Ω,D(Ω)) martingaleproblem, where D(Ω) ⊂ C0(R

d,R). Assume that C∞
c is a ore for Ω and the followingtwo properties hold:(i) L[Zn0 ] → L[Z0],(ii) For every f ∈ C∞

c it is true that:
lim
n→∞

‖Ωnf − Ωf‖Rd = 0. (7.93)Then Zn =⇒ Z, where onvergene is in distribution in DRd [0,∞).Proof: The proof will go along some theorems from [EK86℄, expliitly Theorem3.9.1, 3.9.4 and 4.8.10, whih are all quoted in the appendix.The proof is split into three parts. In a �rst part we will show tightness of thesequene (Zn)n∈N in DRd [0,∞) by Theorem 3.9.1 and 3.9.4. In a seond part wewill show onvergene of the �nite-dimensional distributions of Zn to those of Zand the third part puts together these results and shows weak onvergene in thepath spae DE[0,∞).(A) We use Theorem 3.9.1 in [EK86℄ and notie that the ompat ontainmentondition is already given. So it su�es to verify relative ompatness of (f ◦Zn)n∈Nfor any f ∈ H = C∞
c (Rd,R). Thus we an look at Theorem 3.9.4 and we only needto show that for any f ∈ H, T > 0 ondition (3.9.18) holds for p = 2:

sup
n
E

[∫ T

0
|(Ωnf)(Znt )|2dt

]

<∞ . (7.94)



7.7 Convergene of the total mass proess to (X,Y ) 65Let us start the alulation:
|(Ωnf)(Znt )|2 ≤ 2(|(Ωf)(Znt )|2 + |(Ωnf)(Znt ) − (Ωf)(Znt )|2). (7.95)The �rst summand is onstant in n and bounded from above by a bound on deriva-tives on f (remember that f has ompat support). The seond one is boundedsine we have (7.93) on ompata. With this easy argument, the �rst part is al-ready done.(B) In the seond part we use Theorem 4.8.10 and show () to get the onvergeneof f.d.d.'s in (a) and we note that Z was the unique solution of the (Ω,D(Ω))-martingale problem. By the �rst part (Zn)n∈N is relatively ompat and we take

M = {1(−∞,a)(·s) : a, s ∈ Q, s ≥ 0}.Let f ∈ C∞
c (Rd,R), T > 0, ξn(t) = f(Znt ), φn(t) = (Ωnf)(Znt ). Now we have tohek (8.51),(8.52), (8.53), (8.54) in hapter 4 and the martingale property (9.16) inhapter 3. The martingale property is satis�ed, sine Zn is a solution of the disretemartingale problem. The �rst ondition (8.51) is veri�ed, sine f is bounded. Weshow (8.52):

E[ |φn(t)| ] = E[|Ωnf(Znt )|] ≤ E[ |(Ωf)(Znt )| ]+E[ |(Ωnf)(Znt )−(Ωf)(Znt )| ]. (7.96)With the same arguments as in the �rst part this expetation is uniformly boundedin n and in a time 0 ≤ t ≤ T . So (8.52) is shown. Clearly (8.53) holds by de�nition,so it only remains to show (8.54):
E[ |φn(t) − Ωf(Znt )| ] = E[ |Ωnf(Znt ) − Ωf(Znt )| ] → 0 as n→ ∞, (7.97)sine f has ompat support and by (7.93). So the seond part is also done.(C) In this part we use Theorem 3.7.8 of [EK86℄. The requirements of (b): relativeompatness and f.d.d. onvergene are ful�lled and were shown in the �rst andseond part. So onvergene in path spae follows: L[Zn] → L[Z] in DRd [0,∞).Now it is an easy exerise to adopt this proposition for the proof of Theorem7.7.1:Proof: (of Theorem 7.7.1 )We set Zn = (ηtot,n, ξtot,n) and Z = (X,Y ). Then all we have to do is to show therequirements of Proposition 7.7.2, where the index in the braket indiates wherethey were already proven:

• (ηtot,n, ξtot,n)n∈N satis�es the ompat ontainment ondition (Lemma 7.3.3),
• (ηtot,n, ξtot,n) has àdlàg paths for eah n (Lemma 7.2.1),
• The (U,D(U))-martingale problem has a unique solution (Theorem 7.4.1) .
• For f ∈ C∞

c , we have ‖Unf − Uf‖R2
+
→ 0 as n→ ∞.We only need to show the last argument and let f ∈ C∞

c be given. Let K be theompatum in R2
+, s.t. f |Kc ≡ 0. Then we have

‖Unf−Uf‖R2
+

= ‖Unf − Uf‖K

=‖n
2

2
g(x)[f(x+

1

n
, y) − 2f(x, y) + f(x− 1

n
, y)] +

n2

2
bxy[f(x, y +

1

n
)

− 2f(x, y) + f(x, y − 1

n
)] − 1

2
g(x)

∂2f

∂x2
(x, y) − 1

2
bxy

∂2f

∂y2
(x, y)‖K .

(7.98)



7.7 Convergene of the total mass proess to (X,Y ) 66With Taylor's expansion up to seond order of the non-f(x, y)-summands around
(x, y) we get:

‖Anf −Af‖R2
+

= 2‖ 1

2n
g(x)fxxx(x̂, y) +

1

2n
xyfyyy(x, ŷ)‖K ≤

≤ 1

n
‖g(x)fxxx(x̂, y) + bxyfyyy(x, ŷ)‖(x,y),(x̂,ŷ)∈K → 0 as n→ ∞.

(7.99)This is all we needed to show. So we an use Proposition 7.7.2 to show Theorem2.3.1.



8 Proofs of the main results fromChapters 4 and 5Within this hapter the proofs of the main results from Chapter 4 and 5 are pre-sented. They are put together in one hapter, sine the proofs used for the tree-valued-proess and the ontour-proess depend on eah other by the mappings Cand T , whih map trees to ontours and vie versa.8.1 Preliminary onsiderations for the quenhed analysis8.1.1 Regular onditional probabilities and quenhed analysisThe quenhed analysis will present some results about the reatant proess ondi-tioned on the atalyst total mass proess. In order to desribe results about thequenhed point of view it is su�ient to onsider single atalyst sample paths only.This is true sine Troot and DR2
+
[0,∞) are omplete and separable metri spaes.Therefore by Theorem 5.3.19 in [KS00℄ regular onditional probabilities, i.e. ker-nels, exist (see Theorem A.2.1 in the Appendix):

K(η,A) = P [((ηtot
t )t≥0, ξ

for
r ) ∈ A|(ηtot

t )t≥0 = η
]

. (8.1)Clearly the same is true for the resaled proesses and the di�usion, where for eahwe get a transition kernel: All of these kernels an be brought together as di�erentkernels on the ommon probability spae as in De�nition 2.3.3. Indeed we thinkof all resaled atalysts realized on the ommon probability spae as in Chapter 2,(2.18):
Kn(η,A) := prob. of n-resaled proess in A under ηtot,n = η , (8.2)
K(x,A) := prob. of limit proess in A under X = x . (8.3)Note that yet we annot really speak about the seond line, sine we do not knowif a limit objet exists for trees or ontours. As later we will be able to show that,we do not hesitate to introdue the notation already.8.1.2 Spei�ation of the quenhed atalystsThis is the point where we do not take the atalyst proesses to be generated bya atalyst branhing sheme, but by a wider lass of proesses, and as we alreadyonditioned, by a wider lass of funtions.Take a �xed sequene of àdlàg funtions xn and a ontinuous funtion x s.t.

xn : [0, t̂n] → R+ and
x : [0, t̂] → R+.

(8.4)



8.2 The reatant limit forest exists: The proof strategy 68The �rst funtion x shall play the role of the total mass di�usion X as partof the SDE (2.9). The funtions xn shall play the role of the disrete total massproesses ηtot,n as part of the individual branhing rate of the reatant. Thereforethe funtions are additionally required to have the following properties:Condition 8.1.1: (i) x(0) = xn(0) = 1 ,(ii) x(t̂) = xn(t̂n) = 0,(iii) before the absorption times x and xn are stritly positive: xn(c) > 0, when
c ∈ (0, t̂n),(iv) t̂n → t̂ as n tends to in�nity and(v) for any T > 0 it holds:

lim
n→∞

sup
t≤T

|xn(t) − x(t)| = 0. (8.5)Indeed the atalyst total mass proess and its resaled versions de�nitely satisfyall these onditions, see Corollary 2.3.2 and (2.18).But note that there are also some properties, whih ηtot has, but whih are notneessary for the proofs to ome: it is not required that the jumps of xn are of mag-nitude 1/n only. The range of possible atalysts is therefore indeed wider than theones given by the atalyst total mass proess in Chapter 2. Any resaled sequeneof funtions satisfying the Condition an be a atalyst and the proofs an be done.Remark 8.1.2:From now on take the funtions xn and x to be �xed for the whole hapter. Allprobabilities even if not expliitely indiated are understood to be quenhed, i.e. on-ditioned on ηtot,n = xn,X = x.We will abbreviate notation and simply write ξfor,n for the reatant forest with at-alyst xn and whih is ut at the height of the non-random extintion time t̂n of theatalyst. 38.2 The reatant limit forest exists: The proof strategyThe main theorem from Chapter 4 laims that the sequene of resaled trees on-verges:Theorem 8.2.1 (The reatant limit forest exists):There exists a random variable Y for ∈ Troot, s.t.:
L
[

ξfor,n; ηtot,n
]

n→∞−−−→ L
[

Y for;X
]

. (8.6)The law of Y for is given by
L
[

Y for;X
]

= lim
δ→0

L
[

T ((ζδu)0≤u≤α4/b
)
]

, (8.7)where onvergene is in the Prohorov-metri of probability measures, T is the map-ping desribed on page 31.



8.3 Tightness of the reatant tree-valued proess 69The di�usion ζδ is the unique solution of the (Aδ,D(Aδ)) martingale problem, where
D(Aδ) is given by:

D(Aδ) = {f ∈ C1([0, τ δ ], [0,∞)) : f ′|{0,τδ} = 0,
f ′(·)
X·

∈ C2
[0,τδ]([0,∞))} (8.8)and for eah f ∈ D(Aδ):

Aδf(c) =

(

2f ′

Xc

)′
(c). (8.9)Furthermore α4/b is the loal time inverse at level 0 of ζδ of 4

b .The proof of this theorem will oupy the rest of this hapter, sine it is ratherinvolved. We will split the proof in several setions ontaining various lemmas, butalso some theorems, whih are worth to be mentioned as well. In a short desriptionthe proof goes like this:
• First we show that the sequene (ξfor,nt ; ηtot,n)n∈N is tight in Troot. This isdone with an argument that shows that the struture of the reatant tree israther regular with respet to the atalyst: one an �nd an ǫ-net in eah tree,where the overall number of net-points is bounded uniformly in n for a �xedatalyst. For this see Setion 8.3.
• In a seond step we translate the problem from the tree-setting to the ontoursetting. In the ontour setting the ut reatant ontours of trees whih areut at a ertain height form a tight series and all possible limit ontours solvea martingale problem. This martingale problem is then shown to be uniquelysolvable. Therefore the ut ontours onverge weakly to a ut limit ontour.This an be found in Setion 8.4.
• In the end we show that the unique ut tree orresponding to the unique limitontour form a Cauhy sequene in the ontour utting parameter. But anylimit point of the tight tree sequene (L[ξfor,n; ηtot,n]

)

n∈N
must have the samelaw on the ut trees. Therefore there an only be one limit law on Troot, sinethe ut-tree law is uniquely determined by the unique ontour law. This partis done in Setion 8.5.Eah of these points is shown in an own setion.8.3 Tightness of the reatant tree-valued proess8.3.1 The main result and the strategy of the proofIn this setion we do the �rst step to prove Theorem 8.2.1 and prove Proposition4.2.1. This proposition laims:Proposition 8.3.1: Under the hypotheses of Condition 8.1.1 the family (ξfor,n)n∈Nis tight in Troot.



8.3 Tightness of the reatant tree-valued proess 70Sine the proof is a bit longer �rst the strategy of the proof is given and then theformal proof follows.In fat by Lemma 2.5 of [EPW06℄ what needs to be shown is the following:For eah γ > 0 there is a ompat subset Γγ of Troot suh that for all n ∈ N:P[ξfor,n ∈ Γγ ] ≥ 1 − γ. (8.10)To get this for �xed n assume eah tree ξfor,n to be ut in ǫ-thik slies. Eahslie ontains a ertain number of di�erent ar piees. Out of eah ar piee hoosea single point.If with high probability an upper bound n(ǫ) on the number of these hosen pointsan be given for eah ǫ, then by Lemma 2.5 in [EW06℄ we have a preompat set.Moreover this upper bound an be established with high probability for the randomset of forests ξfor,n. So the main task will beome estimating numbers of anestorsand hene it is good to look at the tree from a bakward perspetive (look-down).Indeed this bound an be given via an argument from [DK96℄, whih relates lookingat branhing in inverse time on the one hand and to the Kingman oalesent on theother hand.Therefore, the proof is split into the following steps:Step 1: The Kingman oalesent and its behaviour lose to zero.Step 2: Desription of a set Γγ,Lm ⊂ Troot of trees whih is preompat in theGromov-Hausdor�-metri using [EPW06℄.Step 3: Branhing looked at in inverse time diretion is like a time-hanged King-man oalesent, as in [DK96℄.Step 4: Proof of the tightness property, via showing that the resaled reatant treesare in Γγ,Lm with probability 1 − γ.8.3.2 The proofStep 1: The Kingman oalesentIn 1982 J.F.C Kingman presented in his paper [Kin82℄ the so-alled �Kingman�-oalesent. It is a stohasti proess desribing the evolution of a partition of anarbitrary ountable set. Eah pair of partition elements merges after exponentialtime independent of all other possible partition elements partners.To be more preise let a n ∈ N and a set A ontaining at least n elements begiven. The n-oalesent (R
(n)
t )u≥0 is a proess starting with the partition of theset A into n di�erent partition elements A1, A2, . . . , An. There are (n2) possiblepairs of partition elements, whih merge at onstant rate 1 eah. After the �rstmerging of two partition elements there are n − 1 partition elements left and theproess ontinues as before by merging at onstant rate of the now possible (n−1

2

)pairs. The proess ontinues until it reahes the exit state, where there is only onepartition element left, the whole set A. Let the times between two mergers from kto k−1 partition elements be alled Tk. Then this time is exponentially distributedwith mean 2/k(k − 1).It is possible to extend this de�nition to starting with a given ountably in�nitepartition of the set A. When reahing a partition with n partition elements this



8.3 Tightness of the reatant tree-valued proess 71proess ontinues as the merging for the n-oalesent. This extension is possiblebeause of the onvergene of the sum of the expetations of Tk and the proessshall be alled the oalesent (Rt)t≥0. More about this is re�eted in the AppendixB.1.Quite many things are known about the Kingman oalesent, some of whih anbe found in [Ald99℄, page 27. Here we will state an easy lemma we use later on:Lemma 8.3.2: For the Kingman oalesent (Rt)u≥0 it is true that
E[#Rt] ≤ 16/t+ 3. (8.11)Proof: The proof onsists of four small parts and essentially only uses the Markovinequality:(A) By de�nition #Rt is the number partition elements at time t. It is a deathproess starting at infinity with rate (k2) in state k. Then eah of the waitingtimes between k and k − 1 partition elements is exponentially-(k2)-distributed. Let

T1, T2, . . . be this sequene of independent exponentially distributed random vari-ables with E[Tk] = 1/
(k
2

). Then it holds for
Sn =

∞
∑

k=n+1

Tk, (8.12)that
{Sn ≥ t} = {#Rt ≥ n}. (8.13)(B) Additionally alulate the Legendre transform of Sn for λ < (n2):

E[eλSn ] =
∞
∏

k=n+1

E[eλTk ] =
∞
∏

k=n+1

(

1 − λ
(k
2

)

)−1

= exp

(

−
∞
∑

k=n+1

log(1 − λ
(k
2

))

)

≤ exp

(

−
∞
∑

k=n+1

∞
∑

m=1

( λ

(k
2)

)m

)

= exp

(

∑

k=n+1

∞ 2λ

k(k − 1) − 2λ

)

.

(8.14)
By hoosing λn = λ = n(n−1)

4 we get:
E[eλnSn ] ≤ exp

(

4n(n− 1)
∑

k=n+1

∞(k(k − 1))−1

)

= exp(4(n − 1)). (8.15)Then we get by the Markov inequality:
P [#Rt ≥ n] = P [Sn ≥ t] ≤ e−λntE[eλnSn ] ≤ exp(−n(n− 1)

4
+ 4(n − 1)). (8.16)



8.3 Tightness of the reatant tree-valued proess 72(C) With the help of the preeding we an bound the estimation of #Rt:
E[#Rt] =

∞
∑

n=1

P [#Rt ≥ n]

≤
⌊16/t⌋
∑

n=1

P [#Rt ≥ n] +
∞
∑

n=⌊16/t+1⌋+1

P [#Rt ≥ n]

≤ 16

t
+

∞
∑

n=⌊16/t⌋+1

e−(n−1).

(8.17)
An estimate of the last sum yields:

E[#Rt] ≤
16

t
+ 3 (8.18)

Step 2: A preompat set Γγ in TrootThe onstrution of Γγ is the next point to do now. Lemma 2.5 from [EW06℄ willbe used, whih states that a set in Troot is preompat, if it has an ǫ-net, i.e. foreah tree in this set, there are at most n(ǫ) points in eah tree, s.t. every point inthe tree is overed by balls with radius ǫ around these n(ǫ) points.Let a set of trees and ǫ > 0 be given. First ut the trees horizontally into slieswith height ǫ. Eah slie ontains a ertain number of di�erent ar piees. Out ofeah ar piee hoose a single point. To get preompatness of this set of trees byLemma 2.5 from [EPW06℄ it is su�ient that the number of these hosen pointsis bounded uniformly by a onstant in the set of trees. This is in fat the way toonstrut the ompat subset Γγ .First some notation is introdued. Therefore remember the de�nitions of the tree-height h, the ut-operator Qt, the leaf-operator ∂Qt and the trimming operator Sǫin Chapter 3 (De�nition 3.2.1). Then de�ne Att−ǫ(T, ρ) to be the set of anestorsat time t− ǫ of the individuals alive at time t, i.e.:
Att−ǫ(T, ρ) = Sǫ(Qt(T, ρ)) ∩ ∂Qt−ǫ(T, ρ). (8.19)Then we onstrut preompat sets as follows:Lemma 8.3.3: For a positive non-dereasing sequene of integers (Lm)m∈N, theset

Γ := {(T, ρ) ∈ Troot :

⌊2(m+1)h(T,ρ)−1⌋
∑

k=0

#Ak2
−(m+1)

(k−1)2−(m+1)(T, ρ) ≤ Lm∀m ∈ N} (8.20)is preompat in Troot.



8.3 Tightness of the reatant tree-valued proess 73Proof: To prove this lemma we use the already mentioned Lemma 2.5 in [EPW06℄.We use the following observation: If we hoosem0 = ⌈− log2 ǫ⌉∨M , then 2−(m0+1) ≤
ǫ/2. That means the slies orresponding to m0 are thinner than ǫ/2.Now we will prove that for a given (T, d, ρ) ∈ Γ the following set R is an ǫ-net of
T :

R(ǫ, T ) =

⌊2(m0+1)h(T,ρ)⌋−1
⋃

k=0

Ak2
−(m0+1)

(k−1)2−(m0+1)(T, ρ). (8.21)Given a point x ∈ T and its height h(x) = d(ρ, x), the point x must have ananestor a1 at the time 2−(m0+1)⌊2(m0+1)h(x)⌋ just before (on the �oor of the x-slie). This anestor learly has another anestor a2 in the slie before at time
2−(m0+1)⌊2(m0+1)h(x) − 1⌋. But this anestor a2 has hildren in the next slie,namely a1. So for individual a2 it holds that:

a2 ∈ A2−(m0+1)(⌊2(m0+1)h(x)⌋)

2−(m0+1)⌊2(m0+1)h(x)−1⌋(T, ρ), (8.22)and sine slies are at most ǫ/2 :
x ∈ Bǫ(A

2−(m0+1)⌊2(m0+1)h(x)⌋
2−(m0+1)⌊2(m0+1)h(x)−1⌋(T, ρ)) (8.23)Thus all points lie in balls around the ǫ-net (x is in fat in the annulus betweenradius ǫ/2 and ǫ). When thinking of the slies-idea then we left out the last slie,but this will be helpful further on, sine the last slie an ontain some problematibranhing behaviour.What remains to show now for the appliation of the ited lemma is that thenumber of points n(ǫ, T ) in the ǫ-net R(ǫ, T ) for eah T ∈ Γ is bounded uniformlyby n(ǫ) < ∞. But this is lear by de�nition of Γ, sine n(ǫ, T ) ≤ Lm0 . So for anygiven ǫ > 0 hoose n(ǫ) = Lm0 . Hene the lemma is proved.Step 3: The look-down: From the tree to the oalesentThe interesting thing to do now is to give a uniform estimate in k,m and n for thenumber Ak2−(m+1)

(k−1)2−(m+1)(T ), when T = ξfor,n. We get that estimate by the look-downfrom the top of the tree. Branhing in forward time means oalesing in inverse time.To alulate this estimate a onept developed by Donnelly and Kurtz (see [DK96,Setion 3℄ using the Kingman oalesent introdued in Step 1 (see [Kin82℄) is used.In their paper they onsider a population of partiles evolving in ontinuous timewith branhings after exponential-one-times. Eah of the partiles is assigned adi�erent level. They proof in Theorem 3.2 that the number of parental levels attime t−u of the hildren levels at time t has the same distribution as the Kingmanoalesent at time u. What we need here is just the same: we do not speak of levels,but of di�erent individuals.Here, however, the situation is a bit di�erent. A branhing event after time t, attime t+u of a single partile ours not at the �rst jump of N(u) as in [DK96℄, butat the �rst jump of N(n
∫ t+u
t bxn(s) ds).



8.3 Tightness of the reatant tree-valued proess 74Consider now the non-random time hange νt,n(u) given by
∫ t

t−νt,n(u)
nbxn(s) ds = u. (8.24)This hange is stritly monotone in u sine the integrand is positive as long as t < t̂0.Then for a Poisson proess N it is trivially true that:

N(

∫ t

t−νt,n(u)
nbxn(s) ds) = N(

∫ t

t−u
ds). (8.25)Now �x u, t > 0, where 0∨(t−

∫ t
0 nbx

n(s) ds) < t−u < t, whih is always possible,for example if 0 < u < t− δ. Then
#Att−νt,n(u)(ξ

for,n,xn
) = number of levels at time t− νt,n(u),whih have desendants at time t, where branhingours with rate nbxn(s)

= number of levels at time t− u,whih have desendants at time t, where branhingours with rate one
=#R(u), (8.26)where R is the Kingman oalesent and this last result was shown in Theorem 3.1in [DK96℄. Furthermore

(νt,n(·))−1(νt,n(u)) = u =

∫ t

t−νt,n(u)
nbxn(s) ds, (8.27)whih implies

(νt(·))−1(ũ) =

∫ t

t−ũ
nbxn(s) ds. (8.28)Thus we get that

#Att−ũ(ξ
for,n,xn

) = #R(

∫ t

t−ũ
nbxn(s) ds). (8.29)Now reall what we have done in Step 1. In Lemma 8.3.2 an estimate for E[#R(t)]was given. By applying this result, we getE[#Att−ũ(ξ

for,n)] ≤ 16

(
∫ t

t−ũ
nbxn(s) ds

)−1

+ 3. (8.30)Step 4: Proof of Tightness via the previous stepsNow to show the proposition we apply the previous results to show that (8.10) holds.First we note that the height of the reatant tree is bounded by t̂n, the hittingtime of zero of the atalyst sample path xn. Sine these hitting times onverge



8.3 Tightness of the reatant tree-valued proess 75to the hitting time t̂ of the di�usion atalyst, all of the reatant tree heights arebounded from above. We manipulate the expression on the left hand side by simplerewriting and the Markov inequality:P[ξfor,n ∈ Γ] == P[

⌊2(m+1)h(ξfor,n,ρ)−1⌋
∑

k=1

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n) ≤ Lm∀m ∈ N]

≥1 −
∑

m≥1

P[

⌊2(m+1) t̂n−1⌋
∑

k=1

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n) ≥ Lm]

≥1 −
∑

m≥1

1

Lm
E[

⌊2(m+1) t̂n−1⌋
∑

k=0

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n)]

≥1 −
∑

m≥1

1

Lm

⌊2(m+1) t̂n−1⌋
∑

k=0

E[#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n)].

(8.31)
At this point we use on the right hand side above the result proven in the previousstep:P[ξfor,n ∈ Γ] ≥ 1 −

∑

m≥1

2m+1 t̂n

Lm



16 + 16

(

∫ 2−(m+1)k

2−(m+1)(k−1)
nbxn(s) ds

)−1


 . (8.32)To ontrol this expression in n we have to use the onvergene of the atalyst to thedi�usive limit x. Therefore onsider a �xed m and take any ǫm > 0, suh that
ǫm < 1/2 min

0≤s≤t̂0−2−m
x(s). (8.33)Then one an selet a natural number Nǫ,m suh that ∀r ≤ t̂0 − 2−m ∀n ≥ Nǫ,m:

1/2 min
0≤s≤t̂0−2−m

x(s) ≤ x(r) − ǫm < xn(r). (8.34)Now hoose Lm so big that it satis�es the following two equations:
Lm ≥ 4(m+1) t̂

(

1 + γ

γ

)m

16

(

( min
0≤s≤t̂−2(m+1)

bXs)
−1 + 1

) (8.35)and
Lm ≥ 4(m+1) t̂n

(

1 + γ

γ

)m

16 sup
n≤Nǫm,m

(

( min
0≤s≤t̂−2(m+1)

bxn(s))−1 + 1

)

. (8.36)Then obviously for this �xed m it holds that in the ase n ≥ Nm,ǫm :
4m+1t̂n

Lm
16

(

(

min
0≤s≤t̂0,n

nbxn(s) ds

)−1

+ 1

)

≤ 4m+1t̂n

Lm
16

(

(

1/2 min
0≤s≤t̂0−2−m

bXs

)−1

+ 1

)

≤

≤
(

γ

1 + γ

)m

(8.37)



8.4 Convergene of the trunated reatant ontour 76and in the ase n < Nm,ǫm :
4m+1t̂n

Lm
16

(

(

min
0≤s≤t̂0,n

nbxn(s) ds

)−1

+ 1

)

≤
(

γ

1 + γ

)m

. (8.38)So we are done sine then in both ases we obtain for any n ∈ N:P[ξfor,n ∈ Γ] ≥ 1 −
∑

m≥1

22m+2t̂n

Lm

(

min
0≤s≤t̂0−2−m

nbxn(s)

)−1

≥ 1 −
∑

m≥1

(

γ

1 + γ

)m

= 1 − γ.

(8.39)So we have shown that with probability > 1 − γ the reatant forest ζ for,n stayswithin a preompat set. Hene the sequene (ζ for,n)n∈N is tight.After �nishing all four steps we are done with the proof of Proposition 8.3.1.
���Next we would like to show that there exists a unique limit. This task will takeseveral steps and will start with results about the ontour proess.8.4 Convergene of the trunated reatant ontourThis setion is devoted to show Theorem 5.3.1 about the onvergene of the reatantontour proess. Sine ontour and tree are related via the mappings C and T thisis the next step to ome loser to an asymptoti result about trees.8.4.1 The main result and the strategy of the proofIn order to obtain a result about a di�usion-limit of the ontour-proess we introduesome further notation. The key point is to ut o� the tree one the atalyst is loseto zero, sine there the reatant branhing behavior slows down signi�antly. Henewe de�ne a δ-hitting time of the atalyst. For δ > 0 set:

t̂n,δ = inf{t ≥ 0 : xn(t) ≤ δ} ≤ t̂n <∞,

t̂δ = inf{t ≥ 0 : x(t) ≤ δ} ≤ t̂ <∞.
(8.40)By the ut-operator Qt the ut reatant tree, when the atalyst falls below δ, isgiven by:

ξ̃n,δ = Qt̂n,δ (ξ̃
n). (8.41)The theorem we are going to show is in a slightly more general setting than theoriginal Theorem 5.3.1. The reatant tree is traversed with a general positive speed

kn in the n-th approximation step. In the notation we omit further referene tothe dependene of C on k. In the original setting of the theorem it was k = 1 andthis will ome out to be a good hoie for some appliations. So the ut reatantontour with traversal speed kn is given by:
Cn,δ := C(ξ̃n,δ; kn). (8.42)



8.4 Convergene of the trunated reatant ontour 77Then it is possible to establish the following onvergene result of the reatantontour, when the atalyst is given as xn and x respetively:Theorem 8.4.1 (Reatant limit ontour):Consider the linear operator (Aδ ,D(Aδ)), where
Aδf(c) =

1

2

(

f ′

b
2kxc

)′

(c), (8.43)de�ned for f ∈ D(Aδ) with
D(Aδ) = {f ∈ C1([0, τ δ ], [0,∞)) : h′|{0,T δ} = 0,

h′

x
∈ C1

[0,∞)[0, T
δ]}. (8.44)Then under the hypotheses (8.1.1), the following holds:(i) The (Aδ,D(Aδ)) martingale problem is well-posed and(ii) if ζδ is the solution of the (Aδ ,D(Aδ)) martingale problem, then:

L[(Cn,δu )
0≤u≤L(Cn,δ ,

4
b )

]
n→∞−−−→ L[(ζδu)0≤u≤(l0· (ζδ))−1(

4
b ))

], (8.45)where onvergene is weak onvergene of ontinuous proesses.To show this theorem, �rst it is neessary to get a learer desription of thedisrete ontour proess. Therefore it is augmented to a two-dimensional proess,the seond oordinate being the sign of the slope of the ontour. This R2-valuedproess is Markovian and a generator an be identi�ed up to the time the tree istraversed. The same is done for resaled and ut ontour proesses and we forgetabout the traversal time L(C, 4/b) for a while. So we think of the Markov proessas given by its generator. With the stohasti averaging tehnique one an showtightness of the resaled reatant ontours and identify one limit proess. This limitproess is shown to be unique. In the next step the traversal times of the resaledontours are analysed and ompared with the loal time of the limit. A last stepputs together the ideas.The formal proof of this theorem is quite long and therefore needs to be split inseveral steps aording to the following program:Step 1: Disrete (ontour, slope of ontour)-proess (C1, V 1) is shown to be Marko-vian in [0, t̂1] × {−1, 1} and its generator is identi�ed.Step 2: The δ-hitting time ut (ontour, slope of ontour)-proess (C1,δ, V 1,δ) isshown to be Markovian in [0, t̂1,δ ] × {−1, 1} and its generator is identi�ed.Step 3: The resaled, δ-hitting time ut (ontour, sign of slope of ontour)-proess
(Cn,δ, V n,δ) is shown to be Markovian in [0, t̂n,δ] × {−1, 1} and its generatoris identi�ed.Step 4: Using Stohasti averaging ([Kur92℄) the sequene (Cn,δ)n∈N is tight andlimit points solve the (Aδ ,D(Aδ))- martingale problem.Step 5: Uniqueness of the (Aδ ,D(Aδ))- martingale problem is established.



8.4 Convergene of the trunated reatant ontour 78Step 6: Traversal-time L(Cn,δ, 4
b ) and inverse of loal time of ζδ are ompared.Step 7: Here the piees are put together to observe the laim.The proof is not put into a �proof environment�, but held within these steps. Somelemmas and propositions will arise, but all will be belonging to the orrespondingparts of the proof.For the understanding of the atalyti setting and the quenhed analysis we referthe reader to the notation at the beginning of this hapter, see page 68.8.4.2 The proofStep 1: Identi�ation of the (Cu, Vu)-generatorThe ontour proess (Cu)u≥0 is obtained by traversing the reatant forest ξfor withonstant speed k and denoting the height, i.e. the distane of the root and thetraversed point against the yet passed traversing time (for a de�nition see Setion5.1). This yet passed traversing time will be denoted with small Latin letters u or

v in ontrast to the time of the branhing proess, whih we so far denoted with sor t.We de�ne the slope (sign) (Vu)u≥0 of the ontour proess:
Vu := sign ( slope(Cu)) ∈ {−1, 1}. (8.46)So far the �sign� ould have been substituted by 1

k , sine slopes are +k and −k,but later it will be helpful to already introdue it like that. There are some points,where the slope is not well de�ned, exatly, when the ontour hanges its sign from
1 to −1 or the other way round. Then V is hosen to be right ontinuous at thesepoints, so that it has àdlàg paths. The pairing (Cu, Vu)u≥0 is then a proess in thestate spae

E1
cont × Eslope = [0, t̂1] × {−1, 1} (8.47)and the following lemma holds, whih is just the extended version of Lemma 5.2.4:Lemma 8.4.2: The proess (Cu, Vu)u≥0 is a E1

cont × Eslope-valued Markov-proessstopped at a random time. Its generator is given by the losure of the operator
(A1,D(A1)), where:

D(A1) = {h ∈ C1,0(Econt × Eslope,R) :
∂h

∂c
|∂Econt×Eslope

≡ 0} (8.48)and for f ∈ D(A1):
A1f(c, v) = kv

∂

∂c
f(c, v) +

b

2
kx1(c)(f(c,−v) − f(c, v)). (8.49)The random time is reahed when the reatant tree has been traversed, i.e. until

L(C, 4
b ) given by:

L(C, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cv∈[0,ǫ)}

2k

bx1(v)
dv = 4

b}. (8.50)After that time the reatant ontour stays zero.



8.4 Convergene of the trunated reatant ontour 79Figure 8.1: Branhing tree, birth-and-death tree, ontour proess
r0r00r000 r001 r01r010 r011

Proof: The proof of this lemma onsists itself of several parts. First it is shownthat the lengths of line-segments of the ontour are independent. After this theMarkov property and the pre-generator are obtained.A: Indepene of the line-segments. At a �rst glane the independene of ontourline segments seems surprising, when looking at the branhing tree on the left andthe ontour on the right in Figure 8.1. A ontour line segment is the sum of thelifetimes of various reatant individuals. The trik is to look at and to understandthe tree related to the ontour (via the mappings C and T ) and its planar embeddingin several di�erent ways:
• We were dealing so far with a branhing proess whose individuals have abranhing rate of x1(t) = bηtot

t at time t with 0 or 2 o�spring (left of Figure8.1).
• The other way is to look at the proess as a birth- death -proess whoseindividuals die at rate b

2x
1(t) = b

2η
tot
t and during all their lifetime have birthevent (with o�spring 1 )with rate b
2x

1(t) = b
2η

tot
t , everything independent ofother individuals (middle of Figure 8.1).In the Appendix B.3 we show that the ontour proess related to these two proessesare indeed the same.But the planar embeddings an be made di�erent: The right (birth and death)proess will be alled the one where hildren are attahed to the right of the tree.Now we will show that when traversing the genealogial tree, the length of the newlyattahed line-segments are independent of the history. First we will not worry aboutthe ase a ontour touhes the ritial upper and lower levels T 1,0 and 0:Eah (birth and death) individual I lives until the �rst jump of a Poisson pro-ess M I

d ( b2
∫ ·
t̃ x

1(s) ds) and gives birth at the jumps of an independent proess
M I
b ( b2

∫ ·
t̃ x

1(s) ds) (the subsript b means birth and has nothing to do with thebranhing rate b). Here t̃ denotes the birth time of individual I.



8.4 Convergene of the trunated reatant ontour 80We will start with the �rst individual starting at the root. Let us then all:
θ := inf{t ≥ 0 : M I

d ( b2

∫ t

0
x1(s) ds) = 1}the death time,

σ0 := 0,

σn := inf{t ≥ σn−1 : M I
b ( b2

∫ t

σn−1

x1(s) ds) = 1} the n-th birth event and
Λ := M I

b ( b2

∫ θ

0
x1(s) ds) the number of hildren. (8.51)

The ontour proess starts with a slope +1 line segment of length θ. Then thelength of the next line segment is independent sine it is given by the �rst jump ofan independent (reverse) Poisson proessM I
b ( b2

∫ θ
θ−t x

1(s) ds) in s. This distributionis independent of θ, sine it does not matter for its jump time distribution, wherewe start a Poisson proess (here in θ) and the diretion it runs (here time-inverse).So in the ontour the length of the �rst −1 line segment is independent of the past.After this birth event of the last hild, let us all it Λ, has assembled two Poissonproesses, one for birth events and one for the death event. Both are independentamong themselves and of anything previous, sine it is a new individual. The slope
+1 line segment is indepedent of anything before just by onstrution.Now omes the key observation: The birth times of this individual Λ are given bythe jump times of the MΛ

b -proess. We again let it run bakward from the killingtime, whih does not a�et the distribution. If the �rst jump time lies above thelevel of the birth of individual Λ then we an proeed in our argumentation as beforeand get independene of the −1 line segment. But if the �rst jump lies below thelevel of the birth of individual Λ then it has no hildren. That is lear. But forthe ontour proess it means that it goes down until the next hild of the initialindividual, down to Λ − 1.Then if individual Λ was killed at time θΛ, then the length of the −1 line segmentis given by the �rst jump of the following proess in s:
MΛ
b ( b2

∫ θΛ

θΛ−s∨σΛ

x1(s) ds) +M I
b ( b2

∫ σΛ∨(θΛ−s)

θΛ−s
x1(s) ds). (8.52)But the segment of the Poisson proess M I

b we plugged in, was unused before, soit is independent of all previously onstruted elements. That is why this −1 linesegment is independent of the past. One an ontinue like this until the end of thetree.Now we need to be a bit more areful about what happens if jumps of the inversebirth proess happen below level (= time) zero. We stop the previously onstrutedbunh of line segments when its building together ends up below zero. Then theontour proess is just dereasing to zero with slope −1 and stops there. Then thetree is traversed.Conversely if an individual reahes the upper level t̂1, then the death time of theindividual is just t̂1. The next attahed line-segment is an independent dereasingline-segment. Its time-inverse Poisson proess starts from that level t̂1 on and isindependent of all previous line-segments.



8.4 Convergene of the trunated reatant ontour 81So we have shown that the length of new line segments are independent of theones before. Then it is learthat (Cu, Vu)u≥0 is Markovian, sine the whole historyof (Cu, Vu)0≤u≤v up to time v has the same information for further development asjust knowing the value (Cv, Vv). This is true, sine the evolution of C in a shorttime interval after time v is just depending if we are atually running up or down inthe ontour, i.e. in the previous setting if we are on a birth (Mb) or on a death (Md)Poisson proess. Additionally by the value of Cv we know where to start the pro-ess, whih gives the starting time in the time hange integral of the Poisson proess.B: Markov property and pregenerator. Now in a seond argument we want toidentify the generator of this Markov proess (C, V ). How do the omponentsevolve? Cu in fat simply grows linearly with slope kVu. So its part of the generatoris simple. The slope Vu is a jump-proess with values 1 and −1. The jump rate isthe individual death rate at this point at this point of the tree (where the ontoururrently traverses it). But this is b
2x

1(Cu) and multiplying it with the speed oftraversion k we get b
2kx

1(Cu), sine Cu is the distane root to the urrently traversedpoint. So the generator A1 for f ∈ C1,0(E1
cont ×Eslope) is given by:

A1f(c, v) = kv
∂

∂c
f(c, v) + b

2kx
1(c)(f(c,−v) − f(c, v)). (8.53)The domain of A1 will need some restritions, sine when the ontour reahes

0 or the possible maximal tree top t̂1, then it should be re�eted not to leave thedomain Econt. The right way to do this is to restrit the domain of A1 to:
D(A1) = {h ∈ C1,0

E1
cont×Eslope

[0,∞) :
∂h

∂c
|∂E1

cont×Eslope
≡ 0}. (8.54)Sine D(A1) is dense in CE1

cont×Eslope
[0,∞) and A1 is the sum of a losable operator(�rst summand) and a perturbation (seond summand), also A1 is losable (see e.g.Theorem 1.7.1. in [EK86℄ ).Clearly the time L(C, 4

b ) gives the time, when the tree is traversed one.Remark 8.4.3:Sometimes we will suppress the supersript 1, or later n for the ontour state spae
Econt for the sake of readibility.Seondly we will not worry about the time L(C, )̇ in the forthoming until Step 6and will treat the ontour proess as a proess traversing not only one tree (forest inthe next steps) and staying zero, but traversing an in�nite set of random trees (orforests). 3Step 2: Identi�ation of the (C1,δ, V 1,δ) generatorThe same what was shown for the reatant tree or ontour ut at height t̂1 is alsotrue for tree and reatant ut at height t̂1,δ. This proess is alled C1,δ and to it aslope proess V 1,δ is attahed, the same way as in step 1:

C1,δ := C(QT 1,δ (ξ̃1) : k),

V 1,δ
u := sign ( slope(C1,δ

u )) ∈ {−1, 1}.
(8.55)



8.4 Convergene of the trunated reatant ontour 82The only di�erene is the state spae of the ontour hanges from
Econt = [0, t̂1] to E1,δ

cont = [0, t̂1,δ] (8.56)and we have:Lemma 8.4.4: The proess (C1,δ
u , V 1,δ

u )u≥0 is a E1,δ
cont × Eslope-valued Markov-proess stopped at a random time. Its generator is given by the losure of the operator

(A1,δ,D(A1,δ)), where:
D(A1,δ) = {h ∈ C1,0(Econt × Eslope,R) :

∂h

∂c
|
∂E1,δ

cont×Eslope
≡ 0} (8.57)and for f ∈ D(A1):

A1,δf(c, v) = kv
∂

∂c
f(c, v) +

b

2
kx1(c)(f(c,−v) − f(c, v)). (8.58)The random time is reahed when the reatant tree has been traversed, i.e. until

L(C, 4
b ) given by:

L(C, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{C1,δ

v ∈[0,ǫ)}
2k

bx1(v)
dv = 4

b}. (8.59)After that time the reatant ontour stays zero.This result does require a proof, but the proof would just be the same. Or onean state that the utting time t̂1 was hosen arbitrarily in Lemma 8.4.2 and didnot play any role yet. So it an also be replaed by t̂1,δ.Step 3: Identi�ation of the generator of the (Cn,δ, V n,δ)In this step a resaled version of the lemma proven in Step 2 will be given. For thatpurpose we reall the de�nition of the δ-hitting times t̂n,δ of xn and the resaledut ontour proess (Cn,δu )u≥0 in (8.42). The slope of this proess is kn and asbefore a sign of slope proess (V n,δ
u )u≥0 is attahed the same way as it was with thenon-resaled proess:

V n,δ
u := sign(slope(Cn,δu )) ∈ {−1, 1} (8.60)The state spae of the ontour Econt is given by

En,δcont = [0, t̂n,δ] (8.61)and the slope state spae Eslope stays the same:
Eslope = {−1, 1} (8.62)Then the following lemma holds:Lemma 8.4.5: The proess (Cn,δu , V n,δ

u )u≥0 is a En,δcont × Eslope-valued a Markov-proess stopped at a random time. Its generator is given by the losure of the operator
(An,δ,D(An,δ)), where

D(An,δ) = {h ∈ C1,0(En,δcont × Eslope,R) :
∂h

∂c
|
∂En,δ

cont×Eslope
≡ 0} (8.63)



8.4 Convergene of the trunated reatant ontour 83and for f ∈ D(An,δ):
An,δf(c, v) = knv

∂

∂c
f(c, v) + b

2kn
2xn(c)(f(c,−v) − f(c, v)). (8.64)The random time is reahed when the reatant forest has been traversed, i.e. until

L(Cn, 4
b ) given by:
L(Cn, 4

b ) = inf{u ≥ 0 : lim
ǫ→0

1

ǫ

∫ u

0
1{Cn,δ

v ∈[0,ǫ)}
2k

bx1(v)
dv = 4

b}. (8.65)After that time the reatant ontour stays zero.For the sake of not repeating the same proof as of Lemma 8.4.2 another time,argumentation is kept sparse here. Just two things are mentioned:First we explain where the fators n and n2 ome from. The fator n dates fromthe hanged traversal speed through the reatant tree as given in de�nition 5.2.3.The fator n2 splits up in one fator �n�, whih multiplied with xn(c), so nxn(c),represents the number of atalyst individuals speeding up branhing. The otherfator n belongs to the inreased traversal speed through the tree. Additionally wesee that after traversing a tree of the forest the next tree is independent of everythingprevious.Seondly the ontour is �nished when the ontour has already traversed the n treesin the reatant forest. But sine the slope of the line segment is kn the randomtime was hosen orretly.The pairing (Cn,δu , V n,δ
u )u≥0 an in some sense also be seen as a random evolutionwith driving proess V n,δ and driven proess Cn,δ. More about that an be foundin Chapter 9 of [EK86℄.Step 4: Tightness of the ontour and desription of limit ontoursNow learly the next task is to show onvergene and to obtain a limit of the proess

(Cn,δ, V n,δ) for n → ∞. This is not straightforward, sine standard results as forexample about generator onvergene annot be used, e.g. Proposition 7.7.2 here orLemma 4.5.1 in [EK86℄. But what will happen for large n is that the slope �averages�out and will be positive or negative with equal probability. These tehniques wereintrodued in [Kur92℄ and are alled stohasti averaging. This step is subdividedin two parts, where the �rst one orresponds to Theorem 2.1 and the seond one toExample 2.3, both in Kurtz's paper.A: the limit ontour solves a martingale problem Let us de�ne the followingoupation times measure on B(R+) × P({−1, 1}) for the slope proess, where
y ∈ Eslope = {−1, 1} by:

Γn,δ([0, u] × y) =

∫ u

0
1{y}(V

n,δ
v ) dv. (8.66)Additionally lm(Eslope) is de�ned to be the set of measures on B(R+)×P({−1, 1}),s.t. for every µ ∈ lm(Eslope) and every u ≥ 0:

µ([0, u] × Eslope) = u. (8.67)Then the following lemma holds:



8.4 Convergene of the trunated reatant ontour 84Lemma 8.4.6: The sequene ((Cn,δu ,Γn,δ)u≥0)n∈N is relatively ompat in the spae
DEcont [0,∞)×lm(Eslope), and for any limit point (ζδ,Γδ) there exists a �ltration {Gt}suh that

f(ζδu) −
∫ u

0

∫

Eslope

Aδf(ζδs , y)Γ
δ(ds × dy), (8.68)is a {Gu}-martingale for eah f ∈ D(Aδ) where Aδ is as in Theorem 8.4.1.Proof: The result is just taken from Theorem 2.1 in [Kur92℄, where one has tohek some prerequisites before applying this theorem. We will put them in theorder as given in the quoted theorem to avoid onfusion:Clearly En,δcont = [0, t̂n,δ ] and Eslope are omplete separable metri spaes. The sam-ple paths of the proess (Cn,δ, V n,δ) are àdlàg by de�nition. Additionally (Cn,δ)n∈Nsatis�es the ompat ontainment ondition sine t̂n,δ → t̂δ < ∞ and therefore theunion ⋃n∈N[0, t̂n,δ ] is ontained in a ompatum. The sequene (V n,δ)n∈N is rela-tively ompat, sine its state spae Eslope is already ompat. After these prelimi-nary thoughts the harder things to prove are the following four assertions:(i) For eah f ∈ D(Aδ) there is a proess (ǫf,n,δu )u≥0 for whih the followingexpression is a {Fn

u }-martingale:
f(Cn,δu ) −

∫ u

0
Aδf(Cn,δs , V n,δ

s ) ds + ǫf,n,δt , (8.69)where {Fn
u } is the �ltration generated by (Cn,δ, V n,δ).(ii) The domain of Aδ , D(Aδ), is dense in Cb(Eδcont,R).(iii) For eah f ∈ D(Aδ) and eah T > 0, there exists p > 1 suh that

sup
n
E [∫ T

0
|Aδf(Cn,δu , V n,δ

u )|p du
]

<∞. (8.70)(iv) The orretion proess ǫf,n,δ vanishes in the following sense:
lim
n→∞

E[sup
u≤T

|ǫf,n,δu |
]

= 0. (8.71)The third expression is lear, sine the state spaes are ontained in a ompatum(t̂n,δ → t̂δ!) and Aδf is ontinuous. For the �rst, seond and fourth expression moree�ort is neessary. The �rst and the fourth expression are somehow related so webegin with them:We want to onstrut ǫf,n,δ and therefore note that all f ∈ D(Aδ) an be writtenwith a ontinuously di�erentiable funtion h ∈ C1
[0,∞)[0, t̂

δ ] with h(0) = h(t̂δ) = 0:
f(c) = f(0) +

∫ c

0
x(s)h(s) ds, (8.72)for all 0 ≤ c ≤ t̂δ. The idea now is to de�ne a funtion whih is �lose� to f , butlies in the domain of An,δ instead of Aδ. Therefore set for f ∈ D(Aδ)

f̃n(c) = f(0) +

∫ c

0
xn(s)h(

t̂n,δ

t̂δ
s) ds. (8.73)



8.4 Convergene of the trunated reatant ontour 85Now the boundary onditions on f̃n already oinide with the ones for funtionsin D(An,δ) and it remains to augment f̃n with a seond oordinate. Hene de�neanother funtion
fn(c, v) = f̃n(c) +

v

bnxn(c)
(f̃n)′(c), (8.74)whih is in the domain of the operator An,δ and by applying this operator to thatfuntion one obtains:

An,δfn(c, v) =knv(f̃n)′(c) +
knv2

bn

(

(f̃n)′

xn(c)

)′

(c)−

− bk

2
n2xn(c)

2v

bnxn(c)
(f̃n)′(c)

=

(

(f̃n)′

k
bx

n(c)

)′

(c).

(8.75)
Then the orretion proess ǫf,n,δ is de�ned as:

ǫf,n,δu =

∫ u

0
(Aδf −An,δfn)(Cn,δs , V n,δ

s ) ds+ (8.76)Clearly by Lemma 8.4.5 the expression in (8.69) is a martingale and assertion (i) isshown.Now we prove the fourth statement and all in the de�nition of ǫf,n,δ the �rstsummand with the integral part (I) and the other three summands part (II). Wewill show that both of them vanish in the sense of (8.71):E[sup
u≤T

|ǫf,n,δu |
]

≤T‖Aδf −An,δfn‖c∈[0,t̂δ]+

+ ‖f̃n(c) − f(c) +
v

bnxn(c)
(f̃n)′(c)‖(c,v)∈[0,t̂δ ]×{−1,1}.

(8.77)For part (I) we get by using the triangle-inequality:
(I) =‖Aδf −An,δfn‖[0,t̂δ] ≤ T‖h′(c) −

(

h(
t̂n,δ

t̂δ
·)
)′

(c)‖ ≤

≤T‖h′(c) − t̂n,δ

t̂δ
h′(c)‖ + T

t̂n,δ

t̂δ
‖h′(c) − h′(

t̂n,δ

t̂δ
c)‖.And this expression vanishes for n → ∞ by Corollary 2.3.2 and the uniform onti-nuity of h′ as it vanishes outside a ompatum by Lemma 2.2.4. Then it remainsto treat part (II). It is

(II) ≤
∫ t̂δ

0
|xn(s)h( t̂

n,δ

t̂δ
s) − x(s)h(s)| ds +

1

bn
‖h‖

≤
∫ t̂δ

0
|xn(s) − x(s)| |h( t̂

n,δ

t̂δ
s)| ds+

+

∫ t̂δ

0
|x(s)| |h( t̂

n,δ

t̂δ
s) − h(s)| ds +

1

bn
‖h‖.



8.4 Convergene of the trunated reatant ontour 86Sine t̂n,δ → t̂δ, (8.1.1) and the ontinuity of h all terms vanish for n→ ∞.For ondition (ii) it is su�ient to approximate all pieewise linearly ontinuousfuntions on [0, t̂δ ], sine they are already dense in Cb(Eδcont,R). But any pieewiselinear funtion an be approximated arbitrarily lose, sine x is bounded below by
δ. B: the limit oupation measure of V is identi�ed. After this proof the question iswhether the rather ompliated expression in the previous lemma with the measure
Γ an be simpli�ed. The following lemma gives the answer:Lemma 8.4.7: The proess ζδ of the previous lemma is a solution of the (Aδ,D(Aδ))-martingale problem.Proof: Note that Lemma 1.4 from [Kur92℄ shows us that the measure Γδ(ds×dy)an be deomposed into the measure γδs(dy)λ(ds), where λ is the Lebesgue measure.Then what we need to do is to determine γδs(dy).The idea of the proof is taken from Example 2.3 in the same work. Therefore de�nean operator B : C({−1, 1},R) → C([0, t̂δ] × {−1, 1},R), where

h(v) 7→ Bf(c, v) =
bk

2
x(c)(h(−v) − h(v)). (8.78)As before it is neessary to de�ne a orretion term αh,n,δt in this way:

αh,n,δt =
bk

2
n2

∫ t

0

(

x(Cn,δs ) − xn(Cn,δs )
)

h(V n,δ
s ) ds. (8.79)Then by Lemma 8.4.5, for eah h ∈ C({−1, 1},R) the following proess is a mar-tingale

h(V n,δ
t ) −

∫ t

0
n2Bh(Cn,δs , V n,δ

s ) ds+ αhn,δ(t), (8.80)and for eah T > 0:
lim
n→∞

E [sup
t≤T

n−2|αh,n,δt |
]

=

= lim
n→∞

E [bk
2

sup
t≤T

n−2n2|
∫ t

0
x(Cn,δs ) − xn(Cn,δs )h(V n,δ

s ) ds|
]

≤

≤ lim
n→∞

‖h‖∞ T
bk

2
E [sup

s>0
|x(Cn,δs ) − xn(Cn,δs )|

]

≤

≤ lim
n→∞

‖h‖T bk

2
‖x(c) − xn(c)‖∞,c∈[0,t̂δ∨t̂n,δ ] = 0.

(8.81)
The seond modulus expression tends to zero by (8.1.1).Note that for any n ∈ N the following expression is still a martingale:

n−2h(V n,δ
t ) −

∫ t

0
Bh(Cn,δs , V n,δ

s ) ds+ n−2αhn,δ(t). (8.82)



8.4 Convergene of the trunated reatant ontour 87Then by taking weak limits n → ∞ (and hanging the sign) we get with the helpof the previous Lemma 8.4.6 the following expression:
∫ t

0

∫

{−1,1}
Bh(ζδ, y) Γδ(ds× dy) =

= (h(1) − h(−1))
bk

2

∫ t

0
(1 − 2γδs(1))x(ζ

δ)ds.

(8.83)Sine we are in a ompat metri state spae and we have àdlàg paths, this weaklimit is still a martingale, now w.r.t. the �ltration of ζδ. Additionally this proessis ontinuous, sine it is an integral expression. Furthermore, the total variation ofthis ontinuous martingale is �nite, beause it is an integral expression. Thereforeit must already be onstant and beause of the initial value, this onstant must bezero. Hene, for all t ≥ 0 it is valid that:
(h(1) − h(−1))

∫ t

0
(1 − 2γδs(1))x(ζ

δ)ds = 0. (8.84)Now remember that the values of x were always required to be ≥ δ, beause theatalyst was to be stopped before reahing δ. So the only way to get the left handside expression equal to zero for any funtion h is to have:
γδs(1) =

1

2
∀s > 0. (8.85)Then the previous Lemma 8.4.6 an be reformulated by using the deomposition of

Γδ and this result. Then the lemma is proven.Step 5: Uniqueness of the Martingale problemIn the previous step existene for the (Aδ,D(Aδ)) problem was shown. In this stepthe uniqueness is shown. To do this �rstly another martingale problem (transfor-mation of drift) is onstruted and then uniqueness of the latter is proved.A: transformation of drift De�ne the sale funtion s, given by
s :

{

[0, t̂δ ] → [0,
∫ t̂δ

0 x(u)du]

t 7→ b
2k

∫ t
0 x(u)du

, (8.86)and the proess Bu = s(ζδu) are de�ned. Then for a su�iently regular f , when cdenotes the replaement harater:
Aδ(f ◦ s)(ζδu) =

k

b

(

(f ◦ s)′
x(c)

)′
(ζδu)

=
k

b

(

(f ′ ◦ s(c))s′
x(c)

)′
(ζδu)

=

(

(f ′ ◦ s(c))x(c)
2x(c)

)′
(ζδu)

=
1

2
((f ′′ ◦ s)(c)s′(c))(ζδu) =

b

4k
f ′′(Bu)x(ζ

δ
u)

=
b

4k
f ′′(Bu)x(s

−1(Bu)).

(8.87)
Thus (Bu)u≥0 is a martingale under the law of ζδ. Even the following lemma holds:



8.4 Convergene of the trunated reatant ontour 88Lemma 8.4.8: If ζδ solves the (Aδ,D(Aδ)) martingale problem, then the proess
(Bu = s(ζδu))u≥0 solves the (B,D(B)) problem, where

Bf =
b

4k
x(s−1(·))f ′′(·),de�ned for f ∈ D(B), where

D(B) = {H ∈ C2([0, s(t̂δ)],R) : H ′|{0,s(t̂δ)} ≡ 0}.Proof: Let H ∈ D(B), then
• H ◦ s : [0, t̂δ ] → [0,∞] and this mapping is C1 sine it is omposed of two
C1-mappings.

• (H ◦ s)′|{0,t̂δ} ≡ 0.
• H ′ ◦ s ∈ C1 sine both mappings are C1 mappings.So the omposition H ◦s is in the domain of the operator Aδ and we an do a similaralulation as done before the lemma to obtain:

Aδ(H ◦ s)(u) =
b

4k
H ′′(s(u))x(u). (8.88)Sine ζδ solves the Aδ martingale problem, we have that the following proess is amartingale:

(

H ◦ s(ζδt ) −
∫ t

0
AδH ◦ s(ζδu)du

)

t≥0

=

=

(

H(Bt) −
∫ t

0

b

4k
x(s−1(Bu))H

′′(Bu)du

)

t≥0

.

(8.89)So (Bt)t≥0 solves the (B,D(B)) problem.B: uniqueness of the martingale problem The last lemma is not yet the desiredresult for this step, but it diretly leads to:Lemma 8.4.9: The (Aδ ,D(Aδ)) martingale problem has a unique solution ζδ.Proof: The existene was already given in Step 4. Assume the ontrary about theuniqueness, i.e. assume there are two solutions ζδ,1 and ζδ,2. Then by the previouslemma s(ζδ,1) and s(ζδ,2) are two solutions of the (B,D(B))-martingale problem.But by Corollary IX 1.14 in [RY91℄ the (B,D(B))-martingale problem is well-posed,so uniqueness holds. Therefore it is valid that:
∫

[0,ζδ,1]
x(u) du =

∫

[0,ζδ,2]
x(u) du. (8.90)So the one-dimensional distributions of ζδ,1 and ζδ,2 are the same, sine x is apositive funtion. Then by Theorem 4.4.2 in [EK86℄ the two proesses ζδ,1 and ζδ,2have the same distribution in C[0,t̂δ][0,∞). Furthermore this theorem also statesthat the unique ζδ is a Markov proess.



8.5 Convergene of the reatant limit forest 89Step 6: Analysis of the ontour traversal time L(Cn,δ, 2
k )So now we need to go bak to onsidering ontour proesses as proesses traversingtrees. Sine for the resaled ontours Cn the slope inreased to n it is still truethatthe traversal time of the reatant tree is given by:

L(Cn,δ, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cn,δ

v ∈[0,ǫ)}(x
n(v))−1 dv =

4

b
}. (8.91)For the limit ontour ζδ we wonder if a limit of this funtional L(·, 4

b ) exists and whatit is. In fat if it turned out to be zero, then it would be the ase that the reatantlimit ontour is de�ned on the degenerate interval [0, 0] and it would ontain nouseful information.But we see that the funtional L(·, ·) on ontinuous funtions C([0,∞), [0,∞))is measurable with respet to an in�nity-norm with dereasing weights (d(f, g) =
∑∞

n=1 2−n(supt∈[0,n] |f(t)−g(t)|∧1) ). Then we an use a version of Theorem 13.29in [Bre68℄.Hene we see that L(Cn,δ, 4
b ) onverges weakly to L(ζδ, 4

b ) and the latter is nothingelse than the inverse of ζδ's loal time at level 0 of loal time 4
b (for more aboutloal times of the reatant ontour see 9.2.3):

L
[

L(Cn,δ,
4

b
)

]

n→∞−−−→ L
[

(l0· (ζ
δ))−1(

4

b
)

]

. (8.92)Hene the �duration� of the ontour onverges weakly.Step 7: Putting the steps of the proof togetherIn Step 3 the generators of the disrete ontour proesses Cn,δ were identi�ed. InStep 4 we got tightness of the disrete ontour proesses and saw that the limit pointswere desribed by a pregenerator Aδ. The orresponding (Aδ ,D(Aδ)) martingaleproblem is well posed, i.e. a unique solution ζδ exists (Step 5). In the next stepwe showed onvergene of the tree traversal time to a loal time inverse (Step 6).So the tight sequene (Cn,δ)n must already onverge to the di�usion ζδ, whih isonsidered until its loal time hits at zero hits a ertain level. Hene we are donewith the proof of Theorem 8.4.1.With having ompleted all the steps we have shown onvergene of the reatantontour. ���8.5 Convergene of the reatant limit forestWith all the preeding steps done it is not di�ult any more to show Theorem 4.2.2,whih is the main result about trees:Proposition 8.5.1: For any δ > 0 there exists a subsequene of the sequeneof ut reatant trees (Qt̂n,δ (ξfor,nm); ηtot,nm)m∈N that onverges in distribution to
(Y for,δ;X) = Tunord(ζ

δ).Proof: By Proposition 8.3.1 it is lear that one an take a subsequene of forests
(ξfor,nm; ηtot,nm)m∈N whih onverges in distribution to a random forest (Y for;X).



8.5 Convergene of the reatant limit forest 90The trunation mappings Q·(·) : R+×Troot → Troot do not violate this onvergene,sine they are jointly ontinuous and the killing times tn,δ onverge:
L[Qt̂n,δ (ξ

for,nm);xnm ]
m→∞−−−−→ L[Qt̂δ (Y

for);x]. (8.93)This onvergene is to be understood as weak onvergene in the probability mea-sures on rooted ompat R-trees.But in Theorem 8.4.1 it was shown that there is also weak onvergene inDR([0, t̂δ ])for the reatant ontour:
L[C(Qt̂nm,δ(ξ̃

nk) : kn2
m)]

m→∞−−−−→ L[ζδ]. (8.94)The mapping Tunord from De�nition 5.1.3 is ontinuous and bounded and thereforeit holds that
L[Tunord(C(Qt̂nm,δ(ξ̃nm) : kn2

m))]
k→∞−−−→ L[Tunord(ζ

δ)]. (8.95)But it is true by de�nition of the reatant forest that
Tunord(C(Qt̂nm,δ(ξ̃

nm) : kn2
m)) = ξfor,nm . (8.96)Hene the result is shown.Proof: (Proof of Theorem 4.2.2: The reatant limit tree)The question roughly speaking is whether there exists a limit objet of Tunord(ζ

δ)for δ → 0. From Proposition 8.3.1 we know that the sequene (ξfor,n)n∈N is tight.But from the previous proposition we know that any limit forest Y for needs to ful�l
L[Qt̂δ (Y

for)] = L[Tunord(ζ
δ)], so this law is independent of the limit forest hosen.Clearly we need to show that there is a unique limit forest Y for. To do so we showthat the sequene (L[Tunord(ζ

δ])δ>0 is a Cauhy sequene as δ → 0 for the Prohorovmetri on the probability measures M1(T
root). Thus sine M1(T

root) is omplete, there is a limit forest distribution L[Z]. Moreover for any limit forest Y for, thesequene (L[Qt̂δ (Y
for)])δ>0 is Cauhy with the same limit distribution P = L[Z].So the distribution of Y for is uniquely determined and given by the distribution of

limδ→0 Tunord(ζ
δ).To verify that (L[Tunord(ζδ)])δ>0 is Cauhy , �x 0 < δ′ < δ and reall a hara-terization of the Prohorov metri (Theorem 3.1.2 in [EK86℄). Then:

dPr(L(Tunord(ζδ),L(Tunord(ζδ
′
))) =

= inf
µ

inf{ǫ > 0 : dµ(((T, ρ), (T
′, ρ′)) : dGHroot((T, ρ), (T ′, ρ′)) > ǫ) ≤ ǫ}, (8.97)where the in�mum for µ is taken over all probability measures µ ∈ M1(T

root×Troot),with marginal distributions
µ(· × Troot) = L(Tunord(ζ

δ)) (8.98)and
µ(Troot × ·) = L(Tunord(ζ

δ)). (8.99)



8.6 Convergene of the joint law for the reatant forest 91As our goal is to give an upper bound for this distane, it will be su�ientto desribe a spei� probability measure µ ful�lling the properties and showingthat the right hand side expression for this spei� µ vanishes as δ, δ′ → 0. Wehoose µ to be the probability measure on Troot × Troot, s.t. positive measure isassoiated to those tree pairs ((T, ρ), (T ′, ρ′)), whih have the same root and thesame trunated exursion C(Qt̂δ (·)). Additionally the marginals need to obey thepostulated properties. By this a measure µ on Troot × Troot is well-de�ned.Note that in the Gromov-Hausdor�-distane between a pair of trees from thesupport of µ is learly less than t̂δ′ − t̂δ. Thus
dPr

(

L(T (ζδ),L(T (ζδ
′
))
)

≤ t̂δ
′ − t̂δ. (8.100)Furhermore, sine t̂δ → t̂ as δ → 0, the sequene is Cauhy.8.6 Convergene of the joint law for the reatant forestWithin this setion we provide a proof of Theorem 4.2.3. This is the �rst non-quenhed result in this hapter. Be aware that we leave the world of �xed atalystsequenes x and xn here.8.6.1 The main result and the strategy of the proofWe restate Theorem 4.2.2 whih gives the annealed tree onvergene:Theorem 8.6.1:The sequene of the pair of resaled atalyst total mass and resaled reatant forestonverges:

L(ηtot,n, ξfor,n) ⇒ L(X,Y for). (8.101)Here onvergene is understood as weak onvergene on the set of probability mea-sures on DR1
+
[0,∞) × Troot with the produt topology.We are going to split up the proof in four steps, sine it is rather long. A partof one step is left in the appendix, sine it is a general result and its proof an bedone easier when using some ideas developed in the hapter about point proesses.For the proof we assume that the limit law is the produt measure of the limitatalyst total mass times the limit quenhed probability kernels. We will start withonsidering the �rst oordinate, the atalyst total mass proess, and restrit itspaths and the time, where it is positive to a ompatum. In a seond step we takea Lipshitz-funtion

H : DR2
+
[0,∞) × Troot → R (8.102)and need to show the ordinairy weak onvergene argument. Sine we annot dothat diretly we apply the quenhed reatant tree onvergene and the atalyst totalmass onvergene to redue the problem to a question of ontinuity of a mappingdepending on the atalyst. In the third step we relate trees and ontours via Tunord.Therefore, the question translates to ontinuous dependene of the ontour on itsatalyst, whih is nothing else than the derivative of the sale funtion. In thelast step we show that di�usions depend ontinuously on their sale funtion underertain restritions and this will end the proof.



8.6 Convergene of the joint law for the reatant forest 92Step 1: Restritions of atalyst total mass ηtot,n, X to ompata.Step 2: Rewriting the laim to a question of ontinuity.Step 3: Translation of the ontinuity question to a ontour question of ontinuity.Step 4: Continuity of the ontour di�usion on its sale funtion.All ǫ, ǫ̃ mentioned later are positive and �xed. When writing ǫn, then we wantto indiate that n needs to be hosen appropriately to get ǫ. So n depends on ǫ inthat ase.8.6.2 The proofStep 1:We want to speak about the law of the atalyst total mass proesses. Therefore wede�ne for a set of funtions A in DR+ [0,∞)

‖A‖ := sup
f∈A

‖f‖ (8.103)and
T (A) := sup

f∈A
{t ≥ 0 : f(t) = 0}. (8.104)Then we an bound the measure P(ηtot,n ∈ ·) in the following way:P(ηtot,n ∈ A) ≤ P(ηtot,n ∈ A, ‖A‖ ≤M,T (A) ≤M)

+P(ηtot,n ∈ A, ‖A‖ > M,T (A) ≤M)

+P(ηtot,n ∈ A,T (A) > M).

(8.105)Observe that by Lemmas 7.3.3 and 7.3.1 the last two summands an be boundedfrom above by any positive onstant for an appropriate hoie of M .The same an be done for the measure P(X ∈ ·) on CR+ [0,∞) by Lemmas 7.6.3and 7.4.4.Hene let us de�ne
νn(dx) := P[ηtot,n ∈ dx, ‖x‖ ≤M,T (x) ≤M ] (8.106)and
ν(dx) := P[X ∈ dx, ‖x‖ ≤M,T (x) ≤M ]. (8.107)Then we an write for given ǫ > 0 and an appropriate M = M(ǫ) the followingP(ηtot,n ∈ dx) ≤ νn(dx) + ǫM ,P(X ∈ dx) ≤ ν(dx) + ǫM .

(8.108)Step 2:For a ontinuous Lipshitz ontinuous funtion
H : DR2

+
[0,∞) × Troot → R (8.109)



8.6 Convergene of the joint law for the reatant forest 93we need to show the following:
∫

dP[ηtot,n = x, ξfor,n = y]H(x, y)
n→∞−−−→ dP[X = x, Y for = y]H(x, y). (8.110)We rewrite this using the quenhed probability kernels Kn(·, ·) and K(·, ·) de�nedin (8.2) and (8.3):

∣

∣

∣

∣

∫

dP(X = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

Kn(x, dy)H(x, y)

∣

∣

∣

∣(8.111)This an be bounded by a deomposition as follows:
≤
∣

∣

∣

∣

∫

dP(X = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

K(x, dy)H(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

dP(ηtot,n = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

Kn(x, dy)H(x, y)

∣

∣

∣

∣

.The seond summand tends to zero by the quenhed result about tree onvergenein Theorem 4.2.2 (for a �xed atalyst sequene). When hoosing n su�iently highit an be ahieved to bound it by a positive ǫn.With the help of part (A) the �rst summand an be bounded from above by
2‖H‖ ǫM +

∣

∣

∣

∣

∫

ν(dx)

∫

K(x, dy)H(x, y) −
∫

νn(dx)

∫

K(x, dy)H(x, y)

∣

∣

∣

∣

(8.112)and we rewrite that to
2‖H‖ ǫM +

∣

∣

∣

∣

∫

ν(dx)Ĥ(x) −
∫

νn(dx)Ĥ(x)

∣

∣

∣

∣

, (8.113)where
Ĥ(x) =

∫

K(x, dy)H(x, y). (8.114)Thus, by the total mass onvergene ( νn ⇒ ν in Theorem 2.3.1) we are done ifwe an show that Ĥ is bounded and ontinuous (in Skorokhod topology). The �rstis lear, sine H is bounded and we are dealing with probability kernels. To showontinuity in x is more subtle and we use two parts to do that. First we relate theproblem to ontour proesses.Step 3:For two àdlàg atalyst paths x and x̃ observe that:
|Ĥ(x) − Ĥ(x̃)| ≤|

∫

K(x, dy)H(x, y) −
∫

K(x, dy)H(x,Qτδy)|

+ |
∫

K(x, dy)H(x,Qτδy) −
∫

K(x̃, dy)H(x̃, Qτδy)|

+ |
∫

K(x̃, dy)H(x̃, Qτδy) −
∫

K(x̃, dy)H(x̃, y)|.

(8.115)



8.6 Convergene of the joint law for the reatant forest 94SineH is Lipshitz-ontinuous, note that the �rst and the third line an be boundedfrom above by any possible onstant ǫ̃ if we hoose δ su�iently small. Now weremember (Proposition 8.5.1) that we were able to express the ut trees with limitthe ontour proess via the Lipshitz-ontinuous mapping Tunord:
Qτδ(Y for)

d
= Tunord(ζ

δ). (8.116)Hene
|Ĥ(x)− Ĥ(x̃)| ≤ 2δ‖H‖+ |E[H(x,Tunord(ζδ))|X = x]−E[H(x̃,Tunord(ζ

δ))|X = x̃]|.The ontinuity in the �rst oordinate is evident and giving up the �rst oordinatewe an de�ne G := H ◦ Tunord. Clearly this mapping is Lipshitz-ontinuous sineboth fators are. We will show ontinuity not only for mappings G of that speialform but for any kind of Lipshitz mappings G. Therefore we an also deal withthe following mapping
G : (C[0,M ][0,∞), ‖ · ‖sup) → R (8.117)and we need to take are of

Ĝ :

{

D[0,M ][0,M ] → R

x 7→ E[G(ζδ)|X = x]
. (8.118)We note that we are done when showing ontinuity of that mapping by (8.117).Step 4:Let us all ζδ,x and ζδ,x̃ the ontours orresponding to atalysts x and x̃. By Theorem5.3.1 the limit ontour was the solution of a martingale problem. Hene we ande�ne sale-funtion and a random time-hange to relate the ontour to a Brownianmotion β (this beomes learer in Setion 9.2, espeially Lemma 9.2.2). Hene,de�ne

sx(t) =
b

2

∫ t

0
x(r) drsx̃(t) =

b

2

∫ t

0
x̃(r) dr (8.119)Now we use a result proven in the appendix (Chapter B.2) about the di�erene oftwo di�usions stemming from two di�erent sale funtions. The time until we needto onsider the two di�usions is almost surely �nite and hene we an use the resultpresented in the appendix. Therefore, we an hoose the two funtions x and x̃ solose that the following expression an be bounded by:

|Ĝ(x) − Ĝ(x̃)| ≤E [|G(ζδ,x) −G(ζδ,x̃)|
]

≤‖G‖E [‖ζδ,x − ζδ,x̃‖
]

≤‖G‖ δ−3ǫ.

(8.120)This ends the proof sine we were able to establish ontinuity of the mapping Ĝ inSkorokhod topology by (8.118).After this result the proof is done. ���



8.6 Convergene of the joint law for the reatant forest 95Remark 8.6.2:Naïvely one ould guess that νn ⇒ ν and Kn ⇒ K implies
νn ×Kn ⇒ ν ×K. (8.121)But we have seen in the proof that this is a question of ontinuous dependene ofsome elements.



9 Proofs of the main results fromChapter 6In this hapter we give the proofs onerning the genealogial point proesses.The proofs for the �rst retant point proess results and its limit are put in a �rstsetion. They are mostly done by lassial Poisson approximation ideas. A seondsetion inhabits a proposition treating the relationship between limit point proessand limit ontour. The proof of this proposition needs quite some e�ort and usesexursion theory. The third setion of this hapter ontains a proof of a omparisonresult between lassial and atalyti forests. And in the last setion we give aproof of results about joint-onvergene of the trees and limit-ontour extensionabove level τ δ. These last proofs are put here at the end of this hapter, sine eitherthey need notation from here or they require the genealogial point-proess as a fulldesription of the proess.Before starting we give a remark.Remark 9.0.3:Within this hapter there might arise onfusion about the word �time� or �time in-dex�. We will talk about
• time level or simply level if we mean the height in the tree (e.g. t in ηtot

t ) and
• the term �time�, if we mean the time index in the di�usion proess to thegenealogial tree (e.g. u in ζδu). 39.1 Law and onvergene of the reatant point proessFirst we provide the proof of a lemma about the reatant point proess.Lemma 9.1.1: For a �xed atalyst (ηtot

s )s≥0 realization and �xed t < T 1,0 thereatant point proess Ξt has total mass
Ξt(N × [0, t]) = ξtott − 1. (9.1)The point proess Ξt is given by the random points {(i, σi) : 1 ≤ i ≤ ξtott − 1}, wherethe σi are independent and identially distributed [0, t]-valued random-variables.They have distribution given by

P (σ1 ≥ h) =
2
b +

∫ t
0 η

tot
s ds

∫ t
0 η

tot
s ds

∫ t
h η

tot
s ds

2
b +

∫ t
h η

tot
s ds

, (9.2)for every 0 < h < t.Proof: In the ase of ξtott ≤ 1 nothing needs to be shown, sine there are noMRCAs. So let us assumethat ξtott − 1 ≥ 2. Then the σi are the depths of a



9.1 Law and onvergene of the reatant point proess 97
0t
Di Ui

Figure 9.1: The downward exursion relates to an upward-down birth-and-deathproess.downward exursion from level t of the ontour proess (C, V ), as given in Lemma5.2.4 ut at height T 1,0. This proess was strong Markovian, so these downward-exursions are independent and identially distributed.Let us de�ne the times, when the ontour C rosses the level t:
D0 := 0;Ui := inf{s > Di : Cs = t} for i ≥ 0;

Di := inf{s > Ui−1 : Cs = t} for i ≥ 1
(9.3)are the uprossing and downrossing times of the ontour. These times are the�ontour times� of eah individual alive at time t.Now we have to think of the depth σi of this downward exursion between Di and

Ui. But we an look at this downward exursion as the ontour of a downward treeas in Figure 9.1. The downward tree behaves like a birth-and-death proess withrates b
2η

tot
s for birth and death eah (the rates were identi�ed in the �rst part of theproof of Lemma 8.4.2). But the depth of a downward exursion is nothing else thanthe extintion time of this birth-and-death proess.An exerise in Feller's book ([Fel68, Problem XVII.10.11℄) shows that a birth-and-death proess (Ns)s≥0, N0 = 1 with rates (λs)s≥0 for eah is extint at time swith the following probability:

P (Ns = 0) =

∫ s
0 λr dr

1 +
∫ s
0 λr dr

. (9.4)In our situation it is λs = b
2η

tot
t−s and we obtain:

P (σ1 ≥ h) = P (Nt−h = 0|Nt = 0) =

=
P (Nt−h = 0)

P (Nt = 0)
=

=
1 + b

2

∫ t
0 η

tot
s ds

b
2

∫ t
0 η

tot
s ds

b
2

∫ t
h η

tot
s ds

1 + b
2

∫ t
h η

tot
s ds

,

(9.5)whih had to be proved.Now we want to prove a result for the resaled reatant point proess. Thesituation is more omplex, sine two extant individuals an be members of di�erenttrees. Hene their MRCA lies at time level 0. This is re�eted in Proposition 6.2.7whih we state here again and give a proof of it:



9.1 Law and onvergene of the reatant point proess 98Proposition 9.1.2: We an speify the distribution of the reatant point proess
Ξtn,n at time tn. For kn ∈ {1, 2, . . . , nξtot,ntn − 1}(i) the number of points at level 0 is given by

κn := Ξtn,n({ 1
n ,

2
n , . . . ,

kn
n } × {0}) d

= Bin (kn,P(σn ≥ tn)) and (9.6)(ii) the number of points between 0 and tn − hn is given by
Ξtn,n({ 1

n ,
2
n , . . . ,

kn
n } × (0, tn − hn))

d
= Bin (kn − κn,P(σn ≥ hn|σn < tn)) .(9.7)Here Bin(n, p) is the law of a binomially distributed random variable with parameters

n, p and σn is the extintion time of a birth-and-death proess with reprodution anddeath rate (nb2 η
tot,n
tn−s)0≤s≤tn .Proof: Sine we have onditioned on the total mass of the reatant at time tn,we know that there are nξtot,ntn reatant individuals alive at that time. Among the

nξtot,ntn − 1 most reent ommon anestors of these individuals there are some whihlie at time level zero and some whih lie above. The �rst ones ontribute to κnthe others to the seond line in the proposition. The idea, similar to the previousproof, is to look at the ontour proess and relate MRCAs to minimal points of thedownward exursions.First we note that there are nξtot,ntn − 1 downward exursions from level tn toonsider. We already showed that the ontour proess reahes its minimum in adownward exursion at the extintion time of a birth-and-death proess with rate
( b2nη

tot,n
tn−s)s≥0 eah. In the ase n = 1 we knew that extintion would our beforethe exursion reahes level zero. For the general n it is in fat the asethat if thisextintion does not happen before reahing time level zero, then this means theontour goes to zero and then starts traversing the next tree of the forest. Thisgives a point at level zero.As all of the exursions are independent the number of exursions �dropping�below level zero among the �rst kn exursions is therefore given by:

κn := Ξtn,n({ 1
n ,

2
n , . . . ,

kn
n } × {0}) d

= Bin (kn,P(σn ≥ tn)) . (9.8)Thus the �rst line is already proven. It remains to show the seond line. Thereare now kn−κn most reent ommon anestors that lie above time level zero. Eahof these ontours independent of the others has probability P(σn > hn|σn < tn) to�drop� at least below level tn − hn:
Ξtn,n({ 1

n ,
2
n , . . . ,

kn
n } × (0, tn − hn))

d
= Bin (kn − κn,P(σn > hn|σn < tn)) . (9.9)And that is all we needed to show for the proposition.We ontinue lasially and want to prove a onvergene result for Ξtn,n when n→

∞ as Theorem 6.3.1. Its proof is given by the following theorem, when additionallymixing the (here) non-random reatant total masses at time tn.



9.1 Law and onvergene of the reatant point proess 99It will be a quenhed result , i.e. we �x a atalyti bakground as in De�nition2.3.3. Additionally let a �xed time t < τ0 be given and a sequene of tn approahing
t as n→ ∞. Furthermore �x a sequene of reatant total masses s.t.:

lim
n→∞

|Yt − ξtot,ntn | = 0. (9.10)The next theorem uses these ingredients and shows onvergene of the resaled pointproess. Therefore ondition the resaled proesses on a atalyst total mass proess
ηtot,n and reatant total mass ξtot,ntn at time tn.Then the following theorem holds.Theorem 9.1.3:The point proess Ξtn,n onverges to a point proess πt on [0, Yt] × [0, τ0]. For
u ∈ [0, 1] and 0 < h < t the limit point proess is given by:

• a Poisson proess at level zero, i.e. on [0, Yt] × {0} spei�ed by
πt([0, uYt] × {0}) = Poisson( 2uYt

∫ t
0 bXs ds

) (9.11)
• and another Poisson proess on the set [0, Yt] × (0, τ0] spei�ed by

πt([0, uYt] × (0, h)) = Poisson(uYt( 2
∫ t
h bXs ds

− 2
∫ t
0 bXs ds

)) (9.12)Proof: By Theorem 4.2 in [Kal83℄ it is su�ient to show the onvergene of Ξtn,nto πt by onsidering intensity measures on the sets given in the theorem. Both lineswill be proven via the usual Poisson approximation and we will only do the �rstline, sine the proof of the seond line uses the same ideas.Therefore let u ∈ [0, 1] be given:
Ξtn,n([0, uYt] × {0}) =

=Ξtn,n([0, uξtot,ntn ] × {0})+
± Ξtn,n([uYt ∧ uξtot,ntn , uYt ∨ uξtot,ntn ] × {0})

=Ξtn,n
(

{ 1
n ,

2
n , . . . ,

⌊nuξtot,ntn
⌋

n } × {0}
)

+

± Ξtn,n
(

{ 1
n ,

2
n , . . . ,

⌊nu|Yt−ηtot,n
tn

|−1⌋
n } × {0}

)

d
= Bin(⌊nuξtot,ntn ⌋,P(σn ≥ tn)

)

+

± Bin(⌊nu|Yt − ξtot,ntn |⌋,P(σn ≥ tn)
)

.

(9.13)
Now it is helpful to remember that the probability P(σn ≥ tn) an be alulatedsimilar as in Lemma 9.1.1 (espeially (9.4)) and we get

P(σn ≥ tn) = P(Poisson proess with rate (nηtot,n
tn−s)s≥0 hasnot jumped before time tn)

=
1

1 +
∫ tn
0

b
2nη

tot,n
s ds

.

(9.14)



9.2 The relationship between limit point proess and limit ontour 100And in a limit for n→ ∞ we obtain that:
nP(σn ≥ tn)

n→∞−−−→ 2

b

(∫ t

0
Xsds

)−1

. (9.15)And as ξtot,ntn goes to Yt (remember that by onditioning they are not random) the�rst summand gives what we want by the Poisson approximation for n → ∞. Theseond summand by Poisson approximation tends to unit mass at zero. Then as
n→ ∞:

Ξtn,n([0, uYt] × {0}) → Poisson( 2uYt
∫ t
0 bXsds

) (9.16)
9.2 The relationship between limit point proess andlimit ontourAfter the limit reatant one wonders, if there is a onnetion to the other funtionalsof the atalyti branhing setting. We an a�rmate suh a question and proveProposition 6.3.3, whih relates the limit point proess with the minima of downwardexursions of the ontour proess. The proof is quite long and is subdivided intoseveral steps. For the understanding of the proof we will use the slightly moregeneral ontour desription as in Setion 8.4 with tree traversal speed = k. Theontour runs until loal time hits 4

b .9.2.1 Main result and strategy of the proofThe proposition to prove isProposition 9.2.1: Let a �xed atalyst X and t < τ0 be given. If δ > 0 is suhthat t < τ δ, then let ζδ denote the solution of the (Aδ ,D(Aδ)) martingale problem.Then it holds that
πt

d
= πζ

δ,t. (9.17)Here the proess on the right hand side is given as the point proess of minimaof downward exursions from level t:
πζ

δ,t := {(u, inf(ǫ−u ) :, when αtu− 6= αtu and u ≤ α4/b}, (9.18)where ǫ−u is a downward exursion of ζδ from level t and α1 is the �rst time, whenthe loal time at level zero reahes 4
b and αtu is the inverse of loal time at level t of

u (for the exat de�nitions see page 42).The proof will be done in several steps. The �rst four preparatory steps are in avery general ontext that an be applied to any exursion question. The last stepfouses on the ontour proess ζδ and its downward exursion point proess andthen relates it to the limit point proess.Step 1: Sale funtion and speed measure of a di�usion ζ and relation to Brownianmotion.



9.2 The relationship between limit point proess and limit ontour 101Step 2: Loal times of a di�usion ζ and relationship to Brownian loal time.Step 3: Exursion depths of a di�usion ζ: Depths oordinate.Step 4: Exursion depths of a di�usion ζ: Time oordinate.Step 5: Appliation of the previous result to the point proess πζδ,t and omparisonwith πt.9.2.2 The proofStep 1: Sale funtion and speed measure of a di�usion ζ and relation to BrownianmotionIn this step we follow the desription in [RY91, Chapter VII.3℄ and referenes referto that book. Let (ζu)u≥0 be a regular di�usion on a ompatum [l, r] with generator
(A,D(A)). Then there exists a funtion s and a measure m:

s :[l, r] → R,

m :B([l, r]) → [0,∞),
(9.19)alled the sale funtion s and the speed measure m, s.t.

• s is ontinuous, stritly inreasing and unique up to a�ne transformations(Proposition VII.3.1).
• s(ζ) is a loal martingale.
• if m has density m′ w.r.t. Lebesgue measure. Then it is

Af(x) =
1

2

d

m′(x)dx
d

ds
f(x), (9.20)for bounded f ∈ D(A) and almost any x ∈ (l, r) (Theorem VII.3.12).If s is linear then ζ is said to be on the natural salethat means it ontains nodrift. If the speed measure density m′ is onstantthat means the proess is runningat the same �speed� as Brownian motion. In the ase s = id, m = λ, we have ζ = β,where β is a Brownian motion.To use the third property let us heneforth assume that m has density with respetto the Lebesgue measure λ, i.e. that we an write:

m(dx) = m′(x)λ(dx). (9.21)Now we want to start some alulations to express the distribution of a di�usion
ζ, started in t, as a �transformed� Brownian motion β, started in 0. First we notethat B := (s(ζu) − s(t))u≥0 is a martingale started in 0. As shown in Lemma 8.4.8for speial m and s, it is true that B is a solution of the martingale problem withgenerator

Ãf(x) =
1

2

s′(s−1(x+ s(t)))

m′(s−1(x+ s(t)))
f ′′(x). (9.22)So for a Brownian motion β we an write

dBu =

√

s′(s−1(Bu + s(t)))

m′(s−1(Bu + s(t)))
dβu. (9.23)



9.2 The relationship between limit point proess and limit ontour 102To use the Martingale Representation Theorem set the random time hange
γ(t) :=

∫ t

0

m′(s−1(βv + s(t)))

s′(s−1(βv + s(t)))
dv, (9.24)and its well-de�ned inverse

γ−1(u) := inf{t ≥ 0 : γ(t) ≥ u}. (9.25)Then an easy alulation as in [KS00, Proof of Theorem 5.5.4℄ gives that
(Bu)u≥0

d
= (βγ−1(u))u≥0, (9.26)and even the following lemma holds:Lemma 9.2.2: It is true that

(ζu)u≥0
d
= (s−1(βγ−1(u) + s(t)))u≥0. (9.27)Step 2: Loal times of a di�usion ζ and relationship to Brownian loal timeThe setting and the notation is the same as in the previous step. If we all lhu(ζ) theloal time of the di�usion ζ at level h at time u, then we get the following lemma:Lemma 9.2.3: In the setting as above (ζ0 = t, (9.27)) it holds that

lhu(ζ)
d
= (s′(h))−1l

s(h)−s(t)
γ−1(u)

(β), . (9.28)Proof: Before we start with alulating loal times we do an easy but helpfulalulation of the quadrati variation, whih also will be of help in a later proof:
d〈ζδ, ζδ〉u =

(

s′(s−1(Bu + s(t)))
)−2

d〈B,B〉u
=
(

s′(s−1(βγ−1(u) + s(t)))
)−2

dγ−1(u)

=
(

m′(s−1(βγ−1(u) + s(t)))
)−1 (

s′(s−1(βγ−1(u) + s(t)))
)−1

du.

(9.29)Hene by the de�nition of loal time we get the relationship between loal timeof ζ and Brownian motion β:
lhu(ζ) = lim

ǫ→0

1

ǫ

∫ u

0
1{ζv∈[h,h+ǫ)} d〈ζδ, ζδ〉v

= lim
ǫ→0

1

ǫ

∫ u

0
1{s(ζv)−s(t)∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))} d〈ζδ, ζδ〉v (9.30)

= lim
ǫ→0

1

ǫ

∫ u

0
1{βγ−1(v)∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))} (9.31)

(

m′(s−1(βγ−1(v) + s(t)))
)−1 (

s′(s−1(βγ−1(v) + s(t)))
)−1

dv.Now a hange of variables z := γ−1(v) gives:
= lim
ǫ→0

1

ǫ

∫ γ−1(u)

0
1{βz∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))}

(

s′(s−1(βz + s(t)))
)−2

dz =(9.32)



9.2 The relationship between limit point proess and limit ontour 103and Oupation Times Formula leads to:
= lim
ǫ→0

1

ǫ

∫

1{x∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ) )}
(

s′(s−1(x+ s(t)))
)−2

lxγ−1(u)(β) dx

=(s′(h))−1l
s(h)−s(t)
γ−1(u)

(β), (9.33)where in the last step we used that Brownian loal time is ontinuous in x and s′ isright-ontinuous.In fat it looks if we had made our life a bit ompliated with some fators andsummands anelling out in the end of the proof. But we will see the merits of thispuzzling alulation in the next steps, where we an use the setting just presented.Step 3: Exursion depths of a di�usion ζ: Depths oordinateIn this step we desribe the �depths� part of the exursion point proess. In Step 4the �time� part (or oordinate) is dealt with.Let ζ be a regular di�usion as above and let t be in the interior of the state spae
(l, r) of ζ. Remember the de�nitions of αtu(ζ), ǫ−u , U−

t and πζ,t from page 42.The point proess πζ,t measures the depth of the downward exursions from level tof ζ. Then it holds the following lemma, desribing the depths oordinate:Lemma 9.2.4: The proess πζ,t is a Poisson point proess and the seond oordinate
nζ,t of the intensity measure for 0 < h < t is given by

nζ,t(dh) = s′(t)
s′(h)

2(s(t) − s(h))2
dh. (9.34)And the intensity measure of exursions reahing zero is given by

nζ,t({0}) = s′(t)
1

2s(t)
. (9.35)In the last line of the lemma there should not be {0}, but (−∞, 0]). If we restritto di�usions ζ re�eted at zero, as we will do later, then it does not matter.Proof: By Theorem VI.57.6 from [RW79℄ we know that the measure on downwardexursions is a Poisson point proess

N(dl ⊗ de) = dl ⊗ n(de), (9.36)where the �rst oordinate is measured in loal time.If we set for H = t− h

Gh := {f ∈ U−
t : inf(f) < h = t−H}, (9.37)the set of exursions going below h we are interested in the law of n(Gh). To obtainthat law we adapt the proof of Theorem VI.57.12 in the same book to our situation.Therefore set

T := inf{l > 0 : N((0, l] ×Gh) > 0}, (9.38)



9.2 The relationship between limit point proess and limit ontour 104that is the �rst time an exursion with depth t − h arises. Sine N is Poissonwith rate n(Gh) we know that the waiting time T is exponentially distributed andtherefore
E[T ] = (n(Gh))

−1 . (9.39)We additionally de�ne the time when the proess ζ reahes the level t− h, when itis started in t:
τ := inf{r : ζr = t−H, ζ0 = t}. (9.40)By Lemma 9.2.2 we have that for a Brownian motion started in 0:

τ
d
= inf{r : βγ−1(r) = s(t−H) − s(t), β0 = 0}. (9.41)For Brownian motion re�eted at zero the Tanaka formula gives that the followingexpression is a martingale:

(

(βu)
− − 1

2
ls(t)u (β)

)

u≥0

. (9.42)Now the Optional Sampling Theorem for the optional time γ−1(τ) yields:
E[(βγ−1(τ))

−] =
1

2
E[l0γ−1(τ)(β)]. (9.43)But the left hand side is equal to (s(t−H)− s(t))− and for the right hand side wealulate:

1

2
E[l0γ−1(τ)(β)] =

1

2
s′(t)E[ltτ (ζ)] =

=
1

2
s′(t)E[T ]

=
1

2
s′(t) (n(Gh))

−1 .

(9.44)And putting left and right hand side of (9.43) together we get:
n(Gh) = s′(t) (2s(t) − s(h))−1 . (9.45)That is just the �rst line of the lemma. The seond line does not need to be provenadditionally, sine it is just the speial ase of h = 0.Step 4: Exursion depths of a di�usion ζ: Time oordinateIn this step we will talk about the �rst oordinate of the point proess πζ,t. Exur-sions arise, when loal time grows. So the natural �rst oordinate for the intensitymeasure ℵζ,t of πζ,t is given by:

dltu(ζ) := (lt· (ζ))
−1(du). (9.46)This is the uniform distribution on the set {u : ζu = t}.As we are going to deal with tree exursions later, we put the following question:What happens if we want to onsider the di�usion ζ only until its loal time at zeroreahes 4

b? Until whih u an the uniform measure for the loal time be interesting?



9.2 The relationship between limit point proess and limit ontour 105We already notie that things here get a bit ompliated. So to make things lear:Here we are going to deal with a di�usion ζ starting at zero and we will apply theresults from Step 2, but in the ase t = 0. We will write ζ̃ instead of ζ in this stepand only in this step, where we deal with a di�usion ζ starting in t = 0.To be more preise we give some de�nitions and a lemma, whih are put in awider framework:For a Brownian motion β and r > 0 set:
r∗ := inf{u ≥ 0 : l0u(β) = rs′(0)}. (9.47)By Lemma 9.2.3 it is then:

γ(r∗) d
= αr := inf{u ≥ 0 : l0u(ζ̃) = r}, (9.48)and the following lemma holds:Lemma 9.2.5: If (Zh)h≥0 is a solution of the following SDE

dZh =
√

4Zhs′(h)dβh , Z0 = rs′(0), (9.49)then
(lhαr

(ζ̃))h≥0
d
= (

Zh
s′(h)

)h≥0. (9.50)Remark 9.2.6:This result desribes the total mass of the loal time on the set {u : ζu = h}. Heneit an be alulated via an inhomogeneous Feller di�usion with atalyst rate 4s′. 3Proof: By the seond Ray-Knight theorem, we know that (lar∗(β))a≥0 is a squaredzero-dimensional Bessel proess started in rs′(0) (see Chapter VI.52 in [RW79℄).Using Lemma 9.2.3 we have that the following expression is also a squared zero-dimensional Bessel proess started in rs′(0):
(

s′(s−1(a)) ls
−1(a)
αr

(ζ̃)
)

a≥0
. (9.51)Then we alulate:

(

s′(s−1(a)) ls
−1(a)
αr

(ζ̃)
)

=s′(0)l0αr
(ζ̃) +

∫ a

0

√

4s′(s−1(u)) l
s−1(u)
αr (ζ̃)dβu

=s′(0)r +

∫ s−1(a)

0

√

4s′(z) lzαr
(ζ̃) s′(z)dβz,

(9.52)and get by setting
Zz := s′(z)lzαr

(ζ̃), (9.53)the following SDE:
dZz =

√

4Zzs′(z)dβz and Z0 = s′(0)l0αr
= s′(0)r. (9.54)Hene the lemma is shown by rearranging the de�nition of Z.



9.3 Comparison result between lassial forest and the atalyti forest 106Step 5: Appliation of the previous result to the point proess πζδ,t and ompar-ison with πt.The previous general results an now be taken up to for the ase of the di�usion ζδ,i.e. where:
m(dx) = λ(dx),

s(h) =
b

2k

∫ h

0
Xs ds,

ζδ0 = 0.

(9.55)Additionally we have to stop the ontour, when its loal time at level 0 reahes
4
b , i.e. at time α4/b. Note that it is su�ient to ompare intensity measures of πtand πζ

δ,t to obtain equality in distribution. The point proess πζδ,t of depths ofdownward exursions from level t has the intensity measure ℵζδ,t. We will alulatethis intensity measure on a small retangle of size du× dh.Its �rst (=time) oordinate is uniformly distributed with a total mass given byLemma 9.2.5 for r = 4
b :

ltα4/b
(ζδ) =

Zt
s′(t)

=
2kZt
bXt

d
=

4Yt
bXt

, (9.56)sine in this ase k
2Z behaves like a reatant Y with a �xed atalyst medium (Xs)s≥0(onsider (9.49)).Seondly the depth measure nζδ,t is given by Lemma 9.2.4:

nζ,t(dh) = Xt
Xh

2(
∫ t
t−hXs ds)2

dh. (9.57)Hene, in the produt measure evaluated on a retangle the fators Xt anel outand we get:
ℵζδ,t(du⊗ dh) = 1[0,Yt](u)du⊗ 2Xh

(
∫ t
t−h bXs ds)2

dh. (9.58)And this is almost the proof of Proposition 6.3.3, sine this is the same intensitymeasure than that of πt. One an argue similarly for the points at level 0, but weomit the reprodution of the ideas.Now after having done all the neessary steps we are done with the proof ofProposition 9.2.1. ���9.3 Comparison result between lassial forest and theatalyti forestIn this setion we give the proof of Proposition 4.3.1. Therefore we reall thefollowing de�nition of an integral over the atalyst total mass . This integral is abit di�erent, than in the previous setion, sine here we are only going to deal with



9.3 Comparison result between lassial forest and the atalyti forest 107ontour downward exursions from level t. Therefore the integral starts from level
t on and aumulates the atalyst downwards:

st :

{

[0, τ0] → [0,∞)

h 7→ b
2k

∫ t
t−hXs ds

(9.59)In fat it is st(h) = s(t) − s(t − h) for the ase k = 1 and this shortut is morehandy than always writing the di�erene.Then we want to prove the following proposition:Proposition 9.3.1 (Strething tree metri): Let Z for be a lassial Galton-Watsonforest, i.e. branhing rate equal to 2 with ontour proess β run until loal time atlevel 0 reahes 2. Let Y for a atalyti branhing forest with �xed atalyst ontour
(Xs)0≤s≤τ0 . Then for any t < τ0 let

Ỹ for
t := ∂Qst(t)(Z

for) (9.60)and for u1, u2 ∈ Ỹ for
t , i.e. u1, u2 ∈ ∂Qs(t)(Z

for) de�ne:dỸ for(u1, u2) := 2s−1
t

(

1
2dZfor(u1, u2)

)

. (9.61)Then it holds that
(Ỹ for,dỸ for)

d
= (∂QtY

for;X). (9.62)Proof: First we laim that the ontour of the ordinary Galton-Watson proess isindeed equal to re�eted Brownian motion β if we hoose the traversal speed kZ = 1and b = 2 by looking at Proposition 5.3.1:
C(Z for, 1) = β. (9.63)Note that omparing the distribution of extant individuals ∂QtY for and (Ỹ for, dỸ for)as metri spaes means omparing them in the Gromov-Hausdor� metri.But any ultrametri spae is haraterized by its minimal spanning tree [GPW08,Remark 2.2℄. Therefore it is su�ient to ompare distributions of the minimalspanning trees. These spanning trees themselves are haraterized by the MRCApoints, whih denote the most reent ommon anestors of two individuals alive attime t. These MRCA points are just the points of the point proess πt (in the aseof ∂QtY for) and πβ,t (in the ase of ∂Qst(t)Z

for). Hene we only need to show thatthe law of πt is the same as the st-transformed law of πβ,t and we do this by showingthe equivalene of their intensity measures ℵt and ℵβ,t similar as in the preedingproof and hene hoose δ > 0 s.t. t < τ δ.We will use notation from the previous setion, in the sense that the ontourtraversal speed is set to be k > 0 and we will speify this k. Espeially the readershould be familiar with Steps 4 and 5 in that setion.As the intensity measures onsist of two independent oordinates, we separatethe proof into two parts and start by omparing the time oordinate (or loal timeoordinate, to be more preise) and treat the exursion oordinate, i.e. the exur-sion measures nt and nβ,t later.The �rst oordinate is Lebesgue measure in both ases, whih is supported untilloal time at level 0 hits 2 for Z and 4/b for Y . Then the only question is the total



9.3 Comparison result between lassial forest and the atalyti forest 108mass of the Lebesgue measure in eah ase, i.e. how muh loal time at level t (for
Y for) and at level st(t) (for Z for) until the end of the exursion.Then by Lemma 9.2.3:

s′t(t)l
t
α4/b

(ζδ) = l
st(t)
γ−1(α4/b

(β). (9.64)To speify the lower index on the right hand side observe that:
r = γ−1(α4/b ⇔ γ(r) = α4/b

⇔ l0γr
(ζδ) =

4

b

⇔ l0r(β) = s′(0)
4

b
=

b

2k

4

b
=

2

k
.

(9.65)We want to all αβ the inverse loal time of β at zero. Then by hoosing k = 1 weget for (9.64):
s′t(t)l

t
α4/b

(ζδ) = l
st(t)

γ−1(αβ
2

(β). (9.66)So the time parts of the point proesses are already related.Seondly we need to show that the �exursion-parts� nt and nβ,t of the intensitymeasures orrespond. Therefore let 0 < h1 < h2 < t be given and alulate on theone hand for the measure nt by Theorem 9.1.3:
nt([h1, h2]) =

s′t(t)
2

(

1

st(h2)
− 1

st(h1)

)

. (9.67)On the other hand we observe for the intensity measure nβ,t of Z for that the met-ri transformation for two extant individuals u1, u2 ∈ ∂Qst(t)(Z
for) works like thefollowing:

1

2
dỸ for(u1, u2) ∈ [h1, h2] ⇔

1

2
dZfor(u1, u2) ∈ [st(h1), st(h2)]. (9.68)Hene it is:

nt,Ỹ
for

([h1, h2]) = nβ,t([st(h1), st(h2)])

=
1

2

(

1

st(h2)
− 1

st(h1)

)

.
(9.69)By multiplying the �rst and the seond oordinate of the intensity measures thefator s′t(t) anels out and we get similar as in Step 5 of the previous setionthat

Ỹ for
t and ∂QtY for have the same distribution.The next proposition was given in the ontour proess hapter. Its proof requiresresults shown in this hapter about the loal time proess of the ontour. First werestate it:Proposition 9.3.2: Let a �xed atalyst (Xt)t≥0 and its killing time τ0 be given.For δ > 0 let ζδ be the reatant limit ontour. ThenP[lim

δ→0
〈ζδ, ζδ〉α4/b

<∞|X] = P[ρ0 < τ0] (9.70)and P[lim
δ→0

〈ζδ, ζδ〉α4/b
= ∞|X] = P[ρ0 > τ0]. (9.71)



9.3 Comparison result between lassial forest and the atalyti forest 109Proof: In the �rst ase there is nothing to show, sine the quadrati variation ofa bounded di�usion until an almost sure �nite time is �nite.In the seond ase we ondition on the event ρ0 > τ0 and we an write by (9.64):
{ρ0 > τ0} = {Yt > 0 ∀t < τ0} =

{Xtl
t
α4/b

(ζδ) > 0 ∀t < τ0} =

{ltα4/b
(ζδ) > 0 ∀t < τ0}.

(9.72)So by Oupation Times Formula we get:
1{ρ0>τ0}〈ζδ, ζδ〉α4/b

=

∫ α4/b

0
1{ρ0>τ0}d〈ζδ, ζδ〉u

=

∫ τδ

0
lvα4/b

(ζδ)1{ltα4/b
(ζδ)>0 ∀t<τ0}dv

=

∫ τδ

0

2l
s(v)
2∗ (β)

bXv
1{ls(t)2∗ (β)>0 ∀t<τ0}dv.

(9.73)
Hene, the indiator just transformed to an indiator for non-vanishing of the

β-loal time. Therefore the denominator an be bounded from below by an almostsure positive random variable φ. Hene
〈ζδ, ζδ〉α4/b

≥ φ

∫ τδ

0

1

Xv
dv. (9.74)The integral expression is then a random variable whih for δ → 0 tends to in�nityby Lemma 3.1 in [AW05℄ in the ase that g(x) = x1+β for β ∈ [0, 1). In fat wewanted to have a slightly wider range of branhing modi�ations g aording to G4of Condition 2.1.3:

∃β ∈ [0, 1) lim
x→0

g(x)

x1+β
= c′. (9.75)The integral above has its di�ulties only in the region, where the atalyst ap-proahes zero.Hene, we are only going to onsider the integral for a atalyst started in X0 = ǫ′and where g lies already ǫ-lose to its approximation in [0, 2ǫ′]. We set the iterated

δ-hitting times τ ǫk, k ≥ 1 of X (jumps of loal time). Then it is lear that
∫ τ0

0

1

Xv
dv ≥ sup

k≥1

∫ τ0

τǫ
k

1

Xv
dv. (9.76)Remember that dXt =

√

g(Xt) dBt and we de�ne another well-de�ned di�usion X̃ ,also started in ǫ′ by:
dX̃t =

√

X̃1+β
t dBt. (9.77)If we set

γt =

∫ t

0

ds

g(Bs + δ)
, αt =

∫ t

0

ds

(Bs + δ)1+β
, (9.78)
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Xt = Bγ−1(t) + ǫ′, X̃t = Bα−1(t) + ǫ′ (9.79)Thus, we an onsider the integral, where the atalyst stays in a region lose to theorigin and we get by a hange of variables:

∫ τ0

τǫ
k

1

Xv
dv =

∫ τ̃0

0

dr

X̃r

(Bα−1
r +δ + ǫ′)1+δ

g(Bα−1
r +δ + ǫ′)

≥
∫ τ̃0

0

dr

X̃r

(c′ − ǫ). (9.80)And the last integral was already shown to have the value in�nity in the previouslymentioned Lemma 3.1 of [AW05℄.



Part IIIAppendix



A Important theorems required in theproofsHere will be denoted some of the theorems quoted from books. The notation will beonvenient with the usual notation of this diploma thesis, so some of the theoremswill look di�erent than the ones in the mentioned books. They were mostly put inthe order of appearane in the book rather than appearane in this paper.Clearly the theorems do not substitute a thourough study of the topis with thehelp of the books mentioned.A.1 Theorems from the book of Ethier and Kurtz:Markov ProessesThe book of Stewart Ethier and Tom Kurtz is one of the widest olletion of what isknown about Markov proesses in general. It overs semigroup theory, the basis ofstohasti analysis martingale problem theory and not to forget many appliations.Speial emphasis is laid on onvergene of Markov proesseses.A.1.1 Semigroup theoryA �rst result about semigroups and generators is Theorem 1.7.1 from [EK86, p.37℄,whih states:Theorem A.1.1 (Theorem 1.7.1 from [EK86℄):Let A be a linear operator on L suht that Ā is single-valued and generates as-trongly ontinuous ontration semigroup on L = Cb(E
1
cont × Eslope,R). Let B be adissipative linear operator on L suh that D(B) ⊃ D(A). If

‖Bf‖ ≤ α‖Af‖ + β‖f‖, f ∈ D(A), (A.1)where 0 ≤ α < 1 and β > 0, then A+B is single-valued and generates a stronglyontinuous ontration semigroup on L.Another result about Markov jump proesses states the following:Theorem 8.3.1 from [EK86, p.376℄Theorem A.1.2 (Theorem 8.3.1 from [EK86℄):Let
Af(x) = λ(x)

∫

(f(y) − f(x))µ(x, dy).Let E be a loally ompat, nonompat, separable metri spae and let E∆ = E∪∆be its one-point-ompati�ation. Let λ ∈ C(E) be nonnegative and let µ(x,Γ) be atransition funtion on E ×B(E) suh that the mapping x 7→ µ(x, ·) of E into P(E)



A.1 Theorems from the book of Ethier and Kurtz: Markov Proesses 113is ontinuous. Let γ and η be positive funtions in C(E) suh that 1/γ and 1/ηbelong to C0(E) and
sup
x∈E

λ(x)

γ(x)
≡ C1 <∞,

lim
x→∆

λ(x)µ(x,K) = 0 for every compact K ⊂ E,

sup
x∈E

λ(x)

∫

γ(x) − γ(y)

γ(y)
µ(x, dy) ≡ C2 <∞,

sup
x∈E

λ(x)

∫

η(x) − η(y)

η(y)
µ(x, dy) ≡ C3 <∞.Then the losure of {(f,Af) : f ∈ C0(E), γf ∈ Cb(E), Af ∈ C0(E)} is single-valued and generates a Feller semigroup on C0(E). Moreover, Cc(E) is a ore forthis generator.A.1.2 Convergene theorems for Markov proessesThe next theorems are being useful to show some onvergene results for Markovproesses. In fat we �rst state a theorem, whih shows where the idea of proofswill go along, but we will not use expliitely within this thesis. It holds for any kindof stohasti proesses with àdlàg paths:Theorem A.1.3 (Theorem 3.7.8 from [EK86℄):Let E be separable and let Zn, n = 1, 2, . . . , and Z be proesses with sample pathsin DE[0,∞).If {Zn} is relatively ompat and there exists a dense set D ⊂ [0,∞) suh that

(Zn(t1), . . . , Zn(tk)) ⇒ (Z(t1), . . . , Z(tk)) (A.2)holds for every �nite set {t1, . . . , tk} ⊂ D, then Zn ⇒ Z, where onvergene isonvergene in the distribution on the path-spae DE [0,∞).To establish the two riteria relative ompatness and f.d.d.-onvergene thereare several tools available:An important indiator for the �rst is the ompat ontainment ondition, whihstates that one an �nd a ompat subset of the state spae in whih the proessstays with high probability up to a given time.Then one way to show relative ompatness is to transfer the problem of �ndinga ompat set in the metri spae E to �nding a ompat set in R for a big lass ofmappings f from the state spae E to R:Theorem A.1.4 (Theorem 3.9.1 from [EK86℄):Let (E, r) be a omplete and separable metri spae, and let {Zn} be a family ofproesses with sample paths in DE[0,∞). Suppose that the ompat ontainmentondition holds. That is, for every λ > 0 and T > 0 there exists a ompat set
Γλ,T ⊂ E for whih

inf
n
P [Zn(t) ∈ Γλ,T for 0 ≤ t ≤ T ] ≥ 1 − λ. (A.3)Let H be a dense subset of Cb(E) in the topology of uniform onvergene on ompatsets. Then {Zn} is relatively ompat if and only if {f ◦ Zn} is relatively ompat(as a family of proesses with sample paths in DR[0,∞) ) for eah f ∈ H.



A.1 Theorems from the book of Ethier and Kurtz: Markov Proesses 114By the previous theorem the relative ompatness question of the sequene (Zn)an be shifted to the real-valued sequene (f ◦ Zn) for su�iently many f . Withthe next theorem relative ompatness an be shown for the latter:Theorem A.1.5 (Theorem 3.9.4 from [EK86℄):Let (E, r) be an arbitrary metri spae, and let {Zn} be a family of proesses withsample paths in DE [0,∞). Let Ca denote a subalgebra of Cb(E) (e.g. the spae ofbounded, uniformly ontinuous funtions with bounded support), and let D be theolletion of f ∈ Cb(E) suh that for every ǫ > 0 and T > 0 there exist real-valued
Fn-progressive-measurable (Yn, Zn) with uniformly bounded expetation in t with:

Yn(t) −
∫ t

0
Zn(s) ds is a martingale, (A.4)

sup
n
E

[

sup
t∈[0,T ]∩Q

|Yn(t) − f(Xn(t))|
]

< ǫ, (A.5)
sup
n
E[

∫ T

0
|Zn(t)|p] <∞ for some p ∈ (1,∞]. (A.6)If Ca is ontained in the losure of D (in the sup norm), then {f ◦Xn} is relativelyompat for eah f ∈ Ca.The following theorem puts together most of the previously mentioned ideas andstates the onvergene of the Markov proess Zn to a di�usion Z. This onvergeneholds if something losely related to the onvergene of the orresponding generatorsholds and relative ompatness is true.Theorem A.1.6 (Theorem 4.8.10 from [EK86℄):Let (E, r) be omplete and separable. Let A ⊂ Cb(E) × Cb(E) and ν ∈ P(E), andsuppose that the DE [0,∞) martingale problem for (A, ν) has at most one solution.Suppose Xn, n = 1, 2, . . . , is a {Gnt }-adapted proess with sample paths in DE [0,∞),

{Xn}n∈N is relatively ompat, PXn(0)
−1 ⇒ ν, and M ⊂ Cb(E) is separating. Thenthe following are equivalent:(a) There exists a solution X of the DE [0,∞) martingale problem for (A, ν), and

Xn ⇒ X.() There exists a ountable set Γ ⊂ [0,∞) suh that for eah (f, g) ∈ A and T > 0,there exist integrable (ξn, φn), suh that:
(ξn(t) −

∫ t

0
φn(s) ds)t≥0 is an {Gnt }- martingale, (A.7)

sup
n

sup
s≤T

E[|ξn(s)|] <∞, (A.8)
sup
n

sup
s≤T

E[|φn(s)|] <∞, (A.9)
lim
n→∞

E

[

(ξn(t) − f(Xn(t)))
k
∏

i=1

hi(Xn(ti))

]

= 0, (A.10)
lim
n→∞

E

[

(φn(t) − g(Xn(t)))
k
∏

i=1

hi(Xn(ti))

]

= 0, (A.11)for all k ≥ 0, 0 ≤ t1 < t2 < · · · < tk ≤ t ≤ T with ti, t 6 ∈Γ� and h1, . . . , hk ∈M .



A.1 Theorems from the book of Ethier and Kurtz: Markov Proesses 115A.1.3 Martingale problemsAnother group of important theorems are put under the headline of Martingaleproblems. First a uniqueness result for one-dimensional SDEs says:Remark A.1.7 (Remark 5.3.9 from [EK86℄):Let σ : [0,∞)×R → R+ and b : [0,∞)×R → R be loally bounded, measurable andsatisfy
|σ(t, x)2 − σ(t, y)2| + |b(t, x) − b(t, y)| ≤ K|x− y|, (A.12)

t ≥ 0, x ∈ Rd, (A.13)for some onstant K. Given two solutions
(Ω,F , P, {Ft},W,X) and (Ω,F , P, {Ft},W, Y ) (A.14)of the SDE orresponding to (σ, b) it is true that

P [X(0) = Y (0)] = 1 (A.15)implies
P [X(t) = Y (t) ∀t ≥ 0] = 1. (A.16)Next a multi-dimensional analogue:Theorem A.1.8 (Theorem 5.3.10 from[EK86℄):Let σ : [0,∞) × Rd → Rd ⊗ Rd and b : [0,∞) × Rd → Rd be ontinuous and satisfy

|σ(t, x)|2 ≤ K(1 + |x|2), x · b(t, x) ≤ K(1 + |x|2), (A.17)
t ≥ 0, x ∈ Rd, (A.18)for some onstant K, and let µ ∈ M1(R

d). Then there exists a solution of thestohasti di�erential equation orresponding to (σ, b, µ).The following theorem allows to derive uniqueness of a martingale problem byknowing the uniqueness of the one-dimensional distributions. In a speial ase italso allows to prove the strong Markov property of a solution of the martingaleproblem.Theorem A.1.9 (Theorem 4.4.2 from [EK86℄):Let E be separable, and let A ⊂ B(E) × B(E). Suppose that for eah µ ∈ P(E)any two solutions X, Y of the martingale problem for (A,µ) have the same one-dimensional distribution that is, for eah t > 0,
P [X(t) ∈ Γ] = P [Y (t) ∈ Γ], Γ ∈ B(E). (A.19)Then the following hold.(a) Any solution of the martingale problem for A with respet to a �ltration (Gt) isa Markov proess with respet to (Gt), and any two solutions of the martingaleproblem for (A,µ) have the same �nite-dimensional distributions.() Let Xx be the unique solution of the (A,µ = δx)-martingale problem with àdlàgpaths and Px is the law of Xx on DE [0,∞). If suh a solution exists for any

x ∈ E and the mapping x → Px(B) is measurable for any B ∈ B(DE), then
X is a strong Markov proess.



A.2 Theorems from the book of Karatzas and Shreve: Brownian Motion andStohasti Calulus 116A.2 Theorems from the book of Karatzas and Shreve:Brownian Motion and Stohasti CalulusFrom the book Brownian Motion and Stohasti Calulus [KS00℄ by Ioannis Karatzasand Steven Shreve we take several results whih are losely onneted. First we quotea result about regular onditional probabilities. This theorem states the existeneof probability kernels desribing the onditional probabilities as long as we are ona omplete and separable metri spae. This is always the ase if the state spaeof the proesses we onsider itself is omplete and separable and the proesses areeither ontinuous or have àdlàg paths. In this thesis the state spaes are eithersubsets of Rd, the set of ompat rooted real trees Troot.Theorem A.2.1 (Theorem 5.3.9 from [KS00℄):Let Ω be a omplete, separable metri spae with Borel σ-�eld F = B(Ω) and aprobability measure P . Furthermore let X a measurable mapping from this spaeinto a measurable spae (S,S), on whih it indues the distribution PX−1. Thereexists then a funtion Q(x;A) : S×F → [0, 1], alled a regular onditional probabilityfor F given X suh that(i) for eah x ∈ S,Q(x; ·) is a probability measure on (Ω,F),(ii) for eah A ∈ F , the mapping x 7→ Q(x,A) is S-measurable, and(iii) for eah A ∈ F , Q(x;A) = P [A|X = x], PX−1 -a.e. x ∈ S.This probability is unique in the sense that for PX−1 -a.e. x ∈ S:
Q(x; {ω : X(ω) = x}) = 1 (A.20)To apply it to the quenhed situation onsider in the ase of the tree-valuedproess, the probability spae (Ω,F ,P) from the introdution. Then the fun-tional ((ηtot

t )t≥0, ξ
for
r ), where r is �xed indues a probability measure P = P ◦

((ηtot
t )t≥0, ξ

for)−1 on the measurable spae (DR1
+
[0,∞) × Troot,B), where B is theBorel-σ-algebra on the produt spae. Then the projetion on the �rst oordinatein this spae is a measurable mapping by de�nition of the produt-σ-algebra. Withthe help of the theorem a regular onditional probability exists, i.e. there is a prob-ability kernel Q(·, ·) : DR1

+
[0,∞) × B → [0, 1] s.t. for A ∈ B and P- almost surelyany η ∈ DR1

+
[0,∞) one has the existene of the kernels.A next result tells us about the existene and the strong uniqueness of a one-dimensional SDE. It is pretty lose to the results of Engelbert and Shmidt andtells that existene and strong uniqueness hold under quite general onditions:Theorem A.2.2 (Corollary 5.5.10 from [KS00℄):Let σ : R → R be given. The equation dXt = σ(Xt)dWt possesses a unique strongsolution for every initial distribution µ, if the four onditions (E) and (i)-(iii) holdfor funtions f : R → [0,∞] and h : [0,∞] → [0,∞]:(E)

I(σ) ⊆ Z(σ), i.e. : {x ∈ R :

∫ x+ǫ

x−ǫ

dy

σ2(y)
= ∞} ⊆ {x ∈ R : σ(x) = 0} (A.21)



A.3 Theorems from the book of Rogers and Williams: Di�usions, MarkovProesses and Martingales 117(i) at every x ∈ I(σ)c, the quotient (f/σ)2 is loally integrable; i.e., there exists
ǫ > 0 (depending on x) suh that

∫ x+ǫ

x−ǫ

(

f(y)

σ(y)

)2

dy <∞; (A.22)(ii) the funtion h is stritly inreasing and satis�es h(0) = 0 and
∫ ǫ

0
h−2(u)du = ∞; ∀ǫ > 0 (A.23)(iii) there exists a onstant a > 0 suh that

| σ(x+ y) − σ(x) |≤ f(x)h(| y |); ∀x ∈ R, y ∈ [−a, a]. (A.24)Solutions of SDEs and solutions of martingale problems have a strong link andthe next result tells in a quite general version about the Strong Markov property ofsuh solutions:Theorem A.2.3 (Theorem 5.4.20 from [KS00℄):Let a linear operator A on a subset of C0(R
d,R) be given by:

Af(x) =
∑

1≤i,j≤d
σij(x)

∂2f

∂xi∂xj
(x) +

∑

1≤i≤d
bi(x)

∂f

∂xi
(x) (A.25)Suppose that the oe�ients b, σ are bounded on ompat subsets of Rd, and thatthe (A, δx)-martingale problem is well-posed for any x ∈ Rd with solution Px ∈

M1(CRd [0,∞)). Then the family Px satis�es the strong Markov property.A.3 Theorems from the book of Rogers and Williams:Di�usions, Markov Proesses and MartingalesFrom this very good book [RW79℄ of Chris Rogers and David Williams we onlytake a theorem about the boundary behaviour of a di�usion X on the state spae
[0,∞), with measure Px on C([0,∞), [0,∞)), when X(0) = x. This theorem statesthat the hitting time of he boundary 0 an already be alulated by heking anintegrability riterion for the speed measure of the di�usion:Theorem A.3.1 (Theorem V.51.(ii)):Let X be a di�usion with natural sale (e.g. no drift) and speed measure m. For
H0 := inf{t > 0 : Xt = 0} it is true that:

P x[H0 <∞] = 1 for all x > 0 if and only if ∫
0+

xm(dx) <∞. (A.26)



B Additional onepts and proofsB.1 The Kingman oalesentIn 1982 J.F.C Kingman presented in his paper [Kin82℄ the so-alled �Kingman�-oalesent. It is a stohasti proess desribing the merging of sets, where mergingof two sets arises after exponential time independent of all other possible two-set-ombinations.To be more preise we use the notation of [GLW07℄ and let a ountable set S begiven. We say that {πλ} is a partition of S, i�
• ∪πλ = S,
• πλ ∩ πλ′ = ∅, when λ 6= λ′ and
• πλ 6= ∅ for all λ.The sets πλ are alled partition elements. The set of all partitions of S will be alled

ΠS .An equivalene relation ∼P on S is indued by a partition P ∈ ΠS :
s1 ∼P s2 :⇔ ∃π ∈ P s.t. s1, s2 ∈ π. (B.1)For a subset S′ ⊂ S we de�ne a mapping ρS′ : ΠS → ΠS′ by the orrespondingequivalene relations:

s1 ∼ρS′P s2 :⇔ s1, s2 ∈ S′ and ∃π ∈ P s.t. s1, s2 ∈ π. (B.2)This mapping restrits a partition of S to a partition of one of its subsets S′.Additionally de�ne a partial ordering ≺ on ΠS :
P ≺ P ′ :⇔ ∀π′ ∈ P ′∃π ∈ P : π ⊆ π′, (B.3)and to ount the number of partition elements of P , we write #P .If we restrit our attention to the ase S = N and subsets Sn = {1, 2, . . . , n}, whatwe will do heneforth, a metri d an be introdued on the spae ΠS :

d(P,P ′) := 2−N(P,P ′), (B.4)where N(P,P ′) = sup{n ∈ N : ρ{1,2,...n}P = ρ{1,2,...n}P
′}. (B.5)With this metri the mapping ρS′ is ontinuous for any �nite subset S′ ⊂ N. Onean even then hek that (ΠS , d) is a ompat, omplete, separable metri spae(the �rst an be shown via sequential ompatness).



B.1 The Kingman oalesent 119Before we start with the onstrution of the oalesent we set the following speialpartitions of Sn and S:
∆ := {{1}, {2}, . . . , {n}} in the ase of Sn
∆ := {{1}, {2}, . . . , } in the ase ofS
Θ := {1, 2, . . . , n} in the ase of Sn
Θ := {1, 2, . . . } in the ase of S (B.6)Now to start with the oalesent we give the following de�nition:De�nition B.1.1 (The n-oalesent):The n-oalesent (Rnt )t≥0 is a Markov-proess with state spae ΠSn , starting at

Rn0 = ∆ with the generator Ωn:
Ωnf(α) =

∑

β≺α,|β|=|α|−1

(f(β) − f(α)) . (B.7)First some properties of this proess an be shown, whih an be found in [Kin82℄:
• the proess (Dn

t )t≥0 := (#Rnt )t≥0 is a death proess starting in n with rate
(k
2

) in state k.
• the proess (Rn

k )1≤k≤n whih gives the sequene of states in ΠSn for the n-oalesent, is ordered in the following sense:
∆ = Rn

n ≺ Rn
n−1 ≺ · · · ≺ Rn

2 ≺ Rn
1 = Θand (B.8)is a Markov proess.

• These two proesses D and R are independent.The idea now is to extend this de�nition to a proess de�ned on ΠS and startingin the di�use partition Θ. This �limit� proess should have the property, that whenrestriting it to a �nite subset of N, then we got the n-oalesent. This was �rstdone by Kingman in [Kin82℄ and we will follow his ideas in a very short desription,alled the paintbox-onstrution:Given a probability vetor x = (x1, x2, . . . ) de�ne an i.i.d. sequene of randomvariables Z1, Z2, . . . , s.t.:
P(Z1 = r) = xr ∀r ∈ N0. (B.9)This gives us an exhangeable probability measure Px on ΠS , where this measureis indued by the following equivalene relation:
R = {(i, j) : Zi = Zj ≥ 1}. (B.10)We an do the same even if the vetor x is random by de�ning the law on thepartitions by:

P =

∫

P
x µ(dx). (B.11)



B.1 The Kingman oalesent 120As a speial ase we take it to be uniformly distributed on the k− 1-dimensionalsimplex ∆k, that means:
x0 = xk+1 = xk+2 = · · · = 0, (B.12)

dx1 dx2 · · · dxk−1 = dλk−1|∆k
(x1, . . . , xk−1), (B.13)

xk = 1 − (x1 + · · · + xk−1), (B.14)where dλk−1 is the k − 1-dimensional Lebesgue measure. Then after a uniformrandom hoie of two of the oordinates x1, . . . , xk, say xi and xj and adding upthese two omponents we obtain the vetor
(x1, . . . , xi + xj, . . . , x̂j , . . . , xk). (B.15)It is easy to see that this vetor is uniformly distributed over the k− 1-dimensionalsimplex. By this onsistent proedure we an by a projetive limit argument de�nea Markov proess (Rk)k∈N with state spae ΠS = ΠN:

P[Rk−1 = η|Rk = ξ] =

{

2/k(k − 1) if η ≺ ξ and #η = #ξ − 1,

0 otherwise, (B.16)where ξ ∈ ΠS ,#ξ = k.Let us additionally we de�ne an independent death proess (Dt)t≥0 starting from
∞ with death rates 1

2k(k − 1) in state k ([Don91℄). Then the proess
R0 := ∆, Rt := RDt for t > 0, (B.17)is a ΠS-valued Markov proess, alled the oalesent. The restrition ρSn(R) of Rto the �rst n oordinates is the ordinary n-oalesent.In fat in the topology of ΠS we get that for (i, j) ∈ N2, with i 6= j, we have withthe aid of exhangeability of the law that for k ∈ N:

P[(i, j) ∈ Rk] = P[(1, 2) ∈ Rk] =
2

k + 1
. (B.18)Therefore it is true that

P[(i, j) ∈ Rt] = E[
2

Dt + 1
] (B.19)and this expression tends to 0 as t → 0. Hene the initial distribution of R is

R0 = ∆.More ideas and newer ideas, for example the �look-down� idea are presented inthe work of Donnelly and Kurtz [DK96℄, or in Alison Etheridge's book about su-perproesses [Eth00℄ the entrane law at ∞ is disussed in a paper of Donnelly[Don91℄.



B.2 Di�usions and sale funtions 121B.2 Di�usions and sale funtionsLet two di�usions ζ1 and ζ2 be given on a ompat time interval [0, T ]. Their statespae is a ompatum [L,H] ⊂ R and they are re�eted on the boundary. Call s1and s2 the sale funtions of the di�usion and assume that the speed measure isLebesgue measure. Our aim is to show that, when the derivatives s′1 and s′2 di�erslightly in Skorokhod-metri, then the di�usions stay lose in the sense that
E[ sup

0≤u≤T
|ζ1
u − ζ2

u|]an be bounded by the Skorokhod distane. Hene we want to prove some sort ofontinuity from sale funtions to di�usions.We state the following proposition:Proposition B.2.1: Assume that the derivatives of the sale funtions are àdlàgand lie in a ompat interval:
s′1, s

′
2 ∈ [a, b] ⊂ (0,∞). (B.20)Then, for all ǫ > 0 there exists a δ > 0, s.t.:

dSk(s′1, s
′
2) < δ ⇒ E[ sup

0≤u≤T
|ζ1
u − ζ2

u|] < a−3ǫ. (B.21)Proof: The proof is rather straightforward. First we note that similar to Setion9.2 in Step 1 we an set a random time-hange for a Brownian motion β:
γ1(t) =

∫ t

0

1

s′1(βv)
dv,

γ2(t) =

∫ t

0

1

s′2(βv)
dv.

(B.22)With that time hange one an rewrite the di�usions as time-hanged Brownianmotions as in Lemma 9.2.2. Now we will use the ‖ · ‖ to indiate the supremumnorm.
E[ sup

0≤u≤T
|ζ1
u − ζ2

u|] = E[‖s−1
1 (βγ−1

1 (u)) − s−1
2 (βγ−1

2 (u))‖]

≤E[‖s−1
1 (βγ−1

1 (u)) − s−1
2 (βγ−1

1 (u))‖]+
+ E[‖s−1

2 (βγ−1
1 (u)) − s−1

2 (βγ−1
2 (u))‖]

≤‖s−1
1 ‖E[‖βv − s1(s

−1
2 (βv))‖]

+ ‖s−1
2 ‖E[‖βγ−1

1 (u) − βγ−1
2 (u)‖].

(B.23)
(A) For the �rst line we observe that for α := s−1

2 (u):
u = s2(α) ≥ αa‖u− s1(s

−1
2 (u)‖ = ‖s2(α) − s1(α)‖ ≤ ‖α‖ dSk(s′1, s

′
2)(1 + b)(B.24)

≤ a−1‖u‖ dSk(s′1, s
′
2)(1 + b). (B.25)



B.2 Di�usions and sale funtions 122Hene we get
E[‖βv − s1(s

−1
2 (βv))‖] ≤ a−1E[‖βv‖] dSk(s′1, s

′
2)(1 + b). (B.26)(B) For the seond line we need to show more and this will require some time.We need to �nd a way to say that the time-hanges do not di�er too muh. Henefor a onstant r > 0 we split up the problem in two lines

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖] =

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖1‖γ−1
1 (u)−γ−1

2 (u)‖≤r
√
dSk(s′1,s

′
2)

]+

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖1‖γ−1
1 (u)−γ−1

2 (u)‖>r
√
dSk(s′1,s

′
2)

].Triangle inequality and Cauhy-Shwarz inequality yield:
· · · ≤E[ sup

0≤r̃≤r
√
dSk(s′1,s

′
2)

|βr̃|]

+ 2E[ sup
0≤s≤T

|β2
s |]P [‖γ−1

1 (u) − γ−1
2 (u)‖2 > r2dSk(s′1, s

′
2)].With Brownian saling and Doob's inequality we obtain

· · · ≤ 4

√

dSk(s′1, s
′
2)r

2E[ sup
0≤r̃≤1

|βr̃|] + 8E[|β2
T |]P [· · · ]. (B.27)Hene, what remains to be done is to bound the probability expression on the right-hand-side. We do that by using a stritly inreasing smooth funtion λ whih is the�time-hange� to relate s′1 and s′2 as Skorokhod funtions (see Setion 3.5 in [EK86℄,espeially (3.5.5) ):

‖γ−1
1 (u) − γ−1

2 (u)‖ ≤‖(γ−1
1 )′‖ ‖u− γ1(γ

−1
2 (u))‖,by setting t := γ−1

1 (u) we get
≤H ‖

∫ t

0

1

s′1(βv)
dv −

∫ t

0

1

s′2(βv)
dv‖

≤H
∫ t

0

|s′2(βv) − s′1(λ(βv))| + |s′1(λ(βv)) − s′1(βv)|
s′1(βv) s

′
2(βv)

dv

≤Ha−2‖γ−1
1 (u)‖dSk(s′1, s

′
2) +Ha−2‖

∫ t

0
s′1(λ(βv)) − s′1(βv) dv‖.(B.28)The �rst summand looks well for a good hoie of r but the seond summand stillneeds further treatment. Unfortunately we will not go into details now. First oneneeds to go bak to onsidering the probability of the event in (B.27) and applyMarkov inequality. Looking at the line just written we an split up s′1 into �nitelymany ontinuity omponents whih over most of the interval. Then use a uniformontinuity argument to �nish the idea.
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E[‖βγ−1

1 (u) − βγ−1
2 (u)‖] ≤

≤a−2E[‖βv‖] dSk(s′1, s
′
2)(1 + b)

+ a−2
√

dSk(s′1, s
′
2)rE[ sup

0≤r̃≤1
|βr̃|]

+ 8E[|β2
T |]
Ha−3

r

√

dSk(s′1, s
′
2)

+ 8E[|β2
T |]
Hba−3

r

√

dSk(s′1, s
′
2).

(B.29)
And the expression on the right hand side an be bounded from above by a−3ǫ whenhoosing s′1 and s′2 su�iently lose in Skorokhod metri.B.3 Link between Birth-and-Death proesses andBranhing proessesLet two models be given for a rate λ > 0:

• a ontinuous time branhing proess Br with binary o�spring. Branhing ofeah individual happens independently of the others after an Exp(∫ t+·
t 2λs ds)time. The proess starts with one individual: Br0 = 1.

• a ontinuous time birth-and-death proess BD. Eah individual independentof the others dies after an exponential time with rate λ and gives birth afteran exponential time with rate λ. New-born individuals are �attahed to theright�, i.e. in linear order they are put after the father individual.By simply looking at the generators, the two total mass proesses related to the twomodels are the same. It even holds the following lemma:Lemma B.3.1: The ontour proesses of Br and BD are equal in distribution:
C(Br : σ)

d
= C(BD : σ). (B.30)Remark B.3.2:It is ruial for this lemma to have binary o�spring for the branhing proess. Torelate other o�spring distributions or even random o�spring one gets other results.Proof: We ompare the two ontours from the start on and show that the lengthsof the line segments are the same.Let X1 be the length of the �rst onstant slope line segment in the BD ontour.The �rst individual after an exponential time. Hene for x > 0

P (X1 > x) = e−λx. (B.31)On the other hand let Y1 be the length of the �rst onstant slope line segment ofthe Br ontour. The length Y1 is the sum of several line segments in the genealogialtree. It has probability 1
2 to onsist of one line segment, probability 1

4 to onsist oftwo line segments, probability 1
8 to onsist of three line segments and so on.



B.4 Additional proofs 124Eah of these line segments is equal to a lifetime of a branhing individual andthis is an Exp(∫ 2λdr)-time. If we all E1, E2, . . . a sequene of suh exponentialrandom variables, eah starting, where the other one ends, then we an write:
P (Y1 > x) =

∞
∑

k=1

P (E1 + · · · + Ek > x, #line segments = k)

=

∞
∑

k=1

P (E1 + · · · + Ek > x)P (#line segments = k)

=

∞
∑

k=1

Γ(k, 2λ)([x,∞))2−k ,

(B.32)
where Γ(k, λ) is Gamma-distribution with parameters k and λ. After a short al-ulation one gets:

P (Y1 > x) =

∫ ∞

x
λe−λs ds = e−λx. (B.33)But this is the same distribution as X1, so the �rst length of the ontours oinide.One an ontinue this idea for the onoming line segments as well.B.4 Additional proofsLemma B.4.1 (Loal Lipshitz-ontinuity implies Lipshitz-ontinuity on om-pata): Let (E, d), (F, d̃) be metri spaes and f : E → F a loally Lipshitz-ontinuous funtion. Then f is globally Lipshitz-ontinuous on any ompatum

K ⊂ EProof: Assume the ontrary:Let (xn), (yn) sequenes in K, s.t.: d̃(f(xn), f(yn)) > n d(xn, yn) Sine K is om-pat, there exists a subsequene (xnk
) of (xn) and a subsequene (ynkl

) of (ynk
)whih onverge in K. Not to get onfused with notation, we will without loss ofgenerality assume that xn → x and xn → y as n → ∞. If x 6 =y then the righthand side in (referene) is positive for n → ∞, so the left hand side would need togrow to in�nity. But this annot be sine f is ontinuous and K ompat. In thease x = y, assume that V is the neighbourhood of x, in whih Lipshitz-ontinuityholds for the Lipshitz-onstant Lx < ∞. As xn, yn onverge to x, there will be an

N ∈ N s.t. xn, yn ∈ V ∀n ≥ N . So we have:
n d(xn, yn) < d̃(f(xn), f(yn)) < Lxd(xn, yn) ∀n ≥ NBut this annot be true.



Notation
‖ · ‖E supremum norm on the set of funtions from E to R

αtr = inf{u ≥ 0 : ltu(ζ) = r} p. 42
αr = inf{u ≥ 0 : l0u(ζ) = r}
β one-dimensional Brownian motion started in 0

C0 spae of ontinuous funtions vanishing at in�nity
C(E,F ) spae of ontinuous funtions from E to F
CE [0,∞) spae of ontinuous funtions from [0,∞) to E
C0,∗

[0,∞)[0, L] = {f ∈ C([0, L], [0,∞)) : f(0) = f(L) = 0, f(x) >
0 ∀x ∈ (0, L)}

p. 30
C(· : σ) ordered tree to ontour mapping p. 30
DR2

+
[0,∞) Banah spae of àdlàg funtions f : [0,∞) → R2

+

D(A) domain of the linear operator A
dGH(·, ·) Gromov-Hausdor�-metri on Troot p. 23
ltu(ζ) loal time of ζ at time u at level t
M1(Ω) the set of probability measures on Ω

N the natural numbers, {1, 2, . . . }
P(Ω) power set of Ω

R Kingman oalesent p. 70
R2

+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}
R+ = [0,∞)

T ontour to ordered tree mapping p. 31
Tunord ontour to tree mapping p. 31
Troot spae of rooted R-trees p. 21
Troot,lin spae of rooted, linearly ordered tree p. 24
T

root,lin
fin spae of rooted, linearly ordered tree, with �nitelymany branh points p. 24

W 1,W 2 independent Brownian motions



IndexIn this index only few �n-resaled objets� are listed. Indeed the de�nitions ofthem an be found shortly after the other de�nitions of the non-resaled objetsthroughout the thesis. Mostly they are analagous.
α1/b . . . . . loal time inverse at level zero of ζδ of 1

b . . . . . 42
Aδ . . . . . generator of the T δ-ut reatant tree . . . . . 82
b . . . . . branhing onstant for the reatant . . . . . 5
B . . . . . atalyst ontour proess . . . . . 32
C . . . . . reatant ontour proess . . . . . 32
En,δcont . . . . . state spae of reatant ontour Cn,δ . . . . . 82
Eslope . . . . . = {−1, 1} state spae of reatant ontour slope V . . . . . 82
η . . . . . atalyst proess . . . . . 5
ηtot . . . . . atalyst total mass proess . . . . . 13
ηfor . . . . . atalyst tree-valued proess . . . . . 25
η̃n . . . . . the atalyst linear ordered tree . . . . . 32
K(η,A) . . . . . limit transition kernel for the reatant . . . . . 67
Kn(η,A) . . . . . resaled transition kernel for the reatant . . . . . 67
L(C, 4

b ) . . . . . ontour �loal time� funtional inverse of 4
b . . . . . 33

πt . . . . . reatant limit point proess . . . . . 41
Πt . . . . . atalyst point proess . . . . . 38
πζ,t . . . . . point proess assoiated with ζ . . . . . 42
ξ . . . . . reatant proess . . . . . 5
ξtot . . . . . reatant total mass proess . . . . . 13
ξfor . . . . . reatant tree-valued proess . . . . . 25
ξ̃n . . . . . the reatant linear ordered tree . . . . . 32
Ξt . . . . . reatant point proess . . . . . 38
Rn,0 . . . . . reatant extintion time of ξtot,n . . . . . 40
ρ0 . . . . . reatant extintion time of Y . . . . . 41
T n,0 . . . . . atalyst extintion time of the ηtot,n . . . . . 16
τ0 . . . . . atalyst extintion time of X . . . . . 17
Un . . . . . generator of (ηtot,n, ξtot,n . . . . . 45
Xx . . . . . atalyst total mass di�usion started in x . . . . . 16
Y x,y . . . . . reatant total mass di�usion with Y x,y

0 = y . . . . . 16
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