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Abstra
tWe 
onsider two random populations and want to study the asymptoti
 behaviorof their genealogies, when the number of initital individual in
reases. Both popula-tions are 
ontinuous-time Galton-Watson bran
hing pro
esses. The �rst population,
alled 
atalyst, 
onsists of individuals whi
h do not bran
h independently. The se
-ond population, 
alled rea
tant, 
onsists of individuals whi
h bran
h independentlyof the others but the bran
hing rate depends on the number of 
atalyst individualsalive.For the des
ription of the genealogy we use total mass pro
esses, R-tree-valuedpro
esses, 
ontour pro
esses and point-pro
esses of MRCAs (most re
ent 
ommonan
estors). We present weak limit results for any of these des
riptions. Moreoverwe dis
uss some results whi
h are due to the 
atalyti
 stru
ture, espe
ially there,where we are 
lose to the extin
tion time of the 
atalyst.The ideas and te
hniques used in
lude R-trees with Gromov-Hausdor� metri
,ex
ursion theory, Kingman 
oales
ent, theory of one-dimensional di�usions andSto
hasti
 averaging.



ZusammenfassungWir betra
hten zwei zufällige Populationen und wollen, im Falle steigender Anzahlvon Anfangsindividuen, das asymptotis
he Verhalten ihrer Genealogien bes
hrei-ben. Beide Populationen sind zeitstetige Galton-Watson Verzweigungsprozesse. Dieerste Population, genannt Katalyst, besteht aus Individuen, die ni
ht unabhän-gig verzweigen. Die zweite Population, genannt Reaktant, besteht aus Individuen,die unabhängig verzweigen, jedo
h hängt die Verzweigungsrate von der Anzahl derKatalyst-Individuen zu dieser Zeit ab.Zur Bes
hreibung dieser Genealogien verwenden wir Totale Massen Prozesse, R-Baum-wertige Prozesse, Konturprozesse und Punktprozesse von MRCAs (letztergemeinsamer Vorfahr). Wir beweisen s
hwa
he Limes Aussagen für alle diese Be-s
hreibungen. Zudem bespre
hen wir einige Ergebnisse, die dur
h die katalytis
heStruktur des Prozesses gegeben sind, besonders dort, wo der Katalyst fast ausge-storben ist.Unter den verwendeten Te
hniken und Ideen sind R-Bäume mit Gromov-Hausdor�-Metrik, Exkursionstheorie, Kingman Koaleszent, Theorie eindimensionaler Di�usio-nen und Sto
hasti
 Averaging.
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1 Introdu
tion1.1 History of bran
hing pro
essesIn the end of the nineteenth 
entury the English Reverend Henry William Watsonraised the question of extin
tion of noble surnames within English so
iety in anarti
le in an English journal. He supposed that due to life 
onditions the fertility ofwell-situated families shrank and therefore the names disappeared. One year laterhe and Fran
is Galton published jointly an arti
le in the Journal of Anthropology[WG75℄ and took a mathemati
al approa
h to the question: In ea
h generation afather, who passes his surname to his sons, has probabilities p0, p1, p2, . . . to have
0, 1, 2, . . . sons. His sons, independently of ea
h other, have the same probabilitiesto have sons themselves as well. Galton and Watson 
ame to the wrong 
on
lusionthat almost all surnames would die out. Later it was 
orre
ted to the true assertionthat the surname almost surely dies out, when the expe
ted number of sons is lessor equal to 1.The model just des
ribed was given the name Galton-Watson pro
ess and in-
ludes the following 
hara
teristi
s, amongst others, to be noted here: It 
onsidersa population 
onsisting of individuals that live a 
ertain given time and after thathave a random number of o�spring. Additionally the pro
ess is(i) time dis
rete,(ii) Markovian,(iii) 
ounts the number of individuals not their relationships and(iv) sons evolve independently of ea
h other.Clearly all of these four assumptions have some problems when applying to realityor even do not seem ri
h enough in des
ription:ad (i): Time is not measured in generations but in years, so to get an idea aboutwhat happens after 200 years, the model does not help.ad (ii): If one father has already few sons due to geneti
 endowments, his sons mightalso su�er lesser fertility. Therefore generations might rely on ea
h other, sothe real evolution is probably not Markovian.ad (iii): It is not possible to answer questions su
h as �When did the most re
ent
ommon an
estor of two individuals die?�



1.2 The Catalyti
 Bran
hing Model with a modi�ed 
atalyst 3ad (iv): Overpopulation de
reases the amount of food and probably the numberof 
hildren, so the independen
e of all other individuals at the same time isdisputable. Also being the brother of ten other brothers makes it more likelythat a son will be be sent to the monastery instead of having a family.During the last 
entury many adjustments were made to extend the originalmodels. Some of the more re
ent models 
ontain more information than the oldermodel of Galton and Watson. All of these extensions of the basi
 model are somehowgrouped together in the phrase Bran
hing Pro
esses.In re
ent years some letters written by Bienayme were dis
overed, who alreadytook up the problem in 1849 and was able to give a 
orre
t solution to the problem.More about the history of the (still-
alled) Galton-Watson pro
esses 
an be foundin [Ken66℄ and [Ken75℄ or in a talk by Peter Jagers [Jag09℄. The 
lassi
 books aboutbran
hing pro
esses were written by Harris [Har61℄ and Arthreya and Ney [AN72℄.The appli
ations of these pro
esses ex
eed the problem of surname evolution andin
lude phenomena in physi
s, e.g. 
osmi
 rays, or in biology, e.g. phylogeneti
trees. Here the appli
ations will play no role, but for the sake of understanding ofthe mathemati
s it is sometimes helpful to keep the �pi
ture� in mind. Notationand nomen
lature will be in�uen
ed by possible appli
ations as well.Note that it is possible to 
onsider higher information models and lower informa-tion ones. Some keep tra
k of all of the history, others only of the re
ent state. Wewill say that the lower information model is a fun
tional of the other one. Indeed wewill in a moment introdu
e a rather general model and 
onsider various fun
tionalsof it.1.2 The Catalyti
 Bran
hing Model with a modi�ed
atalystIn this diploma thesis the fo
us is made on a spe
ial kind of a population evolutionmodel. It will be a general model and di�ers from the aforementioned in severalpoints, e.g. in the fa
t that it 
onsiders two populations instead of one. We will 
allthem the 
atalyst η and the rea
tant ξ and both are sto
hasti
 pro
esses evolving intime starting with one individual. Together they form the population model (η, ξ).To get an idea of the pro
ess a short des
ription is given before an exa
t de�nition:(i) The 
atalyst η evolves like an autonomous binary bran
hing pro
ess. Thatmeans that ea
h individual lives until the �rst jump of a time 
hanged Poisson-pro
ess. At this instant of time it dies and after death has zero or two o�spring.The sons evolve in the same manner.(ii) For a given 
atalyst realization the rea
tant ξ evolves like a binary bran
hingpro
ess:
• Ea
h individual lives until the �rst jump of a time 
hanged Poisson-pro
ess. At this instant of time it dies and after death has zero or twoo�spring. The sons evolve in the same manner.



1.2 The Catalyti
 Bran
hing Model with a modi�ed 
atalyst 4
• This time 
hange depends on the number of 
atalyst individuals presentat the 
urrent time. The more 
atalyst individuals are present, the fasterthe rea
tant individuals bran
h. That is 
learly why the populations are
alled 
atalyst and rea
tant.This des
ription 
ontains a lot of information and needs some 
learer probabilisti
foundation. Hen
e we will give a more formal de�nition of a probability spa
e onwhi
h the previous des
ription 
an be realized. The ingredients, �alarm 
lo
ks and
oins�, are already visible and they will be
ome 
learer in the exa
t de�nitions ofthe 
atalyst and rea
tant to 
ome. For alarms 
lo
ks we 
ould use the a 
olle
tion ofexponential waiting times but we will use jump times of Poisson pro
esses instead,whi
h makes the formulation easier.The names starting with 
 or r are related to 
atalyst and rea
tant, respe
tively.De�nition 1.2.1 (The basi
 probability spa
e):Let (Ω,F ,P) = (Ωc × Ωr,Fc ⊗Fr,Pc ⊗Pr) be a probability spa
e, whi
h 
ontains

• a sequen
e N c
1 , N

c
2 , . . . of Poisson-1-pro
esses,

• a sequen
e N r
1 , N

r
2 , . . . of Poisson-1-pro
esses,

• a sequen
e C1, C2, . . . of 0, 2 
oin-tossing random variables, i.e.P(C1 = 0) = P(C1 = 2) = 1/2 and
• a sequen
e R1, R2, . . . of 0, 2 
oin-tossing random variables, i.e.P(R1 = 0) = P(R1 = 2) = 1/2,all of whi
h are independent.When looking at the formal de�nitions to 
ome it 
an be helpful to look at Figure1.1. There both populations are given in a planar embedding.We now des
ribe the 
atalyst (ηt)t≥0, where the total number of 
atalyst indi-viduals at a time t will be 
alled ηtot

t . Let a fun
tion g : [0,∞) → [0,∞) be given,whi
h shall be �xed throughout the paper. The 
atalyst starts with one individual(ηtot
0 = 1) and evolves as a Markovian pro
ess. This �rst individual fa
es a bran
h-ing event at the �rst jump of N c

1(
∫ ·
0 g(η

tot
s )/ηtot

s ds) = N c
1(
∫ ·
0 g(1)ds), say after time

t1. At this bran
hing event t1 this �rst individual has C1 sons, i.e. either 0 or 2sons. If C1 = 0, the pro
ess is over sin
e no more individuals are alive. In the 
ase
C1 = 2 the �rst son is labelled son00, the se
ond one son01. Then son00 bran
hesat the �rst jump of the pro
ess N c

2(

∫ ·

t1

g(ηtot
s )/ηtot

s ds), (1.1)with o�spring C2. The same for son01. Forth
oming sons are given labels by adding
0 or 1 to the label of their father, so the �rst son is 
alled son(label of father)0, these
ond one son(label of father)1. The label does not play any role for their behavior.To be a bit more formal de�ne the following fun
tion

π :

{

⋃

n∈N{0, 1}n → N

(ω1, . . . , ωn) 7→ 2n + ω12
n−1 + · · · + ωn2

0
. (1.2)When, for the sake of 
learness, 
atalyst individuals are 
alled 
sons = 
atalystsons, then the de�nition of the general 
atalyst pro
ess η is given by:



1.2 The Catalyti
 Bran
hing Model with a modi�ed 
atalyst 5Figure 1.1: A planar embedding of the pro
ess
×

×
×
0
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000 
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01 ×
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×
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tantr00r000 r001 r01r010 r011
De�nition 1.2.2 (The general 
atalyst pro
ess):The 
atalyst (ηt)t≥0 is a 
ontinuous time pro
ess starting with one individual, 
alled
son0, where the su�x 0 is 
alled the label. Ea
h individual alive 
son(label), bornat time tπ(label), lives until the �rst jump time of the pro
ess

N c
π(label)(

∫ ·

tπ(label)

g(ηtot
s )/ηtot

s ds). (1.3)Then this individual bran
hes, i.e. it has Cπ(label) 
sons, either 0 or 2. In the�rst 
ase individual son(label) is 
alled dead. Otherwise its two 
sons are 
alled
son(label)0 and 
son(label)1.Similarly the rea
tant is given by the following de�nition. Here the individualsare 
alled rsons, b is a bran
hing parameter and ea
h of them bran
hes faster ifthere are more 
atalyst individuals �around�:De�nition 1.2.3 (The general rea
tant pro
ess):For a given 
atalyst realization (ηt)t≥0, the rea
tant (ξt)t≥0 is a 
ontinuous timepro
ess starting with one individual, 
alled rson0, where the su�x 0 is 
alled thelabel. Ea
h individual alive rson(label), born at time t′π(label), lives until the �rstjump time of the pro
ess
N r
π(label)(

∫ ·

t′
π(label)

bηtot
s ds). (1.4)Then this individual bran
hes, i.e. it has Rπ(label) rsons, either 0 or 2. In the�rst 
ase individual rson(label) is 
alled dead. Otherwise its two sons are 
alledrson(label)0 and rson(label)1.Be aware that ηt represents the whole 
atalyst evolution up to time t. By de�nitionthe pro
ess η is Markovian, sin
e any information needed for the further evolutionafter time t is available in ηt, namely the number of individuals at time t: ηtot

t . Thesame is true for the rea
tant ξ, if a 
atalyst realization is given, and for the pair
(η, ξ) as well.With the means of studying di�usion limits of the 
atalyst and the rea
tant,res
aled versions of the previous pro
esses are de�ned. The number of starting in-dividuals of 
atalyst and rea
tant is in
reased to n, where n is a natural number.



1.2 The Catalyti
 Bran
hing Model with a modi�ed 
atalyst 6Ea
h individual is given mass 1/n, so that the initial total mass is n× 1/n = 1 for
atalyst and rea
tant. For the 
atalyst, time is sped up by a fa
tor n as well. Thatmeans the Poisson pro
ess runs n times the original speed.To de�ne the res
aled pro
ess more expli
itly let the following modi�ed labellingfun
tion be given:
πn :

{

⋃

k∈N{1, 2, . . . , n} × {0, 1}k → {1, 2, . . . , n} × N

(ω0, ω1, . . . , ωk) 7→ (ω0, 2
k + ω12

k−1 + · · · + ωk2
0)
. (1.5)With this labelling at hand it is 
lear how the formal ingredients of the res
aledpro
ess need to look like.De�nition 1.2.4 (The res
aled 
atalyst pro
ess):The res
aled 
atalyst ηn = (ηnt )t≥0 is a 
ontinuous time pro
ess on the proba-bility spa
e (Ωn,Fn,Pn), whi
h 
onsists of n independent 
opies of the probabilityspa
e de�ned in De�nition 1.2.1. It starts with n individuals 
alled 
son1, 
son2,. . . 
sonn, where the su�x is 
alled the label. Ea
h individual alive 
son(label), bornat time tπn(label), has mass 1/n and lives until the �rst jump time of the pro
ess

N c
πn(label)(n

∫ ·

tπ(label)

g(ηtot,n
s )/ηtot,n

s ds). (1.6)Then this individual bran
hes, i.e. it has Cπn(label) 
sons, either 0 or 2. In the�rst 
ase individual son(label) is 
alled dead. Otherwise its two 
sons are 
alled
son(label)0 and 
son(label)1.For the rea
tant one needs to remember that the bran
hing behavior dependson the number of 
atalyst individuals alive at a 
ertain time nηtot,n
t . Thereforethe res
aled rea
tant is given by the following de�nition, where time needs notto be res
aled sin
e the speeding up will be automati
 by the number of 
atalystindividuals alive:De�nition 1.2.5 (The res
aled rea
tant pro
ess):The res
aled rea
tant ξn = (ξnt )t≥0 is a 
ontinuous time pro
ess on the proba-bility spa
e (Ωn,Fn,Pn), whi
h 
onsists of n independent 
opies of the probabilityspa
e de�ned in De�nition 1.2.1. It starts with n individuals, 
alled rson0, rson1,. . . rsonn, where the su�x is 
alled the label. Ea
h individual alive rson(label), bornat time t′πn(label), lives until the �rst jump time of the pro
ess

N r
π(label)(n

∫ ·

t′
πn(label)

bηtot,n
s ds). (1.7)Then this individual bran
hes, i.e. it has Rπn(label) rsons, either 0 or 2. In the�rst 
ase individual rson(label) is 
alled dead. Otherwise its two sons are 
alledrson(label)0 and rson(label)1.Remark 1.2.6:When speaking about res
aled pro
ess, then the probability spa
e (Ω,F ,P) does notsu�
e. In fa
t we introdu
ed (Ωn,Fn,Pn), 
onsisting of n independent 
opies of



1.3 Fun
tionals of Bran
hing Pro
esses 7the original probability spa
e. In order to avoid 
onfusion, this overload of notationin e.g. P, will be suppressed in most parts of the paper.For the understanding it is often helpful to have the planar embedding as in Figure1.1 in mind. 3The de�nitions so far have given a des
ription of the pro
ess, but yet there is noembedding into a good state spa
e. We do this in the next se
tion and want topresent some fun
tionals of the pro
ess.1.3 Fun
tionals of Bran
hing Pro
essesBy the de�nitions of the general pro
ess (η, ξ) a full genealogy of 
atalyst andrea
tant is given. But instead of looking at the pro
ess (η, ξ) in general 
ertainfun
tionals of it will be 
onsidered, whi
h live in some reasonable state spa
es. Fourdi�erent fun
tionals are used and 
onsidered following [GPW06℄, when looking atthe non-res
aled pro
esses:The total mass, Chapter 2: It is 
lose to the 
lassi
al Galton-Watson idea, sin
ethe pro
ess at time t is the number of individuals of the respe
tive types attime t. The state spa
e is N2. The pro
ess is indi
ated with a supers
ript tot:
ηtot and ξtot. (1.8)The random tree, Chapter 4: It en
odes the genealogy evolution up to time t intoa metri
 spa
e, 
alled an R-tree, whi
h evolves in time. It is in fa
t like agenealogi
al tree, where the life times are made distan
es. State spa
e is theset of R-trees. The notation will be
ηfor and ξfor. (1.9)The 
ontour pro
ess, Chapter 5: It is possible to 
ode the full genealogi
al treeup to a �xed time t by a 
ontinuous real-valued fun
tion, when a linear orderis put on the individuals, i.e. it is possible to distinguish the �rst and these
ond son. State spa
e is C[0,∞)[0,∞). This pro
ess will be
B and C. (1.10)The point pro
ess, Chapter 6: For a given time t > 0 
onsider the extant individ-uals at time t. Any pair of them has a most re
ent 
ommon an
estor (MRCA).Colle
t labels and death times of the MRCAs and make points in the produ
tspa
e set of labels ×[0, t). These random points 
onstitute the point pro
essdes
ription. State spa
e is the set of integer-valued measures on labels× [0, t).It will be denoted by
Πt and Ξt. (1.11)These fun
tionals were put in an as
ending order in 
on
ern of information. Infa
t the last two des
riptions 
ontain the same information as the general pro
ess

(η, ξ). Hen
e one 
ould also start from the des
ription given by the 
ontour pro
essor the point pro
ess. Starting from there one 
ould also �nd the way to the other
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riptions and we would end up with the same pro
ess. So the pro
esses (η, ξ),
(B,C), (Π,Ξ) are just di�erent sides of the same 
oin. As intuition and the relation-ship to Galton and Watson's ideas would have been lost, this path of representationwas not sele
ted. The �rst two fun
tionals 
ontain less information than the generalpro
ess (η, ξ).1.4 Main goals, methods and tools, quen
hed vs.annealed and 
ontext1.4.1 Main goalsFirst of all we are interested in obtaining asymptoti
 results for the random ge-nealogy of the rea
tant, espe
ially the random tree that was the 2nd fun
tionalmentioned before. For this purpose we require the help of other fun
tionals givenin the previous se
tion. For some questions it is helpful to use the 
ontour pro
ess,for others the point pro
ess has advantages for the 
al
ulations.The asymptoti
 results are 
omparable to di�usion limit results. For examplethe fun
tional limit theorem for Brownian motion, where a res
aling of spa
e andtime gives a limit obje
t (for Brownian motion: spa
e-time res
aled random walks
onverge to Brownian motion). For ea
h of the fun
tionals a s
aling as given inDe�nitions 1.2.4 and 1.2.5 is done. The res
aled pro
esses will be given a supers
ript�n�.We will be able to show that there exist di�usion limits

• for the total mass pro
ess (ηtot, ξtot),
• for the rea
tant tree-valued forest ξfor,
• for a trun
ated rea
tant 
ontour pro
ess Cδ and
• for the rea
tant point pro
ess Ξt.One might wonder why there are only results for the rea
tant pro
esses and notfor the 
atalyti
 ones. So far there are no results for the 
atalyst in the literature,sin
e the proofs for the rea
tant rely heavily on the independen
e of the individualsand this is only given for the rea
tant.During all of this work we will link the di�erent fun
tionals, e.g. we will 
omparerea
tant limit 
ontour and rea
tant limit point pro
ess.Finally we want to establish some 
omparison results between rea
tant trees andordinary Galton-Watson trees in the di�usion limit.1.4.2 Organization of the diploma thesis, methods and toolsThe diploma thesis is separated into two parts: a �rst part where the results arepresented and a se
ond part where the proofs are given. Ea
h 
hapter 
ontainingthe results is related to a 
hapter 
ontaining the 
orresponding proofs. In order toobtain these results several te
hniques are used throughout this diploma thesis.The ideas for Chapters 2 and 7, des
ribing the total mass pro
ess, 
onsist of stan-dard probability theory, in
luding Markov pro
esses and martingale problems. One
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an 
onsult [RW79℄, [KS00℄ and [EK86℄.The 
hapter about the tree-valued pro
ess (Chapters 4 and 8) relies on the de�-nition of real trees, where a superb introdu
tion is given in [EPW06℄ and [EW06℄.The te
hniques used in these 
hapters make use of the Kingman 
oales
ent [Kin82℄and its 
onne
tion with trees, e.g. in [DK96℄.The 
ontour-pro
ess 
hapter (Chapters 5 and 8) is strongly related to the tree-
hapter and hen
e its proofs are joined in one 
hapter. For some introdu
tion seee.g. [NP89℄ or [LG96℄ and some proofs require martingale problem methods, e.g.Sto
hasti
 averaging as in [Kur92℄.The point pro
ess 
hapter (Chapters 6 and 9) uses some elementary understandingof Poisson point pro
esses as given in [RY91, Chapter XII.1℄. The te
hniques forthe proofs are Poisson approximation, lo
al times and ex
ursion theory as given in[RW79, Chapter VI.57℄.1.5 Catalyti
 bran
hingIn this 
losing se
tion of the introdu
tion we speak about an important 
hara
teristi
of the 
atalyti
 bran
hing s
heme and the 
ontext into whi
h it 
an be put.1.5.1 Quen
hed vs. annealedAn important feature for the analysis will be the following observation. There aretwo di�erent possibilities to understand the 
atalyti
 bran
hing pro
esses and toestablish the limit results for the rea
tant fun
tionals mentioned in the previoussubse
tion:Sin
e the 
atalyst evolves autonomously one 
ould �rst let the 
atalyst run. Thenthe 
atalyst gets frozen = quen
hed and for ea
h 
atalyst sample path a rea
tantevolution is started. It is like 
onditioning on the 
atalyst total mass pro
ess, wheresome justi�
ations will be given later. This 
onditioning will be 
alled quen
hedanalysis.On the other hand we 
an let the pro
ess (ηtot, ξ) run aside. This is possible sin
ethe evolution of ξ at time t depends only on the 
atalyst total mass at time t: ηtot
t .This is 
alled annealed analysis.1.5.2 ContextThe formulation itself 
an be brought into a wider 
ontext of pro
esses with two(or more) populations. The 
atalyst-rea
tant s
heme is somewhere in the middleof the independent bran
hing s
heme and the mutually 
atalyti
 one. In the nexttable the di�erent names and referen
es are presented, where A and B are sto
hasti
pro
esses and A→ B means �A in�uen
es B� and so on.
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hing 10name relation i.b.r. A i.b.r. B Papersindependent A B ∆t ∆t any bran
hing
atalyti
 A→ B ∆t At∆t [Pen03℄, [GPW06℄
atalyti
, modi�ed 
atalyst A→ B g(At)
At

∆t At∆t this papermutually 
atalyti
 A↔ B Bt∆t At∆t [CDG04℄Here �i.b.r.� denotes the bran
hing rate per individual. In the top and bottom 
asesalso a modi�ed version might be of interest.
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2 The total mass pro
ess (ηtot, ξtot)This se
tion is devoted to 
onsidering the total mass pro
ess of the 
atalyti
 bran
h-ing pro
ess de�ned in the introdu
tion. Pro
eeding from that de�nition the �rstse
tion presents a de�nition of the total mass pro
ess. That means that we aregoing to look at the pro
ess 
ounting the number of now-living individuals.Within the �rst se
tion we will set 
onditions on g, the bran
hing modi�
ationof the 
atalyst, whi
h will be valid throughout the diploma thesis. In the se
ondse
tion the 
orresponding di�usion total mass pro
ess will be presented. As a �nalresult we will establish a di�usion limit theorem between the dis
rete pro
ess andthe di�usion. The whole 
hapter is independent of the introdu
tion in one sensethat we 
ould also start with De�nition 2.1.1.All proofs are given in 
hapter 7.2.1 The 
atalyst and the rea
tant total mass pro
essWe re
all the de�nition of (η, ξ) from Se
tion 1.2 in the introdu
tion. Ea
h 
atalystindividual has atta
hed an alarm 
lo
k ringing after an exponential time and thenit bran
hes. At time t there are ηtot
t 
atalyst individuals alive. The �rst bran
hingevent of one of them happens after the minimum of these ηtot

t exponential times, i.e.for the 
atalyst after the �rst jump of N c(
∫ ·
t g(η

tot
s ) ds). Then one individual dies(the one where the 
lo
k rings) and gets repla
ed by 0 or 2, i.e. total mass in
reasesby 1 or de
reases by 1. For the rea
tant similar ideas hold true and thus we get thefollowing des
ription:

• The total mass fun
tional (ηtot, ξtot) of the general pro
ess, is an N2-valuedMarkov-pro
ess. The �rst 
oordinate ηtot is the 
atalyst total mass, the se
ond
oordinate ξtot is the rea
tant total mass. Both pro
esses will have the stru
-ture of a 
riti
al binary bran
hing pro
ess, i.e. in a bran
hing event 
atalystmass in
reases by 1 or de
reases by 1.
• The 
atalyst ηtot emerges autonomously like a 
lassi
al 
ontinuous-time Galton-Watson pro
ess, but with a reprodu
tion fun
tion g : [0,∞) → [0,∞), whi
hshall only depend on the individuals at time t, but not on time expli
itly.That means that if there are n individuals alive then the reprodu
tion rate isnot like in a normal Galton-Watson-pro
ess n, but g(n), i.e. the probabilityof a bran
hing event o

urring between time t and t+ s is

∫ t+s

t
g(ηtot(u))e−g(η

tot(u))u dufor small time steps s.
• The rea
tant ξ evolves depending on the 
atalyst. The probability of a bran
h-ing event taking pla
e in the rea
tant population between time t and t + s
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ess 13is
∫ t+s

t
bηtot(u)ξtot(u)e−bη

tot(u)ξtot(u)u du.Hen
e we write down the following de�nition of the bran
hing pro
ess.De�nition 2.1.1 (The dis
rete total mass pro
ess): (i) The 
atalyst total masspro
ess ηtot = (ηtot
t )t≥0 is a 
riti
al binary modi�ed Galton-Watson-bran
hingpro
ess started in 1 with bran
hing modi�
ation g ∈ C([0,∞), [0,∞)):

ηtot
t ≡ (ηtot

t ; 1) 7→
{

ηtot
t + 1

ηtot
t − 1

ea
h at rate 1
2g(η

tot
t ). (2.1)(ii) For a given 
atalyst ηtot the rea
tant total mass pro
ess ξtot = (ξtott )t≥0 is a
riti
al binary time-inhomogeneous bran
hing pro
ess started in 1 with bran
h-ing rate bηtot

t :
ξtott ≡ (ξtott ; 1) 7→

{

ξtott + 1

ξtott − 1
ea
h at rate 1

2bη
tot
t ξtott . (2.2)Remark 2.1.2: • Even if throughout the paper we will speak of bran
hing pro-
esses, when 
onsidering the 
atalyst, an important feature whi
h �
hara
ter-izes� bran
hing behavior is lost by introdu
ing the modi�
ation g: independen
eof the individuals.The evolution of one 
atalyst individual relies on the number of other individ-uals alive by the fun
tion g. Only if g is linear we have independen
e of the
atalyst individuals. The rea
tant, however, evolves as a bran
hing pro
ess.

• The rea
tant bran
hes in an �environment� given by the 
atalyst. The questionarises arises whether this bran
hing is somehow 
onne
ted to what is under-stood as �bran
hing in random environments�, i.e. the bran
hing events ariseas in 
ontinuous-time Galton-Watson bran
hing, but the o�spring distributionsare random. We do not dis
uss that question deeper, but refer the reader to[AK72℄ for elementary results about that question.
• The de�nition des
ribes behavior in small time steps. Indeed this will allow usto denote a pre-generator U1. This pre-generator de�nes a uniquely determinedpro
ess (ηtot, ξtot), for a broad range of g. Hen
e the de�nition given is detailedenough. This is made more pre
ise in Lemma 2.1.6.

3In the de�nition of the 
atalyst the fun
tion g emerges. In the forth
oming wewill spe
ify this fun
tion but let us �rst mention that we will already 
onsider gde�ned as a fun
tion for all x ≥ 0. This might seem 
umbersome sin
e so far we areonly dealing with an integer-valued pro
ess, but later we will s
ale the masses of theindividuals from 1 to 1
n . Then the state spa
e be
omes ( 1

nN)2 and then it makessense to already have a fun
tion de�ned for all non-negative real numbers ratherthan non-negative integers. Additionally we require some more �lo
al� properties,whi
h are useful in the di�usion limit approximation.
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tant total mass pro
ess 14Condition 2.1.3:Let g : [0,∞) → [0,∞) be a fun
tion, whi
h satis�es the following 
riteria:(G1) g lo
ally Lips
hitz-
ontinuous on [0,∞),(G2) g(x) = 0 ⇔ x = 0 and ∃ g0 > 0 ∃x0 s.t. g(x) ≥ g0 ∀x ≥ x0,(G3) ∃C > 0 and α ∈ [0, 2) s.t. g(x) ≤ C(1 + xα) and(G4) ∃ 0 ≤ β < 1, c′ > 0 s.t. limx→0
x1+β

g(x) = c′ .For some justi�
ation of these 
onditions, we refer the reader to Se
tion 7.1.1.Only let us mention that G2 and G3 let the 
atalyst total mass live in a worldbetween Brownian motion with absorbing boundary at 0 and Anderson di�usion.We will sometimes speak of the usual 
onditions on g.As already mentioned before we are interested in the behavior of res
aled pro-
esses. Here we give the de�nition of the res
aled total mass pro
esses. We willdo time and spa
e res
aling as when 
onsidering random walk limits for Brownianmotion. Here time is related to time and spa
e is related to individual masses.
• For the spa
e res
aling we will 
onsider the mass of one individual asm = 1/n,but starting at time t = 0 with total mass 1, ea
h for 
atalyst and rea
tant.Therefore n starting individuals are present at time t = 0. So if we 
all ηtot,nthe res
aled 
atalyst total mass and ξtot,n the res
aled rea
tant total mass, westart with:

ηtot,n
0 = 1, ξtot,n0 = 1. (2.3)

• The time res
aling is a bit di�erent. Bear in mind that the number of 
ata-lyst individuals is given by nηtot,n, and the number of rea
tant individuals is
nξtot,n.� The time res
aling for the 
atalyst is given by speeding up by fa
tor n.Note that there are nηtot,n 
atalyst individuals. All of them have assem-bled a Poisson-pro
esses running with speed ng(ηtot,n)/ηtot,n. Hen
e the�rst jump, the �rst bran
hing, arises after an exponential n2g(ηtot,n)-time.� There is no time res
aling for the rea
tant. There are nξtot,n rea
tantindividuals and ea
h of them has a Poisson-pro
ess with nbηtot,n-speedassembled. Hen
e the �rst jump, i.e. the �rst bran
hing emerges afteran exponential n2bηtot,nξtot,n-time.The on
oming de�nitions 
an be made on the probability spa
e as given in De�-nitions 1.2.4 and 1.2.5.De�nition 2.1.4 (Res
aled total mass pro
ess): (i) The res
aled 
atalyst totalmass pro
ess ηtot,n = (ηtot,n

t )t≥0 is a 
riti
al binary modi�ed Galton-Watson-bran
hing pro
ess started in 1 with bran
hing modi�
ation g ∈ C([0,∞), [0,∞)):
ηtot,n
t ≡ (ηtot,n

t ; 1
n) 7→

{

ηtot,n
t + 1

n

ηtot,n
t − 1

n

each at rate n2

2 g(η
tot,n
t ). (2.4)
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ess 15(ii) For a given 
atalyst ηtot,n the res
aled rea
tant total mass pro
ess ξtot,n =
(ξtot,nt )t≥0 is a 
riti
al binary time-inhomogeneous bran
hing pro
ess startedin 1 with individual bran
hing rate nηtot,n

t :
ξtot,nt ≡ (ξtot,nt ; 1

n) 7→
{

ξtot,nt + 1
n

ξtot,nt − 1
n

each at rate n2

2 bη
tot,n
t ξtot,nt . (2.5)Remark 2.1.5:It is worth having a look at the s
aling idea of the 
atalyst with bran
hing modi�
ation

g. Consider sample paths for di�erent n, so a di�erent individual mass. By thede�nition just made we think of the bran
hing behavior not 
hanging for 
onstanttotal mass of the pro
ess. That means if we 
hange n, then the bran
hing behavior isonly dependent on the total mass of the 
atalyst ηtot,n, sin
e g is dire
tly a fun
tionof the 
atalyst total mass. Hen
e the 
atalyst individuals evolve like in a mediumgiven by the total mass of the 
atalyst.Another possibility of s
aling would be to think of the bran
hing behavior dependingon the number of 
atalyst individuals alive. That means for mass m = 1
n to thinkof ng(nηtot,n) as the 
atalyst's bran
hing rate. This might mat
h more the idea ofthe rea
tant's behavior, whose bran
hing events are determined by the number of
atalyst and rea
tant individuals alive. But 
learly for 
onvergen
e (given the timeres
aling) it is 
ru
ial that either the res
aling depends on the ∞-
lose behavior of

g or we restri
t ourselves to g(x) = O(x). Hen
e one either needs to adapt the timeres
aling or restri
t oneself in the 
hoi
e of fun
tions g. 3After the de�nitions it is time to speak about existen
e and uniqueness of thetotal mass 
atalyti
 bran
hing pro
ess.Lemma 2.1.6: There is a unique pro
ess (ηtot,n, ξtot,n) (up to indistinguishability)with sample paths in the Skorokhod spa
e DR2
+
[0,∞) satisfying the de�nitions (2.4)and (2.5). Moreover (ηtot,n, ξtot,n) is a martingale and a Feller-pro
ess.This existen
e and uniqueness theorem also holds for the pro
ess de�ned in De�-nition 2.1.1, as then n = 1. The proof is done by denoting a generator 
orrespondingto the jump pro
ess behavior given in the de�nitions. This generator 
an then beshown to 
reate a strongly 
ontinuous 
ontra
tion semigroup S(n)

t . The proof 
anbe found in Lemma 7.2.1 with the help of Se
tion 7.1.2.With the lemma at hand we will hen
eforth only talk about the modi�
ation with
àdlàg paths. As the pro
ess is a Feller-pro
ess, there exists a Feller-semigroup,whi
h we will denote by
S

(n)
t f(x, y) := E[f(ηtot,n

t , ξtot,nt )|ηtot,n
0 = x, ξtot,n0 = y], (2.6)when f ∈ C0(R

2
+,R) and x, y ∈ R2

+.From the de�nition of the pro
esses it is obvious that if the 
atalyst or the re-a
tant rea
h 0, they never leave again. As we 
onsider a bran
hing pro
ess, thedis
rete (time) theory says that extin
tion depends on the expe
tation of the o�-spring distribution. For the 
atalyst we have the following lemma:
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ess (X,Y ) 16Lemma 2.1.7: Every (dis
rete) 
atalyst pro
ess, de�ned as in (2.4) with g satis-fying the usual 
onditions dies out almost sure, i.e.
T n,0 := inf{t ≥ 0 : ηtot,n

t = 0} <∞ a.s. (2.7)and 0 is an exit boundary.The proof of this lemma is given in Lemma 7.3.1.We fa
e a spe
ial problem, when the 
atalyst rea
hes zero: Not only the 
atalystbran
hing rate is zero, but the rea
tant bran
hing rate is zero as well. So there willnot be any more bran
hing events. From that point on, the pro
ess is frozen, i.e.the 
atalyst stays in zero and the rea
tant will remain 
onstant. This point will beof great importan
e throughout the diploma thesis.Remark 2.1.8:With the previous lemma at hand we already know that almost surely only a �nitenumber of bran
hing events take pla
e for 
atalyst and rea
tant up to time T n,0,sin
e T n,0 <∞ almost sure. 32.2 The di�usion pro
ess (X, Y )Like Brownian motion 
an be introdu
ed as a di�usion limit of simple random walkswith appropriate time- and spa
e-s
aling, the total-mass-pro
ess (ηtot, ξtot) has adi�usive limit pro
ess. By a look at De�nition 2.1.4 we get an idea of what thegenerator for the di�usion 
ould look like. We will de�ne the di�usion pro
ess nowby means of a system of SDEs. Later we will also dis
uss the pro
ess as a solutionto a martingale problem.Let a probability spa
e (Ω̂, F̂ , P̂) with two independent Brownian motions begiven.De�nition 2.2.1 (The di�usion total mass pro
ess):A di�usion total-mass pro
ess (X,Y ) is given as a solution of the following systemof SDEs
dXt =

√

g(Xt) dW
1
t , (2.8)

dYt =
√

bXtYt dW
2
t , (2.9)where W 1 and W 2 are two independent Brownian motions.The �rst question is, if there exist solutions for this SDE-system at all. Herethe 
atalyst-rea
tant-type of the problem helps obtaining a positive answer. Wewill show that there exists a strong unique solution X for equation (2.8), sin
e g islo
ally Lips
hitz-
ontinuous. That means for any Brownian motion path W 1(ω) ona probability spa
e (Ω,A,P) there exists a path X(ω) whi
h solves the 
atalyst'sSDE for this spe
i�
 ω ∈ Ω. Then we 
an solve (2.9) for this single path X(ω) andwe get a strong unique solution for the se
ond equation.This means that given two independent Brownian motions W 1 and W 2 thereexists a strong unique solution (X,Y ) for the SDE system. So the De�nition 2.2.1gives a well-de�ned total-mass-di�usion pro
ess (X,Y ) for two independent Brow-nian motions on a given probability spa
e:
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ess (X,Y ) 17Lemma 2.2.2 (Existen
e, uniqueness and Feller-property of the di�usion totalmass): If g satis�es Condition 2.1.3, the total-mass-di�usion-pro
ess (X,Y ) is a
ontinuous unique strong solution of (2.8) and (2.9). Moreover (X,Y ) is a Fellerpro
ess and we denote the Feller-semigroup as (St)t≥0:For x, y ∈ R+, f ∈ C0(R
2
+,R) : Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y]. (2.10)The proof of this lemma is split in several parts and 
an be found in Chapter 7 intwo di�erent se
tions. The �rst (Se
tion 7.4) is showing existen
e and uniquenessa

ording to the program presented before stating the lemma. The se
ond se
tion(Se
tion 7.6) deals with the Feller-property. It is proven in several steps via 
ouplingarguments using the 
atalyti
 setting of the system.As we now know that there exists a unique strong solution, we 
an also speak ofthe total-mass-di�usion pro
ess. The pro
ess (X,Y ) 
ould have been introdu
ed aswell as a solution of the martingale problem (U, δ1 × δ1), where U is given by

Uf(x, y) =
1

2
g(x)

∂2f

∂x2
(x, y) +

b

2
xy
∂2f

∂y2
(x, y), (2.11)for f ∈ C2

0(R2
+,R).Proposition 2.2.3: The total-mass-di�usion pro
ess (X,Y ) is given as the uniquesolution of the martingale problem (U, δx × δy), i.e. (X,Y ) is a pro
ess, s.t.

f(Xt, Yt) −
∫ t

0
Uf(Xs, Ys)ds, (2.12)is a P̂ -martingale for any given f ∈ C2

0 (R2
+,R), where P̂ is the law related to Xand Y on CR2

+
[0,∞).There is a result, similar to the one given for the dis
rete setting, des
ribing theextin
tion behavior of the 
atalyst:Lemma 2.2.4 (Extin
tion of the 
atalyst total mass): Every 
atalyst pro
ess Xwith g satisfying the usual 
onditions dies out almost sure in �nite time, i.e.

τ0 := inf{t ≥ 0 : Xt = 0} <∞ a.s. , (2.13)and 0 is an exit boundary for X.After this extin
tion time, the rea
tant will remain 
onstant, whi
h is obvious bythe Strong Markov property of the pro
ess. The proof of this lemma relies mainlyon looking at the speed measure of the 
atalyst.As in the lemma just before we will sometimes only 
onsider one 
oordinate ofthe pair (X,Y ). In this 
ase we will not always be totally stringent in des
riptionand will just say �the rea
tant pro
ess� Y , but we will understand �rea
tant pro
ess
Y for a given 
atalyst X�.
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ess to (X,Y ) 182.3 Convergen
e of the total mass pro
ess to (X, Y )The main result of this 
hapter states the 
onvergen
e of the dis
rete total masspro
ess (ηtot,n, ξtot,n) to the 
ontinuous total mass pro
ess (X,Y ). It is the �rststep towards obtaining �asymptoti
 results� for the 
atalyti
 bran
hing pro
ess.As both pro
esses have 
àdlàg paths, they both indu
e a measure on the set of
àdlàg paths DR2
+
[0,∞). This spa
e equipped with the Skorokhod-metri
 dSk isa 
omplete and separable metri
 spa
e. Then the set of probability measures on

(DR2
+
[0,∞), dSk) 
an be equipped with the Prohorov metri
 (for more, see [EK86,Chapter 3℄). The Prohorov metri
 generates a topology on the set of probabilitymeasures on DR2

+
[0,∞), for whi
h the following theorem needs to be understood.Theorem 2.3.1 (Weak 
onvergen
e of the total masses):When g satis�es Condition 2.1.3, then

L[(ηtot,n, ξtot,n)] =⇒ L[(X,Y )] as n→ ∞, (2.14)where 
onvergen
e is weak 
onvergen
e in the path spa
e DR2
+
[0,∞).The proof is done by applying some martingale problem results from the book ofEthier and Kurtz [EK86℄. As an easy 
onsequen
e we get the following 
orollary:Corollary 2.3.2 (Convergen
e of 
atalyst killing times): The 
atalyst killing times
onverge weakly as random variables on the state spa
e R+:

L[T n,0] =⇒ L[τ0] as n→ ∞, (2.15)Proof: This is true by 
onvergen
e of the �nite dimensional distributions of ηtot,nto X: Let t > 0:P(T n,0 ≤ t) = P(ηtot,n
t = 0) → P̂(Xt = 0) = P̂(τ0 ≤ t) (2.16)As always when having weak 
onvergen
e we 
an 
reate a probability spa
e wherealmost sure 
onvergen
e holds. Formally this 
an be done by Theorem 3.1.8 from[EK86℄:There is a realization of ηtot,n and X on a probability spa
e (Ω̃, F̃ , P̃) su
h thatfor a given T > 0:

lim
n→∞

sup
t≤T

|ηtot,n
t −Xt| = 0, (2.17)Note that the Skorokhod metri
 was not used here, but the metri
 indu
ed bythe ∞-norm on the 
ompa
t set [0, T ]. This is possible sin
e the 
atalyst X is
ontinuous.By these 
onsiderations it is possible to atta
h a (general) rea
tant pro
ess to the
atalyst. That means for ea
h ω ∈ Ω̃ we �nd rea
tants ξn(ω) s.t. ξn(ω) is a rea
tantpro
ess for a 
atalyst with total mass pro
ess ηtot,n(ω). That is the basis for thequen
hed analysis and we give a de�nition of this probability spa
e, whi
h is givena produ
t stru
ture.



2.3 Convergen
e of the total mass pro
ess to (X,Y ) 19De�nition 2.3.3 (The quen
hed rea
tant pro
ess):For ea
h n ∈ N let the probability spa
e (Ω̃ × Ωn
r , F̃ ⊗ Fn

r , P̃ ⊗ Pnr ) be given. Itsupports 
atalyst total mass pro
esses ηtot,k for ea
h k ∈ N, a limit 
atalyst totalmass X and the general rea
tant pro
ess ξn, whi
h is de�ned as in De�nition 1.2.5.Additionally it holds
lim
k→∞

sup
t≤T

|ηtot,k
t −Xt| = 0. (2.18)



3 The real treeTo des
ribe the genealogy of bran
hing pro
esses some tree-like-stru
ture is needed.With this aim in mind in a �rst se
tion motivation and de�nition of real treesare given. Next some simple properties and operators on real trees are de�ned.Additional 
on
epts su
h as linearly ordered trees are treated in a third se
tion.3.1 De�nition of the real tree3.1.1 The graph-theoreti
al tree and de�nition of the real treeThis se
tion is devoted to show that the 
on
ept of real trees (R-trees) is a goodway to des
ribe a genealogy. Think of a genealogi
al tree of an ordinary binary
ontinuous-time Galton-Watson pro
ess starting with one individual. It 
onsistsof a set of verti
es V representing the individuals and edges E representing therelations between fathers and sons. One vertex root ∈ E is distinguished as the�rst individual. Additionally we know the lifetime of ea
h individual, so somehowa fun
tion L : V → [0,∞). This is all the information we want to have for thetree-valued pro
ess and it is 
oded into
• a graph-theoreti
al tree (E,V ),
• a root ρ ∈ E and
• a lifetime fun
tion L : V → [0,∞).This 
on
ept of representing a genealogy 
ontains some di�
ulties. Who are theindividuals being alive 100 years after the start? One needs to add up lifetimes ofall an
estors to get the a
tual time. The 
lue whi
h helps is to use the edges formore. One has to swit
h a bit ideas: Up to now the verti
es were understood as theindividuals, now the edges will be the individuals, the verti
es are the birth-and-death (or bran
hing) events. That means the root individual is related to an edge,whi
h either ends (0 sons) or splits into two edges (two sons) and so on. As beforewe assemble the lifetime of ea
h individual to its edge. A good way to do this isnot just to introdu
e another fun
tion L̃ : E → [0,∞), but to use the fa
t that theone-dimensional edges 
an 
ode the lifetime mu
h better than the zero-dimensionalverti
es. So we introdu
e distan
es: length of the father edge =lifetime of father.This 
on
ept is rather something analyti
al than graph-theoreti
al. We have anobje
t, the genealogi
al tree with distan
es and it will be the right idea to 
onsidermetri
 spa
es that have a tree-like shape. These metri
 spa
es are introdu
ed nowand get the name R-tree or real tree.De�nition 3.1.1 (The real tree):A 
omplete metri
 spa
e (T, d) is 
alled an R-tree if it satis�es the following two
onditions:
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• For every x, y ∈ T there exists a unique isometri
 embedding

φx,y : [0, d(x, y)] → T, (3.1)su
h that φx,y(0) = x and φx,y(d(x, y)) = y.
• For every inje
tive 
ontinuous map ψ : [0, 1] → T , it is true that

ψ([0, 1]) = φψ(0),ψ(1)([0, d(ψ(0), ψ(1))]). (3.2)The �rst 
ondition in fa
t says that the tree is one-dimensional and that all pointsare 
onne
ted by a 
ontinuous path in the tree. The se
ond 
ondition guaranteesthat there are no loops in
luded in the tree. So in fa
t this de�nition gives whatone might suspe
t to be a tree.There is an equivalent de�nition whi
h says that a metri
 spa
e (T, d) is an R-treeif it is path-
onne
ted and satis�es the four-point-
ondition. The latter means thatfor all x1, . . . , x4 ∈ T it is true that
d(x1, x2) + d(x3, x4) ≤ max{d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)} (3.3)If T 
ontains a point ρ, 
alled the root, then we will say that (T, d, ρ) is a rooted

R-tree. Yet this point ρ does not need to have any spe
ial properties.It is now possible to think of the set of all rooted R-trees. In fa
t a lot of them willbe �the same� in the sense that for two rooted R-trees (T1, dT1 , ρ1) and (T2, dT2 , ρ2)there exists an isometri
 isomorphism ι : T1 → T2, s.t. ι(ρ1) = ρ2. Therefore we willdenote by Troot the set of all equivalen
e 
lasses of rooted R-trees. Hen
eforth wewill not distinguish between a member of an equivalen
e 
lass and the equivalen
e
lass itself.For more about real trees 
onsult [Chi01℄, [EPW06℄ or [EW06℄.3.1.2 Extended de�nitions of real rooted trees and genealogi
al treesFor a rooted R-tree some more terminology is used. The motivations for the names
omes from tree-ideas or a genealogi
al point of view, whi
h should be kept in mindfor further 
onsiderations.De�nition 3.1.2 (Tree terminology):Let (T, d, ρ) ∈ Troot be given.
• Write [x, y] for the set

φx,y([0, d(x, y)]), (3.4)whi
h is the unique path 
onne
ting x and y. Sometimes the term geodesi
 isused for this path.
• The path [ρ, x] 
onne
ting the root ρ and an arbitrary point x ∈ T is 
alled anar
.
• If x ∈ T is su
h that no other points lie beyond x, i.e. if for any y ∈ T :
x ∈ [ρ, y] ⇒ x = y, then x is 
alled a leaf.
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• For two points x, y ∈ T there are the two paths going to the root and the pointwhere they �rst meet is denoted by x∧ y. This point is 
alled the most re
ent
ommon an
estor(MRCA). Clearly this point is de�ned well, sin
e there areunique geodesi
s.
• The degree of the root is de�ned as the number of di�erent edges leaving theroot, if there are �nitely many. Otherwise the degree is ∞.There is a 
onstru
tion whi
h allows to �build� trees, whi
h we des
ribe in thefollowing remark.Remark 3.1.3 (Gluing together rooted trees):Let two rooted R-tress (T1, dT1 , ρ1) and (T2, dT2 , ρ2) be given, where the tree sets

T1, T2 are disjoint. The se
ond tree T2 shall be glued to a point a ∈ T1, and this newrooted R-tree is 
alled (T, d, ρ), where 
learly T = T1 ∪ T2, ρ = ρ1. Additionally themetri
 d is de�ned to be the metri
 of single trees if both points are 
ontained ineither T1 or T2 and to be d(x1, x2) = d1(x1, a) + d2(ρ2, x2) for x1 ∈ T1, x2 ∈ T2. It
an easily be 
he
ked that this 
onstru
tion still is a rooted R-tree. 3Consider a family history with a starting individual and known lifetimes of ea
hindividual until it vanishes and has an o�spring. Then it is possible to 
onstru
ta rooted R-tree T representing the family history by giving to ea
h individual arooted R-tree, (in fa
t only a line with length equals lifetime) whi
h is then gluedto the an
estor's death point.By this 
onstru
tion we get a rooted R-tree, were the root ρ is the birth pointof the starting individual. The distan
e within the tree is the so 
alled genealogi
aldistan
e metri
 dgen, represented for two points x, y ∈ T by:
dgen(x, y) = d̂(x, ρ) + d̂(y, ρ) − 2d̂(x ∧ y, ρ), (3.5)where d̂(x, ρ) is the �age� of x, measured from the birth of the �rst individual on.The very simple tree 
onsisting only of a line with a 
ertain length will in theforth
oming sometimes be 
alled line segment of length L. By this is meant a rooted

R-tree (T, d, ρ) with a leaf point t, s.t.: T = φρ,t([0, L]).3.2 Operators and properties for rooted real treesOn the set of rooted trees Troot some operations are required. Later some basi
properties about this set of real trees will be given.De�nition 3.2.1:For (T, d, ρ) ∈ Troot de�ne:(i) the height h(T ) = sup{d(ρ, x) : x ∈ T},(ii) the 
ut operator Qt : Troot → Troot, whi
h 
uts the tree at height t:
Qt(T, d, ρ) = ({x ∈ T : h(x) ≤ t}, d, ρ), (3.6)(iii) the border operator ∂Qt : Troot → {set of labels}, whi
h takes all elements ofthe tree with height t:
∂Qt(T, d, ρ) = {x ∈ T : h(x) = t}, (3.7)



3.2 Operators and properties for rooted real trees 23(iv) the ǫ-trimming Sǫ : Troot → Troot of T :
Sǫ(T ) = {ρ} ∪ {x ∈ T : ∃y ∈ Ts.t. x ∈ [ρ, y] and d(x, y) > ǫ} (3.8)There are some possible ways to make the spa
e Troot a metri
 spa
e. One wayis to start with the Hausdor� metri
 dH for 
ompa
t subsets A and B of a singlemetri
 spa
e (X, r):

dH(A,B) := inf{ǫ > 0 : B ⊂ Aǫ, A ⊂ Bǫ} (3.9)where Aǫ = {x ∈ X : r(x,A) < ǫ}. Two rooted R-trees are metri
 spa
es themselvesand do normally not �live� on a 
ommon metri
 spa
e. So for 
omparing two trees weneed to embed them in a 
ommon metri
 spa
e (Z, dZ). It is useful to remember thatwe were only going to think of root-invariant equivalen
e 
lasses of trees. The rootedGromov-Hausdor�-distan
e between two rooted trees (T1, dT1 , ρ1) and (T2, dT2 , ρ2)is de�ned by:
dGHrooted(T1, T2) := inf{d(Z,dZ )

H (T ′
1, T

′
2) ∨ dZ(ρ′1, ρ

′
2)}, (3.10)where the in�mum is taken over all rooted R-trees T ′

1, T
′
2 that are root-invariantisomorphi
 to T1, T2 as metri
 spa
es and that are subspa
es of a 
ommon metri
spa
e (Z, dZ).With this metri
 at hand we will list some results whi
h were proven in [EPW06℄and 
an be found as Theorem 2, Lemma 2.5 and Lemma 2.6. They are put togetherin the following propositionProposition 3.2.2: • The metri
 spa
e (Troot, dGHrooted) is separable and 
om-plete.

• A subset T ⊂ Troot is pre-
ompa
t if for every ǫ > 0 there exists a positiveinteger N(ǫ) su
h that ea
h T ∈ T has an ǫ-net with at most N(ǫ) points. An
ǫ-net for T is a set of points in T , s.t. that every x ∈ T is ǫ-
lose to at leastone of these points.

• For any (T, ρ) ∈ Troot:
dGHrooted(T, Sǫ(T )) ≤ ǫ. (3.11)Later on we are going to 
onsider �res
aled populations� in the sense that we willstart with n individuals. Thus we need to 
onsider various trees but the followingremark tells that this does not make a new de�nition ne
essary:Remark 3.2.3 (The forest):A set of real trees {(Ti, di, ρi) : i ∈ I} 
an be put together into one real tree (T, d, ρ)by gluing together all the trees to the new root ρ. The distan
e between ρ and ρiis 
hosen to be a non-negative 
onstant. Su
h a set of trees is 
alled a real forest.But the te
hniques for handling it are the same as the ones for trees by the previous
onsiderations. 3More advan
ed ideas about rooted trees 
an be found in [EPW06℄ and [GPW07℄.In the latter additionally a measure on a tree is given in the de�nition of metri
measure spa
es. We do in fa
t not need this more advan
ed des
ription, but forsomebody interested in a dynami
 des
ription of the on
oming pro
esses we referto that paper.



3.3 Linearly ordered rooted real trees 243.3 Linearly ordered rooted real treesReal trees do so far not allow to distinguish �family names�. That means, if twotrees are mirrored 
opies of ea
h other, then they are 
onsidered the same. Ifone assembles labels to the verti
es of the tree then the before �same� trees mightdi�er. Hen
e this is a possible way to 
reate a higher information fun
tional thanan ordinary real tree. In this se
tion we are not too deeply interested in an exa
tlabelling, but we are satis�ed to have an ordering on these labels and 
onsider onlythis order relation. We will indeed give an ordering for all elements of the tree notonly for single ar
s.Therefore we will think of ways to 
hara
terize an ordering on the tree. This willbe ne
essary for the 
ontour pro
ess and the point pro
ess given in later 
hapters.In fa
t we will see that we just extend the ordering given as su�xes of the sons (e.g.son011001) in De�nition 1.2.2 and 1.2.3.The �rst intuitive idea of an order is to de�ne that x ≤partial y if x ∈ [ρ, y], butof 
ourse this only 
ompares points on the same ar
 from the root, so it is a partialorder. But we will require that the total order respe
ts this partial order. These
ond idea is that when thinking of traversing the tree along the ordering thenan already started subtree should be ��nished� before starting to traverse the nextdisjoint subtree.De�nition 3.3.1 (Rooted, linearly ordered trees):The metri
 spa
e (T, d, ρ,≤lin) is 
alled a rooted, linearly ordered R-tree, if (T, d, ρ)is a rooted R-tree and the linear order ≤lin on T respe
ts for all x, y ∈ T :(i) If x ≤partial y, then x ≤lin y.(ii) If x ≤lin y and for any x′, y′ ∈ T , s.t. x ∧ y <partial x
′ ∧ x and x ∧ y <partial

y′ ∧ y, then x′ ≤lin y
′.The set of equivalen
e-
lasses of su
h trees is 
alled Troot,lin. Clearly the isometryhere is required to 
onserve the linear order.Additionally we will say that a rooted, linearly ordered R-tree is �nite, if it hasonly �nitely many bran
h points. The set of all these trees is then denoted by

T
root,lin
fin .The operators given in the previous se
tion are also de�ned here. It is oftenhelpful to think of a planar embedding of the rooted linearly ordered tree where theorder is �left-to-right�.One should note that the set of �unordered� trees 
an be embedded into the set ofordered trees by putting a random ordering on all trees. So ordered trees are more
ompli
ated and therefore 
an somehow �store� more information. This will 
omeba
k to our mind, when we look at the 
ontour pro
ess and the point pro
ess onone side and the random tree on the other side.



4 The tree valued pro
ess (ηfor
t , ξfor

t )In this 
hapter the tree-valued 
atalyti
 bran
hing pro
ess will be introdu
ed. Forthis the 
on
ept of R-trees, developed in the previous 
hapter will extensively beused. In a �rst se
tion the de�nitions for the tree-valued 
atalyst and rea
tantrandom-variable are made. Res
aled forests, i.e. 
olle
tions of trees, are presentedin a next se
tion. Then we will talk about basi
 properties and a 
onvergen
e resultfor the rea
tant tree pro
ess. A last se
tion 
ontains a result 
omparing the rea
tanttree with the 
lassi
al Galton-Watson forest.This 
hapter is the �
ore� of the diploma thesis sin
e it states results about theasymptoti
 genealogy of the 
atalyti
 bran
hing pro
ess. All proofs are given inChapters 8 and 9.4.1 The 
atalyst and the rea
tant forestIn this se
tion we are interested in des
ribing the 
atalyst and the rea
tant forestin the dis
rete setting.It is tempting to write down a des
ription of the tree-valued rea
tant pro
ess as inthe de�nition of the total mass pro
esses in De�nition 2.1.1: extending leafs in smalltime steps a bit or in a bran
hing event assembling two new ar
s to the bran
hingleaf. The problem of this idea, is that it does not su�
e the strong Markov propertyany more. Stopping the �rst time it jumps to two individuals two ar
 stubs, but oflength zero, are atta
hed to the tree. But distinguishing the two stubs 
ontradi
tsthe properties of metri
 spa
es.There are several attempts to solve this problem of giving a dynami
 des
riptionof the pro
ess. A good idea is to assemble weights to the individuals, whi
h meansextending the state spa
e from metri
 spa
es to metri
 measure spa
es. Consult thepaper of Greven, Pfa�elhuber and Winter ([GPW07℄) for more information aboutthat.But here the dynami
 approa
h to 
over the problem will not be taken. Forthe results to be proven it is su�
ient to 
onsider the �already done� tree. Thatmeans that from the general pro
ess (η, ξ) and a �xed t > 0 the tree 
an alreadybe squeezed out. It 
an be 
onstru
ted via the gluing te
hnique des
ribed in theprevious 
hapter. So we make the following de�nition on the probability spa
ementioned in De�nition 1.2.1:De�nition 4.1.1:The tree-valued pro
ess (ηfor
t , ξfort )t≥0 with state spa
e Troot × Troot is de�ned asfollows:(i) The 
atalyst tree ηfor
t for a �xed t > 0 is obtained by gluing together theindividuals des
ribed in the De�nition 1.2.2 of η whi
h live until time t to aroot ρcat. The metri
 is the genealogi
al distan
e metri
.



4.1 The 
atalyst and the rea
tant forest 26(ii) The rea
tant tree ξfort for a given 
atalyst realization (ηs)s≥0 and time t > 0 isobtained by gluing together the individuals des
ribed in the De�nition 1.2.3 of
ξ whi
h live until time t to a root ρreac. The metri
 is the genealogi
al distan
emetri
.Remark 4.1.2: • Dynami
ally the trees look like Markov pro
esses growing, butin fa
t a dynami
 de�nition would fa
e the problems mentioned before thede�nition.

• Up to a �xed time t only a �nite number of bran
hing events will arise almostsurely. Therefore ηfor
t and ξfort are �nite trees almost surely and hen
e the statespa
e (
ompa
t metri
 spa
es) was des
ribed 
orre
tly.

• It is possible to 
onsider the tree pair and then not having a rea
tant relyingon the general pro
ess η, sin
e the fun
tional ηtot 
an be obtained from ηforwith the help of #∂Qt.
3Clearly sin
e the total mass pro
ess is a fun
tional of the tree-valued one, theresults from Chapter 2 on page 16 will play a role. As the 
atalyst dies out after analmost sure �nite time T 1,0, the tree does not grow any more then. So all interestingthings happen up to that time. Therefore it makes sense to 
onsider the 
atalysttree at that time. Moreover the rea
tant individuals keep on living without anybran
hing after that killing time, if there are still some alive (for linear g see forexample (2.8) in [Pen03℄). Thus the rea
tant tree will neither show any interestingbehavior after that killing time of the 
atalyst. Hen
e spe
ial interest in that 
hapterwill be laid on the tree-valued random variable:

(ηfor
T 1,0 , ξ

for
T 1,0). (4.1)We take up the res
aling presented in De�nition 1.2.4 and 1.2.5 from the Intro-du
tion. We re
apitulate brie�y that the number of starting individuals is in
reasedfrom 1 to n. Therefore we have n single trees and we will 
all su
h an obje
t a forest,even if all of the n res
aled trees in the forest are glued to the same root, whi
h hasthen degree n. The individual mass is 
hanged to 1

n and the 
atalyst is sped up bya fa
tor n.The res
aled pro
esses are again de�ned in a stati
 way on the probability spa
ementioned in De�nitions 1.2.4 and 1.2.5:De�nition 4.1.3:For n ∈ N the pro
ess (ηfor,n
t , ξfor,nt )t≥0 with state spa
e Troot × Troot is de�ned asfollows:(i) The res
aled 
atalyst forest ηfor,n

t for a �xed t > 0, is obtained by gluingtogether the individuals des
ribed in the De�nition 1.2.4 of ηn whi
h live untiltime t to a root ρcat. All n starting individuals are glued to the root ρcat, withdi�erent ar
s, so that the root has degree n. The metri
 is the genealogi
aldistan
e metri
.(ii) The res
aled rea
tant forest for a given 
atalyst realization (ηns )s≥0 for a �xed
t > 0, ξfor,nt , is obtained by gluing together the individuals des
ribed in the



4.2 Tightness and Convergen
e of the rea
tant forest 27De�nition 1.2.5 of ξ whi
h live until time t to a root ρreac. All n startingindividuals are glued to the root ρcat, so that the root has degree n. The metri
is the genealogi
al distan
e metri
.Again we fa
e a problem after the extin
tion of the 
atalyst as in (4.1).4.2 Tightness and Convergen
e of the rea
tant forestNow we have to separate the two pro
esses ηfor,n and ξfor,n. We will give a 
on-vergen
e result for the latter, the rea
tant forest, and will leave the �rst one. Thisis done, be
ause 
atalyst individuals do not evolve independently and applying theproofs whi
h work for the rea
tant is not possible. When we will talk later aboutthe 
ontour pro
ess, then a 
atalyst pro
ess would not even be Markovian and itslimit 
learly not a di�usion.The result, however, will not be a result for the whole pro
ess ξfor,n. It will de-s
ribe the behavior of the ��nished� rea
tant forest, i.e. the forest 
ut, when the
atalyst has died out as in (4.1). We will give �rst a quen
hed result and later anannealed one.For the quen
hed result introdu
e the following notation for 
onditional proba-bility:
L(ξfor,n; η) := L

[

ξfor,n
Tn,0 |ηtot,n = η

]

. (4.2)Note that this is the law of a Troot-valued random-variable.We �x an ω ∈ Ω̃ as in De�nition 2.3.3. That means we have a 
onvergent sequen
eof 
atalyst total mass pro
esses (ηtot,n(ω))n∈N:
lim
k→∞

sup
t≤T

|ηtot,k
t (ω) −Xt(ω)| = 0. (4.3)We will leave out the ω in what follows and will just use the word �quen
hed�.Then the following proposition holds:Proposition 4.2.1 (Tightness of the rea
tant forest): The sequen
e of the quen
hedres
aled 
atalyti
 forest {(ξfor,n

Tn,0 ; ηtot,n)}n∈N is tight in the topology of the spa
e
(Troot, dGHroot).Sin
e the spa
e Troot with the Gromov-Hausdor� metri
 is 
omplete and sepa-rable it is true that {(ξfor,n; ηtot,n)}n∈N is sequentially 
ompa
t and therefore hasa 
onvergent subseries. Clearly one would like to extend that result by des
ribinga unique limit and this 
an be done in the next theorem. For that purpose the
δ-hitting time of the 
atalyst

τ δ = inf{t ≥ 0 : Xt ≤ δ} (4.4)needs to be de�ned. Then the following quen
hed result holds:Theorem 4.2.2 (The rea
tant limit forest exists):There exists a random variable Y for ∈ Troot (depending on X), s.t.:
L
[

ξfor,n; ηtot,n
]

n→∞−−−→ L
[

Y for;X
]

. (4.5)



4.3 Comparison result between the 
lassi
al forest and the 
atalyti
 forest 28The law of Y for is given by
L
[

Y for;X
]

= lim
δ→0

L
[

T ((ζδu)0≤u≤α4/b
)
]

, (4.6)where 
onvergen
e is in the Prohorov-metri
 of probability measures, T is the map-ping des
ribed on page 31.The di�usion ζδ is the unique solution of the (Aδ,D(Aδ)) martingale problem, where
D(Aδ) is given by:

D(Aδ) = {h ∈ C1([0, τ δ ],R) : h′|{0,τδ} = 0,
h′(·)
X·

∈ C2
[0,τδ]([0,∞))} (4.7)and for ea
h f ∈ D(Aδ):

Aδf(c) =

(

f ′

bXc

)′
(c), (4.8)Furthermore α4/b is the lo
al time inverse at level 0 of ζδ of 4

b .Note that when we write L [Y for;X
] it is not yet 
lear that this 
an be understoodin the spirit of (4.2). So far we 
ould say that we use this notation to express thedependen
e of the law on X. After the next annealed theorem we will see that wealso 
an understand that expression as a 
onditional probability.The proof o

upies the biggest part of Chapter 8. First we 
ut the res
aledrea
tant forest and relate it to a 
ontour pro
ess. The 
ut 
ontour pro
ess sequen
e
onverges to a di�usion. As we 
an re
over the 
ut tree from the 
ontour and wehave tightness of the forest sequen
e we get the result.It it is even possible to extend this result to an annealed point of view. As we
annot state a limit result for the 
atalyst tree we have to restri
t ourselves to a
onvergen
e theorem of the joint law of 
atalyst total mass and rea
tant forest.Theorem 4.2.3 (Convergen
e of the joint law for the rea
tant forest):The sequen
e of the pair of res
aled 
atalyst total mass and res
aled rea
tant forest
onverges:

L(ηtot,n, ξfor,n
Tn,0 ) ⇒ L(X,Y for) as n→ ∞. (4.9)Here 
onvergen
e is understood as weak 
onvergen
e on the set of probability mea-sures on DR1

+
[0,∞) × Troot with the produ
t topology.The proof of this theorem 
an be found in Se
tion 8.6 due to the te
hniques used,whi
h are developed in the point pro
ess Chapter.4.3 Comparison result between the 
lassi
al forest andthe 
atalyti
 forestIn this last se
tion we want to 
ompare the forest of an ordinary Galton-Watsonbran
hing forest, whi
h will be 
alled Z for, and the 
atalyti
 forest Y for. Results forthe 
lassi
al (=Galton-Watson = Continuum Random Tree = CRT) forest are given



4.3 Comparison result between the 
lassi
al forest and the 
atalyti
 forest 29in [LG96℄ and [Ald93℄. For Z for the 
ontour pro
ess is easily given as the ex
ursionpro
ess of a Brownian motion β until lo
al time at level zero rea
hes 2 (this 
an beseen for the 
ase of a �xed 
atalyst X ≡ 1 and b = 2 by the arguments in the proofof the limit 
ontour).For this se
tion �x a 
atalyti
 ba
kground (Xr)0≤r≤τ0 . The way to 
ompare thetwo trees is to take a �xed time t and to relate the extant individuals of Y at time
t to the extant individuals of Z at a non-random time s(t), depending on the �xed
atalyst. If the metri
 is also 
hanged, then in the end we see that Y for looks like astret
hed CRT Z for.We de�ne the s
aling fun
tion st for t < τ0:

st :

{

[0, τ0] → [0,∞)

h 7→ b
2

∫ t
t−hXs ds

. (4.10)By an easy argument one 
an show (see Lemma 9.2.2) that the 
ontour pro
essesof the CRT, whi
h is equal to β and the rea
tant 
ontour ζδ are related by st:
(ζδu)u≥0

d
= (s−1

t (βγ−1(u)))u≥0, (4.11)where γ is the time 
hange depending on st (see (9.24) for the de�nition of γ).For the trees things are similar and we get the following proposition:Proposition 4.3.1 (Stret
hing tree metri
): Let Z for be a 
lassi
al Galton-Watsonforest and Y for a 
atalyti
 bran
hing forest with �xed 
atalyst (Xs)0≤s≤τ0. Then forany t < τ0 let
Ỹ for
t := ∂Qst(t)(Z

for) (4.12)and for u1, u2 ∈ Ỹ for
t , i.e. u1, u2 ∈ ∂Qs(t)(Z

for) de�ne:dỸ for(u1, u2) := 2s−1
t

(

1
2dZfor(u1, u2)

)

. (4.13)Then it holds that
(Ỹ for,dỸ for)

d
= (∂QtY

for;X), (4.14)where equality in distribution is meant to be on the set of ultrametri
 spa
es.The proof is done via the point pro
esses πt and πβ,t, whi
h des
ribe distan
esbetween extant individuals.Remark 4.3.2: • The idea for a statisti
ian is to have a sample of extant in-dividuals that are known to evolve a

ording to an inhomogeneous bran
hingme
hanism. The question is whether it is possible to determine the unknowninhomogeneity, i.e. the 
atalyst. But the 
atalyst is en
oded in the s
ale fun
-tion st and one 
an 
ompare the distan
es with the CRT-distan
es.
• The metri
 spa
e des
ribing the extant individuals is in fa
t an ultra-metri
spa
e, that means for any u1, u2, u3 ∈ ∂QtY for it holds that:dY for(u1, u3) ≤ max{dY for(u1, u2),dY for(u2, u3)}. (4.15)

3



5 The 
ontour pro
ess (B,C)Closely related to the forest-valued pro
esses is the des
ription of the populations
(η, ξ) as 
ontour pro
esses. By this a 
oding of the tree-stru
ture into a positive
ontinuous fun
tion is meant. The major di�eren
e to the pre
eding two fun
tionalsis that the 
ontour pro
ess keeps tra
k of all information available from the generalpro
ess (η, ξ). In 
omparison to the tree-valued pro
ess it also remembers �familynames�. That means that the 
ontour pro
ess allows to distinguish s
enarios wherein the �rst one son00 has a long history, son01 a short history and in the se
onds
enario the other way round. The pro
ess des
ription we will give is not a dynami
one.5.1 Contour pro
esses and bran
hing populationsImagine a (�nite) genealogi
al tree with names (=labels) at the verti
es be given.Additionally an ordering of the names should be available, e.g. like in an addressbook. One 
an traverse the tree starting from the root visiting the verti
es a

ordingto the order, i.e. visiting the individuals as listed in the telephone book, along theirlifetimes. This walk through the tree visits every point in the tree.The idea now is to 
ode this walk into a fun
tion e : [0,∞) → [0,∞) by traversingthe genealogi
al tree. We go along the unique geodesi
s following the ordered labelsand denote on the ordinate the distan
e to the root. By this pro
edure a 
ontin-uous positive fun
tion is given. Shortly, the 
ontour is the fun
tion where elapsedtransversal time is mapped to re
ent height of the traversal, i.e. the distan
e fromroot to the re
ent point of the tree. Of 
ourse to walk 
ontinuously one also hasto walk in the opposite dire
tion of the total order at some times to rea
h the nextpoint, with a higher order. After �nishing the walk through the tree, the heightstays zero. See Figure 8.1 to get an idea of the pro
edure.It is true that the linearly ordered trees in Troot,lin have a spe
ial ordering respe
t-ing De�nition 3.3.1. Therefore we 
an understand the 
ontour as the walk �around�the tree. This walk around the tree 
an be done with a given speed σ > 0 anddi�erent σ results in a di�erent 
ontour. We will denote this mapping from �nite
ompa
t linearly ordered rooted R-trees to 
ontinuous fun
tions by C(· : σ):De�nition 5.1.1 (Tree to 
ontour mapping):For a σ > 0 the mapping C(· : σ) : T

root,lin
fin → C0

[0,∞)[0,∞) is de�ned as the mappingwhi
h maps a �nite linearly-ordered rooted tree (T, d, ρ,≤) to the 
ontinuous fun
tion
C(T : σ) : [0,∞) → [0, h(T )] in the following way:Denote the number of bran
h points of T in as
ending linear order: x0 = ρ ≤ x1 ≤
x2 ≤ · · · ≤ xN̂ . Whenever ρ ∈ [xn, xn+1], then add ρ to the sequen
e of bran
h
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hing populations 31points x1, . . . , xn, ρ, xn+1, . . . xN̂ . Then C(T : σ) is given by
u 7→



































d(ρ, φρ,x1(ũ)) for 0 ≤ ũ := σu ≤ d(ρ, x1)

d(ρ, φx1,x2(ũ)) for 0 ≤ ũ := σu− d(ρ, x1) ≤ d(ρ, x2)... ...
d(ρ, φxN ,ρ(ũ)) for 0 ≤ ũ := σu− d(ρ, x1) − . . . d(xN−1, xN ) ≤ d(xN , ρ)

0 otherwise .(5.1)For another 
onstru
tion of this mapping even for non-�nite trees see remark 3.2of [EW06℄.Remark 5.1.2:By the 
ontour pro
ess we have indeed a planar embedding of a real tree. For moreabout that, see [NP89℄. 3One also 
an go the other dire
tion: Let a 
ontinuous fun
tion e : [0, 1] → [0,∞)be given with e(0) = e(1) = 0 and e(x) ≥ 0 for all x ∈ (0, 1). Then de�ne anequivalen
e relation ∼e on [0, 1] by
x ∼e y if e(x) = min

z∈[x∧y,x∨y]
e(z) = e(y). (5.2)The metri
 spa
e ([0, 1]/ ∼e, d), where

d(x, y) = e(x) + e(y) − 2 min
z∈[x∧y,x∨y]

e(z), (5.3)is then easily 
he
ked to be a rooted 
ompa
t R-tree (see Lemma 3.1 of [EW06℄).To be more formal we introdu
e a mapping from the following set of fun
tions
C0,∗

[0,∞)[0, L] := {f ∈ C([0, L], [0,∞)) : f(0) = f(L) = 0, f(x) ≥ 0 ∀x ∈ (0, L)}(5.4)with the previously des
ribed properties, where L repla
es 1 and make the followingde�nition:De�nition 5.1.3 (Contour to tree mapping):The mapping T : C0,∗
[0,∞)[0, L] → Troot,lin is de�ned for a 
ontinuous e ∈ C0,∗

[0,∞)[0, L]by:
T (e) = ([0, L]/ ∼e, d,≤lin), (5.5)where the equivalen
e relation ∼e and the metri
 d are de�ned as in (5.2) and (5.3).The root ρ is the equivalen
e 
lass 
orresponding to zero and ≤lin is the linear orderindu
ed from the interval.Additionally de�ne the mapping
Tunord : C0,∗

[0,∞)[0, L] → Troot, (5.6)whi
h does the same as T , but gives up the ordering of the tree.Remark 5.1.4: • Both mappings are 
ontinuous by de�nition (quotient map-ping!).
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ontour 32
• For �nite rooted linearly ordered R-trees and arbitrary σ > 0 it is then truethat T ◦ C = id. The same is true the other way round if the traversal speed
σ is adjusted 
orre
tly. But we will in fa
t use the �rst identity only; thus thetraversal speed is not a�e
ting the tree stru
ture. For more information, see[EW06℄.

3For our purposes the tree-valued pro
ess does not yet give an ordered tree, whi
h
ould be put into the mapping C(· : σ) and would give us a 
ontour. This problemneeds to be taken up now. So, when starting with the non-linearly ordered tree-valued pro
ess from the previous 
hapter we 
ould think of C as a multi-valuedmapping. This multi-valued mapping would transport equal weights to ea
h possibleordering of a given �nite tree ηfor
t or ξfort . But in fa
t it will be easier to extra
tthe fun
tional �
ontour� dire
tly from the general pro
ess (η, ξ). Therefore de�neanalogously to the previous 
hapter a 
atalyst and rea
tant pro
ess (η̃, ξ̃), but withvalues in linearly ordered trees Troot,lin:De�nition 5.1.5:For n ∈ N the random-variable (η̃n, ξ̃n) with values in Troot,lin × Troot,lin is de�nedas follows:(i) The �rst 
oordinate η̃n, is obtained by gluing together the individuals des
ribedin De�nition 1.2.4 of ηn, whi
h live until time T n,0, to a root ρcat. All nstarting individuals are glued to the root ρcat, with di�erent ar
s, so that theroot has degree n. The metri
 is the genealogi
al distan
e metri
 and the linearorder is the one obtained from the labels of the general pro
ess η.(ii) The se
ond 
oordinate ξ̃n, for a given 
atalyst realization (ηns )s≥0, is obtainedby gluing together the individuals des
ribed in De�nition 1.2.5 of ξ, whi
h liveuntil time T n,0, to a root ρreac. All n starting individuals are glued to the root

ρreac, so that the root has degree n. The metri
 is the genealogi
al distan
emetri
 and the linear order is the one obtained from the labels of the generalpro
ess ξ.This de�nition gives us the full genealogi
al tree of 
atalyst and rea
tant, at leastuntil the time T n,0, after whi
h nothing interesting happens any more.We will leave out the supers
ripts n sometimes and will understand this as the 
ase
n = 1.5.2 The 
atalyst and the rea
tant 
ontourThe 
atalyst and the rea
tant 
ontour are now de�ned. With the mapping C and therandom variable (η̃, ξ̃) from the previous se
tion we 
an give a pre
ise de�nition ofthe 
ontour pro
ess. Before starting remember that the killing time of the 
atalyst
T 1,0 is<∞ almost surely. We de�ne the 
ontour pro
esses by traversing the 
atalystand the rea
tant tree ea
h with speed 1.De�nition 5.2.1 (The dis
rete 
ontour pro
ess):The 
atalyst and the rea
tant 
ontour pro
ess (Bu, Cu)u≥0 is a R2

+ valued pro
essde�ned by:
(Bu)u≥0 = C(η̃ : 1), (5.7)
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(Cu)u≥0 = C(ξ̃ : 1). (5.8)Note that in the de�nition the height of the 
ontour is random, it is T 1,0. If we
onsider a 
atalyst realization to be given, then the rea
tant 
ontours all have thesame maximum height. The 
ontour pro
ess 
onsists of line segments with slope

+1 and −1 whi
h have random length.We note that this 
ontour pro
ess leaves zero (the root) on
e and returns to zero(on
e). After this returning time the 
ontour stays at zero. So the rea
tant 
ontouris zero after a time L(C, 4/b) given by the following random-variable:
L(C, 4

b ) := inf{u ≥ 0 : lim
ǫ→0

1

ǫ

∫ u

0
1{Cv∈[0,ǫ)}

2

bηtot
Cv

dv =
4

b
}. (5.9)Even if this seems to be a quite di�
ult des
ription of the time until whi
h therea
tant 
ontour runs, it is in fa
t the easiest way to obtain a lo
al time 
hara
ter-ization of the limit 
ontour.The same is true for the 
atalyst and a similar time L(B, 4). Later we will takethat idea up. Next a remark about the linear ordering on extant individuals isdes
ribed:Remark 5.2.2:By the de�nition of the 
ontour a linear ordering on the rea
tant individuals

y1, y2, . . . ym ∈ ∂Qt(ξ
for)alive at time t 
an be given:

yi ≤lin yj is true, (5.10)if the point yi is traversed by the 
ontour before yj. We will use this idea for thepoint pro
ess. 3Now we give the res
aled 
ontour pro
esses.The res
aled rea
tant 
ontour pro
ess is de�ned analogously, only one has to
onsider what speed σ to 
hoose for traversing the tree. The total population sizeis of order O(n2) and the length of ea
h line segment is of order O( 1
n). Hen
e theright 
hoi
e to get a non-trivial limit-
ontour is traversal speed σ = n for the n-thapproximation step.De�nition 5.2.3 (The res
aled 
ontour pro
ess):The 
atalyst and the rea
tant 
ontour pro
ess (Bn

u )u≥0 and (Cnu )u≥0 are R+-valuedrandom variables de�ned by
(Bn

u )u≥0 = C(η̃n : n), (5.11)
(Cnu )u≥0 = C(ξ̃n : n). (5.12)The rea
tant 
ontour is zero after a time L(Cn, 4/b) given by the followingrandom-variable:

L(Cn, 4
b ) := inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cn

v ∈[0,ǫ)}
2

bηtot,n
Cn

v

dv =
4

b
}. (5.13)
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e of the trun
ated rea
tant 
ontour 34Outgoing from these de�nitions we 
an establish some properties but most of themrestri
t to the rea
tant. The next result shows what happens for a �xed 
atalystrealization (ηnt )t≥0.Before stating the lemma it is a good idea to de�ne the slope sign V of the rea
tant
ontour as an pro
ess:
V n
u := sign(slope(Cnu )) ∈ {−1, 1}, (5.14)for all 0 ≤ u ≤ T 0, where Cu does not 
hange dire
tion. If it is 
hosen to have
àdlàg paths then the following lemma holds:Lemma 5.2.4: The pro
ess (Cnu , V

n
u )u≥0 is a [0, T n,0] × {−1, 1}-valued Markov-pro
ess, whose generator is given by the 
losure of the operator (An,D(An)), where:

Anf(c, v) = nv
∂

∂c
f(c, v) +

b

2
n2ηtot,n

c (f(c,−v) − f(c, v)), (5.15)for all f ∈ D(An), when
D(An) = {h ∈ C1,0([0, T n,0] × {−1, 1}, R) :

∂h

∂c
|{0,Tn,0}×{−1,1} ≡ 0}. (5.16)until the time, when the n trees in the rea
tant forests have been traversed, i.e. until

L(Cn, 4
b ) given as in (5.13). After that time the rea
tant 
ontour stays zero.For the proof, see Lemma 8.4.2.We note that the 
atalyst ηtot plays a big role in the behavior of the 
ontour.The higher ηtot is, the faster the 
ontour 
hanges its dire
tion. That means thatthe line segment in the 
ontour with 
onstant slope get shorter. In the 
ase whenwe get 
lose to the extin
tion time of the 
atalyst then ηtot gets very low and thear
s in the tree get longer and grow until they are re�e
ted at the extin
tion time.This fa
t will play a role when we want to extend the limit result we give in thenext se
tion.For the 
atalyst 
ontour we see that non-independen
e of the individuals disallowsthe 
ontour to be Markovian. Even if g is a pie
ewise linear fun
tion one does notne
essarily get a Markov pro
ess for the 
atalyst 
ontour.5.3 Convergen
e of the trun
ated rea
tant 
ontourWithin this se
tion a quen
hed 
onvergen
e result for the rea
tant 
ontour pro
essis given. We assume to be in a situation as in (4.2), i.e. we have a �xed 
onvergentsequen
e of 
atalyst realizations. Unfortunately it is not possible to state a 
onver-gen
e theorem for the whole 
ontour. We need to 
ut the tree before the extin
tionof the 
atalyst. Therefore de�ne the δ-hitting times of the res
aled 
atalyst totalmass pro
ess ηtot,n:

T n,δ = inf{t ≥ 0 : ηtot,n
t ≤ δ}, (5.17)and of the limit 
atalyst X:

τ δ = inf{t ≥ 0 : Xt ≤ δ}. (5.18)
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e of the trun
ated rea
tant 
ontour 35Remember that both of these stopping times are almost surely �nite by Lemmas2.1.7 and 2.2.4. Then one 
an de�ne the δ-
ut 
ontour Cn,δ by:
Cn,δ := C(QTn,δ (ξ̃n,δ) : n). (5.19)With these de�nitions the following 
onvergen
e result for the 
ut 
ontour holds:Theorem 5.3.1 (Rea
tant limit 
ontour):Let a realization of the 
atalyst be given su
h that (2.18) holds. Consider the linearoperator (Aδ,D(Aδ)), where

Aδf(c) =

(

f ′(·)
bX·

)′
(c), (5.20)for all f ∈ D(Aδ), when

D(Aδ) = {h ∈ C1([0, τ δ ], R) : h′|{0,τδ} = 0,
h′

X·
∈ C1

[0,τδ][0,∞)}. (5.21)Then:(i) The (Aδ,D(Aδ)) martingale problem is well-posed and(ii) if ζδ is the solution of the (Aδ ,D(Aδ)) martingale problem, then:
L[(Cn,δu )0≤u≤L(Cn,δ ,4/b)]

n→∞−−−→ L[(ζδu)0≤u≤α4/b
], (5.22)where 
onvergen
e is weak 
onvergen
e of 
ontinuous pro
esses.Here α4/b is the short
ut for (l0· (ζ

δ))−1(4
b ), the inverse of lo
al time at level zero.The proof is given in Se
tion 8.4. The 
onvergen
e is shown via Sto
hasti
 Averagingte
hniques. Uniqueness is done by transforming the martingale problem to an easierone without drift.Remark 5.3.2:Looking ba
k at the dis
rete pro
ess we see that higher 
atalyst total mass is speedingup the 
hange of dire
tion. In the limit 
ase it seems to be the other way round:High 
atalyst total mass de
reases the quadrati
 variation. In fa
t there is a mistakein the �rst senten
e: When going to limits the part where 
atalyst total mass o

ursruns with high speed (n2) and it is better if it does not 
hange dire
tion too often inorder not to disappear in the limit.One 
ould ask whether there is an annealed result as well. If in the previous
hapter we had an annealed result for the 
onvergen
e of the trees, then there alsoshould be one in that 
ase. The proof of the following 
orollary is in fa
t part ofthe annealed result for trees:Corollary 5.3.3: For �xed δ > 0 the sequen
e

((ηtot,n
t )0≤t≤Tn,δ , Cn,δ)n∈N (5.23)
onverges weakly to an R2-valued pro
ess. Topology is the produ
t topology in theSkorokhod spa
e of 
àdlàg fun
tions.
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tant tree 365.4 On top of the limit rea
tant treeNaturally after Theorem 5.3.1 one has the question if it is possible to extend the
τ δ-
ut rea
tant limit 
ontour to the 
ase δ → 0. We will regard that as a quen
hedquestion and in fa
t there is not a single answer: all depends on the given 
atalystand the height of ea
h 
ontour path. To speak about that we de�ne the rea
tantextin
tion time

ρ0 := inf{t > 0 : Yt = 0}. (5.24)We di�erentiate between two 
ases:
{ρ0 < τ0} and {τ0 < ρ0}. (5.25)The �rst one means that the entire rea
tant 
ontour ζδ lies below the given hori-zontal line τ0. This 
ase will be easy to deal with, sin
e no extension of the 
ontouris ne
essary. That means in this 
ase we have, when for example ρ0 < τ δ:

(ζ0; ρ0 < τ0) := ζδ. (5.26)We wonder if the 
ase ρ0 < τ0 arises and will give a partial answer in the on
omingproposition.The se
ond event des
ribed above is more di�
ult to deal with, sin
e the rea
tanttree was 
ut at height τ δ and even for δ → 0 there remain some bran
hes above thatline. Then something interesting happens: Approa
hing τ0 the 
atalyst approa
hes
0 and hen
e the rea
tant loses bran
hing likelihood, i.e. its bran
hes get longer.Sin
e there are �many� individuals alive the rea
tant 
ontour gets looking like ahedgehog and this 
an be expressed by quadrati
 variation going to in�nity.Both aspe
ts get re�e
ted in the following proposition:Proposition 5.4.1: Let a �xed 
atalyst (Xt)t≥0 and its killing time τ0 be given.For δ > 0 let ζδ be the rea
tant limit 
ontour. ThenP[lim

δ→0
〈ζδ, ζδ〉α4/b

<∞|X] = P[ρ0 < τ0] (5.27)and P[lim
δ→0

〈ζδ, ζδ〉α4/b
= ∞|X] = P[ρ0 > τ0]. (5.28)Sin
e di�usions have a well-de�ned �nite quadrati
 variation, we obtain the fol-lowing 
orollary:Corollary 5.4.2: The rea
tant tree Y for 
an be asso
iated with a di�usion ζ0 via

T only on the event:
{ρ0 < τ0}. (5.29)For linear bran
hing modi�
ation g(x) = ax this event has probability (4a/b+1)−

1
2 .Otherwise in the 
ase {ρ0 > τ0} the rea
tant forest Y for 
annot be asso
iated with adi�usion pro
ess.



6 The point pro
ess (Πt, Ξt)Another way to des
ribe the genealogy of the 
atalyti
 bran
hing model is the pointpro
ess. To do that we �rst introdu
e a short general des
ription of point pro
essesin the bran
hing setting. Then we will spe
ify this for the 
atalyst and the rea
tantsetting. Finally the 
hapter ends with a 
onvergen
e result for the res
aled rea
tantpoint pro
ess.6.1 Point pro
esses and genealogyLet a genealogy starting with one individual be given, for example as in De�nition1.2.2 or 1.2.3. Then a linearly ordered tree, say T , as η̃n in De�nition 5.1.5 
an be
onstru
ted.Now �x a time t > 0. At this time t the population 
onsists of #∂Qt(T ) extantindividuals. If one 
onsiders the minimal subtree spanned by these extant individ-uals, there are exa
tly #∂Qt(T ) − 1 most re
ent 
ommon an
estors (MRCAs) ofthem. We label the MRCAs in as
ending linear order and then they are given by asubset of T 
onsisting of the following points:
x1 ≤lin x2 ≤lin · · · ≤lin x#∂Qt(T )−1. (6.1)These points and a 
onstant ν > 0 are the ingredients of the point pro
ess Pt. Wewant to make a point in (kν, s) ∈ R2, when xk dies at time s. Hen
e the pointpro
ess just denotes the extin
tion times of the MRCAs, one after another. Thuswe make the following de�nition:De�nition 6.1.1 (Point pro
ess of a genealogy):For a �xed t > 0, a given genealogy T the point pro
ess Pt(T ; ν) is an integer-valuedrandom measure on the set
{ν, 2ν, . . . , (#∂Qt(T ) − 1)ν} × [0, t). Its distribution for 0 ≤ a < b < t, m ≤ #∂Qt(T ) − 1 is given by:

Pt(T ; ν)({ν, 2ν, . . . ,mν} × [a, b]) = #{i ∈ {1, 2, . . . ,m} : a ≤ xi ≤ b}. (6.2)We would like to point out that this point pro
ess should not be understood as apro
ess in the variable t. But in fa
t with the 
olle
tion (Pt)t≥0 the whole genealogy
an indeed be re
overed.Sometimes we will refer to the �rst 
oordinate of the random measure as the time
oordinate and the se
ond one as the level 
oordinate.Indeed we will also fa
e the fa
t, that we are dealing with a set of genealogies, asin the situation of a genealogi
al forest 
onsisting of genealogi
al trees. Then thequestion is where the MRCA of two individuals alive at time t, whi
h are not inthe same tree of the forest, is lo
ated. The MRCA is then at the level of the root,
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ess 38Figure 6.1: Point pro
ess obtained from the tree t
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where the trees are glued together (see Remark 3.2.3). Therefore in these 
ases thetime level 0 
an, in the res
aled setting, 
ontain a positive mass, di�erent to anyother �xed level.In the next se
tion we will apply this de�nition to the 
atalyti
 bran
hing setting.6.2 The 
atalyst and rea
tant point pro
essFor the whole se
tion let a �xed t > 0 be given. To de�ne the 
atalyst pointpro
ess we remember that the 
atalyst genealogy with ordering of the individualswas des
ribed either in the 
ontour pro
ess (see Remark 5.2.2) or in De�nition 5.1.5by the ordered tree η̃. We take the se
ond des
ription and de�ne the 
atalyst pointpro
ess by:De�nition 6.2.1 (Catalyst point pro
ess):The 
atalyst point pro
ess is an integer-valued random measure Πt on
{1, 2, . . . , ηtot

t − 1} × [0, t), (6.3)given by
Πt := Pt(η̃1; 1). (6.4)The same is done for the rea
tant pro
ess where we also make use of De�nition5.1.5, where ξ̃1 is introdu
ed. Hen
e we de�ne the following:De�nition 6.2.2 (Rea
tant point pro
ess):The rea
tant point pro
ess is an integer-valued random measure Ξt on

{1, 2, . . . , ξtott − 1} × [0, t), (6.5)given by
Ξt := Pt(ξ̃1; 1). (6.6)As already mentioned we also 
ould have extra
ted the genealogy from the 
ontourpro
ess. The 
ontour will be quite helpful for the proofs we are going to give. Theessential 
onne
tion between MRCAs and the 
ontour is given by the followingobservation, whi
h is put into a remark:Remark 6.2.3:For a �xed 
atalyst ηtot and t < T 1,0, i.e. less than the 
atalyst extin
tion time, letthe rea
tant 
ontour pro
ess (C1

u)u≥0 be given as in De�nition 5.2.1. The rea
tant
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ess 39individuals alive at time t are 
orresponding to the starting points and endpoints ofa downward ex
ursion of the 
ontour from level t. The set of MRCAs of these extantindividuals are 
orresponding to the in�ma of the downward ex
ursions of C1 fromlevel t. See Figure 8.1 for more details. 3For the rea
tant point pro
ess we 
an des
ribe the distribution of the most re
ent
ommon an
estors by the following lemma:Lemma 6.2.4: For a �xed 
atalyst (ηtot
s )s≥0 realization and �xed t < T 1,0 therea
tant point pro
ess Ξt has total mass

Ξt(N × [0, t)) = ξtott − 1. (6.7)The point pro
ess Ξt is given by the random points {(i, σi) : 1 ≤ i ≤ ξtott − 1}, wherethe σi are independent and identi
ally distributed [0, t)-valued random-variables.They have distribution given by
P (σ1 ≥ h) =

2
b +

∫ t
0 η

tot
s ds

∫ t
0 η

tot
s ds

∫ t
h η

tot
s ds

2
b +

∫ t
h η

tot
s ds

, (6.8)for every 0 ≤ h < t.The idea is to res
ale the point pro
esses from the beginning of this se
tion toobtain the res
aled 
atalyst and rea
tant point pro
ess. This res
aling will be 
on-sistent with the previous res
aling pro
edures.Think of the res
aled rea
tant forest ξfor,n and its 
ontour Cn. For large n the
ontour looks like a di�usion pro
ess. For a �xed time level t the number of indi-viduals alive at time t is nξtot,nt − 1 and hen
e the number of MRCAs diverges with
n.Keeping the distan
e ν in the point pro
ess equal to 1 would result in the informa-tion diverging to the right. Only low-linear-order information would stay available.We will do a spatial res
aling and set ν = 1

n . This will be the right 
hoi
e to keepinformation available and to make the limit pro
ess a σ-�nite point pro
ess.The interesting fa
t that we might also have mass at time level 0 was alreadymentioned in the �rst se
tion of this 
hapter. Therefore we give the followingde�nition:De�nition 6.2.5 (Res
aled Catalyst point pro
ess):The 
atalyst point pro
ess Πt,n is an integer-valued random measure on
[0, ηtot,n

t − 1
n ] × [0, t), (6.9)given by

Πt,n := Pt(η̃n;
1

n
). (6.10)And the res
aled rea
tant is given by the following de�nition:De�nition 6.2.6 (Res
aled Rea
tant point pro
ess):The 
atalyst point pro
ess Ξt,n is an integer-valued random measure on

[0, ξtotnt − 1
n ] × [0, t), (6.11)given by

Ξt,n := Pt(ξ̃n; 1/n). (6.12)



6.3 Convergen
e of the rea
tant point pro
ess 40For further purposes we will de�ne the killing time of the rea
tant:
Rn,0 := inf{t ≥ 0 : ξtot,nt = 0}. (6.13)This time will be helpful in the on
oming 
onsiderations, sin
e after this time, thereare no rea
tant individuals alive any more and the rea
tant point pro
ess degener-ates to a point pro
ess without points.We give now a quen
hed result des
ribing the distribution of the rea
tant pointpro
ess for a given �xed 
atalyst. The law for a random 
atalyst 
an then beobtained by mixing binomially distributed pro
esses. Therefore let a t > 0 and a�xed 
atalyst path ηtot,n (and with this a �xed 
atalyst extin
tion time) be given.Condition the rea
tant point pro
ess on the event {t < T n,0 ∧ Rn,0} and on therea
tant total mass at time t: ξtot,nt . Then the following result holds:Proposition 6.2.7: We 
an spe
ify the distribution of the rea
tant point pro
ess

Ξt,n at time t. For k ∈ {1, 2, . . . , nξtot,nt − 1}(i) the number of points at level 0 is given by
κn := Ξt,n({ 1

n ,
2
n , . . . ,

kn
n } × {0}) d

= Bin (k,P(σn ≥ t)) and (6.14)(ii) the number of points between 0 and t− h is given by
Ξt,n({ 1

n ,
2
n , . . . ,

k
n} × (0, t− h))

d
= Bin (k − κn,P(σn ≥ h|σn < t)) . (6.15)Here Bin(n, p) is the law of a binomially distributed random variable with parameters

n, p and σn is the extin
tion time of a birth-and-death pro
ess with reprodu
tion anddeath rate (nb2 η
tot,n
t−s )0≤s≤t.This proposition prepares the limit theorem of the point pro
ess. We will give aremark to explain the previous proposition a bit more:Remark 6.2.8: • Sin
e we are starting with n individuals there arise two possi-bilities: The �rst line represents bran
h points at level 0, that means separatedtrees. The se
ond line are death points of MRCAs within one tree.

• The probabilities denoted by P 
an be 
al
ulated more expli
itly by the help ofLemma 6.2.4 adjusting ηtot to nηtot,n.
36.3 Convergen
e of the rea
tant point pro
essIn this se
tion the limit point pro
ess of the rea
tant is 
al
ulated. We will therefore�x t > 0 throughout this se
tion, but we will also require some restri
tions on t,explained later. The limit point pro
ess will be a point pro
ess on [0, Yt] × [0, t),whi
h 
onsists of two di�erent types of domains as in the proposition just before:

• the line at time level zero representing the division into di�erent trees and
• the bran
h points within the trees.
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e of the rea
tant point pro
ess 41We �rst give a quen
hed result with the following prerequisites. Let ρ0 be therea
tant extin
tion time:
ρ0 = inf{t > 0 : Yt = 0}. (6.16)Let tn, t > 0 and assume 
atalyst paths ηtot,n,X, s.t.:

tn → t as n→ ∞, (6.17)
sup

0≤s≤t∧tn
|ηtot,n
s −Xs| → 0 as n→ ∞, (6.18)be given (see De�nition 2.3.3 and (4.3)). Then 
onditioned on the event {tn <

Rn,0 ∧ T n,0} and t < ρ0 ∧ τ0, the following holds:Theorem 6.3.1:The point pro
ess Ξtn,n 
onverges to a point pro
ess πt on [0, Yt] × [0, t). The dis-tribution of πt is given by:
πt([0, uYt] × {0}) =Poisson( 2uYt

∫ t
0 bXs ds

)

, (6.19)
πt([0, uYt] × (0, h)) =Poisson(uYt( 2

∫ t
h bXs ds

− 2
∫ t
0 bXs ds

))

, (6.20)for u ∈ [0, 1] and 0 < h < t.Remark 6.3.2: • The theorem shows us that for a positive time there are only�nitely many trees surviving in the forest. This is be
ause the number ofMRCAs at time level zero in (6.19) is a Poisson number and therefore almostsurely �nite.
• This rea
tant limit point pro
ess is σ-dis
rete as de�ned in [RY91, ChapterXII.1℄. Only �nitely MRCAs are below time level t−h′ for �xed time h′. Thatmeans almost all of the bran
h points are very 
lose to the top of the 
ut tree.
• The faster the rea
tant bran
hes, i.e. the greater b is, the less points 
an beexpe
ted far from the top-level, i.e. far below level t.
• In the se
ond line 
onsider t 
lose to the 
atalyst extin
tion time τ0 and h
lose to t. Then the �rst summand gets very big and we have the situationthat many points lie below h. This is true, sin
e an almost killed 
atalystmakes the rea
tant rather lazy to bran
h and its bran
hes get long. Hen
e theMRCAs are far below level t.

3One would expe
t that there is a strong link between this limit point pro
ess πand the limit 
ontour pro
ess ζδ (see Remark 6.2.3). Before we start with des
ribingthat link we give some de�nitions from ex
ursion theory (see [RY91, Chapter XII℄or [RW79, Chapter VI℄):For a �xed 
atalyst X let ζδ be the limit 
ontour pro
ess. It is given as thesolution of the martingale problem Aδ as in Theorem 5.3.1. Fix a level t < τ δ.
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tant point pro
ess 42Let (ltu(ζ
δ))u≥0 denote its lo
al time pro
ess at level t. The inverse of the lo
altime is de�ned as:

αtu(ζ
δ) := (lt· (ζ

δ))−1(u) = inf{r > 0 : ltr(ζ
δ) > u}, (6.21)where we sometimes omit the relation to ζδ, if no 
onfusion arises. To des
ribe anex
ursion we denote the set of downward ex
ursions from level t by:

U−
t := {f : [0,∞) → (−∞, t] : f(0) = t and f(a) = t⇒ f(a+s) = t ∀s > 0}∪{∆},(6.22)where ∆ denotes the no ex
ursion state. The downward ex
ursion ǫ−u from level t(at lo
al time u) is given as an element of U−

t by:
ǫ−u (s) :=

{

ζδ
(αt

u−+s)∧αt
u

if αtu− 6= αtu

∆ if αtu− = αtu
. (6.23)Additionally we set

α4/b := α0
4/b(ζ

δ), (6.24)as the time, when lo
al time at level 0 rea
hes 4/b for the �rst time, or speakingabout populations, when the total initial mass of the population has rea
hed 1. Thisrather awkward 4/b 
omes from the quadrati
 variation term of the limit 
ontourwhi
h is needed to 
al
ulate lo
al time (
onsult (5.9) and Se
tion 9.2.The point pro
ess of maximal depths of downward ex
ursions is then de�ned as
πζ

δ,t := {(u, inf(ǫ−u ) :, when αtu− 6= αtu and u ≤ α4/b}. (6.25)For this 
onstru
tion the following relation between 
ontour and point pro
essholds:Proposition 6.3.3 (Quen
hed 
ontour and point pro
ess): Let a �xed 
atalyst Xand t < τ0 be given. Choose δ > 0 su
h that t < τ δ and let ζδ denote the solutionof the (Aδ,D(Aδ)) martingale problem. Then it holds that
πt

d
= πζ

δ,t. (6.26)Be aware that the pro
ess πt measures the time in Lebesgue measure, whereasthe pro
ess on the right hand side is related to in
reasing lo
al time of the 
ontour.After this quen
hed result the question arises if also an annealed result holds. Onemight think of a
hieving that for a spe
ial 
lass of bran
hing modi�
ations g, wherethe proof 
an be 
omparable to the one in Se
tion 8.6. But we are not intending aproof of this result.
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7 Proofs of the main results fromChapter 2In this 
hapter we put together the main proofs from Chapter 2 and try to lead thereader through the stru
ture of the problems. Some of the theorems were put inthe appendix.7.1 Remarks and te
hniques7.1.1 Properties of gWe will try to justify the 
onditions set on g on page 14:
• Continuity makes sense sin
e the bran
hing behaviour should not 
hange sig-ni�
antly if there is a slight 
hange in the population size.
• Lips
hitz-
ontinuity is ne
essary to re
eive solutions for the 
atalyst SDE inSe
tion 2.2.
• Vanishing of g in 0 expresses the fa
t that bran
hing stops, when all individualshave died out, sin
e there is nobody left to bran
h.
• The third 
ondition G3 is required to be in a �sub-Anderson-model�, sin
e oth-erwise the bran
hing behaviour 
annot be 
ontrolled easily and the di�usionwould not die out.
• The last 
ondition makes it possible that 0 is an exit boundary and we 
anobtain Lemma 2.1.7 and so we do not get into the following situation:The 
atalyst is 
lose to zero but not dying out. Then the rea
-tant fa
es almost no more bran
hing events and therefore does not
hange.As later want to fo
us on 
ontour pro
esses and trees, we want to avoid thatsituation.Let us also note that Lips
hitz-
ontinuity in 0 and (G4) imply that g must ap-proa
h zero faster than �x 7→ x�, but slower than �x 7→ x2 �.Remark 7.1.1:In some proof we will not need to use 
ondition G2 from page 14, but a weakerrequirement on g:

g(x) ≤ C(1 + x2) ∀x ∈ [0,∞) (7.1)whi
h is 
ertainly true, probably for a di�erent 
onstant C. 3



7.1 Remarks and te
hniques 45For the further analysis it will be helpful to extend the de�nition of g to negativereal numbers. There we will set g = 0. This assumption does neither violate theLips
hitz-
ontinuity nor the estimates just presented. In fa
t this extension is onlyof theoreti
al use, sin
e it will allow us to use some theorems whi
h were designedfor problems de�ned on R rather than on R+, e.g. in Chapter 2.2 dealing withdi�usions.7.1.2 The generator of the dis
rete total mass pro
essWe refer to the de�nition of the dis
rete total mass pro
ess (ηtot,n, ξtot,n) in De�-nition 2.1.4 for �xed n and want to explain how to derive a generator Un for thisMarkov jump pro
ess. After having done this we will see that this generator Un isuniquely 
losable in C0(R
2
+,R) and there is a unique pro
ess (ηtot,n, ξtot,n) 
orre-sponding to the generator for a given initial distribution. So we are invited to speakof the dis
rete 
atalyti
 bran
hing pro
ess.First we extra
t the in�nitesimal generator Un of the total mass fun
tional fromthe De�nitions 1.2.4 and 1.2.5 (for a �ne introdu
tion see the book of Breiman[Bre68, page 332℄). From then on we will understand the generator Un as thepreferable des
ription of the pro
ess.If the pro
ess (ηtot,n

t , ξtot,nt )t≥0 starts in ηtot,n
0 = x, ξtot,n0 = y, where x and y aremultiples of 1/n and greater than zero.Ea
h 
atalyst individual (and there are nx of them dies after an exponential timewith rate ng(x)

x . Just after that zero or two individuals with mass 1
n ea
h are born.So either the total de
reases by 1

n or it in
reases by 1
n , ea
h with probability 1

2 .Hen
e after an in�nitesimal time step ∆t we expe
t the following situation:
(ηtot,n, ξtot,n) with probability

(x+ 1
n , y)

n2

2 g(x)∆t+ O(∆t)

(x− 1
n , y)

n2

2 g(x)∆t

(x, y + 1
n) n2

2 bxy∆t

(x, y − 1
n) n2

2 bxy∆t
(x, y) 1 − n2g(x)∆t − n2bxy∆tSo the generator Un a
ts on a given fun
tion f ∈ C0(R

2
+,R) as follows:

Unf(x, y) = lim
∆t→0

1

∆t
E[f(ηtot,n

∆t , ξtot,n∆t ) − f(x, y)] =

= lim
∆t→0

1

∆t

[

f(x+
1

n
, y)

n2

2
g(x)∆t+ f(x− 1

n
, y)

n2

2
g(x)∆t

+ f(x, y +
1

n
)
n2

2
bxy∆t+ f(x, y − 1

n
)
n2

2
bxy∆t

+f(x, y)(1 − n2g(x)∆t− n2bxy∆t) − f(x, y)
]

=

=
n2

2

[

g(x)

(

f(x+
1

n
, y) − 2f(x, y) + f(x− 1

n
, y)

)

+ bxy

(

f(x, y +
1

n
) − 2f(x, y) + f(x, y − 1

n
)

)]

.

(7.2)
We will need to be a bit more pre
ise about the aforementioned to write down theexa
t generator. What happens if we already start with y = 0? Then we 
annot go



7.2 Existen
e, Uniqueness and Feller-property of (ηtot,n, ξtot,n) 46to ξtot,n∆t = − 1
n . If one 
onsiders all the problemati
 
ases we get

Unf(x, y) =
n2

2
g(x)[f(x+

1

n
, y) − 2f(x, y) + f(x− 1

n
, y)],

+
n2

2
bxy[f(x, y +

1

n
) − 2f(x, y) + f(x, y − 1

n
)], for x, y ≥ 1

n
,

Unf(0, y) =0 for y ≥ 0,

Unf(x, 0) =
n2

2
g(x)[f(x+

1

n
, 0) − 2f(x, 0) + f(x− 1

n
, 0)] for x ≥ 1

n
,

D(Un) =C0(R
2
+,R).

(7.3)
Now with the generator Un at hand it is possible to show that, for g su�
ingthe 
ondition g(x) ≤ C(1 + x2), from (7.1), there is only one pro
ess satisfyingDe�nition 2.1.4. The other 
onditions on g do 
learly not play a role, sin
e they arelo
al, but here we are dealing with a pro
ess on a dis
rete grid 1

nN2.Within the next se
tion we will ta
kle this uniqueness problem, but will use anarbitrary mass m, sin
e this makes the arguments and the looking 
learer.7.2 Existen
e, Uniqueness and Feller-property of
(ηtot,n, ξtot,n)We start with the proof of Lemma 2.1.6. The proof will be done without givingspe
ial attention to the parameter n, but it will be done with an arbitrary mass mof any individual. To get the fa
tor n2 in Un just multiply the on
oming µ with n2.Lemma 7.2.1: [Existen
e, Uniqueness and Feller-property of (ηtot,n, ξtot,n)℄ Forany g : [0,∞) → [0,∞) satisfying Condition 2.1.3 in Se
tion 2.2 the 
losure ofgenerator Un from Se
tion 2.2 is single-valued and generates a Feller-semigroup on

C0(R
2). Moreover Cc(R2) is a 
ore for this generator. So there exists (ηtot, ξtot),uniquely determined by Un and this pro
ess is a Feller-pro
ess.Proof: The proof relies on Theorem 8.3.1 in [EK86℄, whi
h 
an be found in theappendix. As fun
tion λ and measure µ we use:

λ(x, y) = g(x) + xy,

µ((x, y), (x̃, ỹ)) =

{

g(x)
2λ(x,y) for |x− x̃| = m, y = ỹ
bxy

2λ(x,y) for x = x̃, |y − ỹ| = m
,

(7.4)where x, x̃, y, ỹ ≥ 0. Then
Unf(x, y) = n2

∑

x̃,ỹ

f(x̃, ỹ)λ(x, y)µ((x, y), (x̃, ỹ)). (7.5)In the 
ase of the 
atalyst being 0, the rea
tant being y, the measure µ((0, y), ·) is
on
entrated on this point.The state spa
e E = mN2
+ is a lo
ally 
ompa
t, non
ompa
t, separable metri
spa
e. The one-point-
ompa
ti�
ation of E will be denoted by E∆ = E ∪∆, where

∆ is the point at in�nity. The real-valued fun
tion λ is nonnegative and 
ontinuouson N2
+ and µ is 
ontinuous in the �rst 
oordinate pair, sin
e the preimage spa
e
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rete. We have to de�ne some fun
tions γ and η. There should not be any
onfusion with the η whi
h is the 
atalyst population during the rest of this work.We set γ and η as fun
tions whi
h are positive, 
ontinuous and the inverse vanishingat in�nity:
γ(x, y) = η(x, y) = x2 + y2 + 1. (7.6)Now we have to 
he
k the properties (3.2) to (3.5) from [EK86, Theorem 8.3.1℄.We start with 
ondition (3.2) of [EK86, Theorem 8.3.1℄:

sup
x,y≥0

λ(x, y)

γ(x, y)
= sup

x,y≥0

g(x) + bxy

x2 + y2 + 1

≤ sup
x,y≥K

C(1 + x2)

x2 + y2 + 1
+ sup
x,y≥0

bxy

x2 + y2 + 1

≤ C + sup
x,y≥K

Cx2

x2
+
b

2
= 2C +

b

2
= C1 <∞.

(7.7)
So the �rst 
ondition is ful�lled. Next we 
onsider 
ondition (3.3) of [EK86, Theorem8.3.1℄:

lim
(x,y)→∆

λ(x, y)µ((x, y),K) = 0 for every 
ompa
t K ⊂ R2
+. (7.8)This is 
ertainly true sin
e µ((x, y), ·) only has positive measure at the neighbouringpoints having distan
e not more than m from (x, y) Then for diverging (x, y) therewill be no more su
h neighbour point in any 
ompa
t K. So the µ-fa
tor vanishes.Conditions (3.4) and (3.5) of [EK86, Theorem 8.3.1℄ are basi
ally similar in theirproof. For both 
ases we will only 
he
k values of x, y ≥ m, sin
e the other 
asesare even easier to verify and would make the proof only lengthier. Indeed it makessense to 
he
k them separately. Let us start with (3.4), keeping in mind that weonly wanted to allow m ≤ 1 and g(x) ≤ C(1 + x2) (G3):

sup
x,y≥m

λ(x, y)|
∫

γ(x, y) − γ(x̄, ȳ)

γ(x̄, ȳ)
µ((x, y), d(x̄, ȳ))| =

= sup
x,y≥m

g(x)

2

x2 + y2 + 1 −
(

(x+m)2 + y2 + 1
)

(x+m)2 + y2 + 1

+
g(x)

2

x2 + y2 + 1 −
(

(x−m)2 + y2 + 1
)

(x−m)2 + y2 + 1

+
bxy

2

x2 + y2 + 1 −
(

x2 + (y +m)2 + 1
)

x2 + (y +m)2 + 1

+
bxy

2

x2 + y2 + 1 −
(

x2 + (y −m)2 + 1
)

x2 + (y −m)2 + 1

≤ sup
x,y≥m

g(x)

2

m2

(x−m)2 + y2 + 1
+
bxy

2

m2

x2 + (y −m)2 + 1

(7.9)
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≤ sup
x,y≥m

g(x)

(x−m)2 + y2 + 1
+

bxy

x2 + (y −m)2 + 1

≤ sup
x,y≥m

C
1 + x2

(x−m)2 + y2 + 1
+ b

x2 + y2

x2 + (y −m)2 + 1

≤ sup
x≥m

C
1 + x2

(x−m)2 + 1
+ sup
x≥m

bx2

x2 + 1
+ sup
y≥m

by2

(y −m)2 + 1

≤C + sup
x≥m

(C + b)x2

(x−m)2 + 1
+ sup
y≥m

by2

(y −m)2 + 1

≤C + (C + 2b) sup
x≥m

x2

(x−m)2 + 1
<∞,

(7.10)
where the last inequality is easily believed sin
e the denominator stays stri
tly awayfrom 0. This is the desired result.Now at last we have to show (3.5):

sup
x,y≥0

λ(x, y)

∫

γ(x, y) − γ(x̄, ȳ)

γ(x, y)
µ((x, y), d(x̄, ȳ)) <∞. (7.11)But this 
an be shown the same way as (3.4) with even less problems in the denom-inator.7.3 Extin
tion and 
ompa
t 
ontainment 
ondition of

(ηtot,n, ξtot,n)As a next result we show Lemma 2.1.7:Lemma 7.3.1: Every (dis
rete) 
atalyst pro
ess, de�ned as in (2.1) with g satis-fying the usual 
onditions dies out almost sure, i.e.
T n,0 = inf{t ≥ 0 : ηtot,n

t = 0} <∞ a.s. (7.12)Furthermore 0 is an exit boundary ( = absorbing point), i.e. the 
atalyst does notleave 0 after having rea
hed it.Proof: We will 
onsider the situation for a �xed n and do a proof by 
ontradi
-tion.Clearly the dis
rete 
atalyst ηtot,n is a non-negative martingale, so there existsa limit pro
ess ηtot,n
∞ s.t. ηtot,n 
onverges almost sure to this pro
ess. That meansthat for a given ǫ > 0 there exists a T > 0 withP[ |ηtot,n

t − ηtot,n
∞ | ≤ ǫ ∀t ≥ T ] ≥ 1 − ǫ. (7.13)If we sele
t ǫ < 1

n , then the event in 
onsideration means that no more jumps o

urafter time T , ex
ept probably on a set of measure ǫ.We assume that for given 0 < a < b the indu
ed probability measure on [0,∞) ofthe limit pro
ess is given as:P ◦ (ηtot,n
∞ )−1([a, b]) = r, with 0 ≤ r ≤ 1.
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ontradi
tion for any ǫ.Then by (7.13) we get that there must be a set A in Ωn with measure at least

r− ǫ, s.t. for ω ∈ A the 
atalyst ηtot,n(ω) fa
es no more bran
hing events after time
T (ǫ) and

ηtot,n
t (ω) ∈ [a, b] ∀t ≥ T (ǫ).But the probability of no bran
hing event from time T (ǫ) to T (ǫ)+t is bounded fromabove by maxx∈[a,b] e

−g(x)t. If t tends to in�nity, the no-bran
hing probability P(A)goes to zero, as g stays away from zero in any interval [a, b] not 
ontaining 0 (G1and G2). This 
ontradi
ts that it would be more than r− ǫ. So the assumptionthatP ◦ (ηtot,n
∞ )−1([a, b]) = r 
annot hold for any positive r and we have that P ◦

(ηtot,n
∞ )−1([a, b]) = 0 for any positive a and b. So all the mass of ηtot,n

∞ is 
on
entratedin zero.Additionally we have shown that T n,0 is almost surely �nite, sin
e by (7.13)P[T n,0 ≤ t] = P[ηtot,n
t = 0] > 1 − ǫ if we 
hoose t ≥ T (ǫ) and ǫ < 1

n .Clearly 0 is absorbing, sin
e g(0) = 0.Remark 7.3.2:It is well known that in dis
rete time the population gets extin
t depending on theexpe
tation of the o�spring distribution. This also 
ould have been a way to provethe previous lemma.Another result will des
ribe how far the dis
rete total mass pro
ess moves awayfrom the origin when starting in (ηtot,n
0 , ξtot,n0 ). As an additional result we getthe 
ompa
t 
ontainment 
ondition for the set of pro
esses (ηtot,n, ξtot,n)n∈N, whi
hstates this set moves within a 
ompa
tum with a probability 
lose to 1 up to a giventime t. Therefore let ‖ · ‖2 denote the Eu
lidean norm on R2.Lemma 7.3.3 (Compa
t 
ontainment 
ondition): Let (ηtot,n

t , ξtot,nt )t≥0 be a pro
ess
orresponding to the solution of the dis
rete martingale problem (Un, δηtot,n
0

⊗δξtot,n0
).Then for T > 0, k > 0, it is true that:P[ sup

0≤t≤T
‖(ηtot,n

t , ξtot,nt )‖2 > k

]

≤
√

2

k
(ηtot,n

0 + ξtot,n0 ). (7.14)Additionally the 
ompa
t 
ontainment 
ondition holds:When ηtot,n
0 = ξtot,n0 = 1 for all n, then for any λ > 0 and t > 0 there exists a

Γλ, T ⊂ R2
+ su
h that:

inf
n∈N

P [(ηtot,n
t , ξtot,nt ) ∈ Γλ, T ∀ 0 ≤ t ≤ T

]

≥ 1 − λ. (7.15)Proof: Sin
e ηtot,n and ξtot,n are martingales by Lemma 7.2.1, the maximum
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tation values are 
onserved.P[ sup
0≤t≤T

‖(ηtot,n
t , ξtot,nt )‖2 > k

]

≤ P[ sup
0≤t≤T

|ηtot,n
t | > k√

2

]

+P[ sup
0≤t≤T

|ξtot,nt | > k√
2

]

≤

≤
√

2

k

(E[ηtot,n
T ] +E[ξtot,nT ]

)

=

√
2

k
(ηtot,n

0 + ξtot,n0 ).

(7.16)
The se
ond statement is just a reformulation.7.4 Existen
e and Uniqueness of (X, Y )7.4.1 The main result and the strategy of the proofWithin this se
tion a proof of the main result of se
tion 2.2 is given. This theoremstated thatTheorem 7.4.1:If g satis�es Condition 2.1.3 the SDE system

dXt =
√

g(Xt) dW
1
t , (7.17)

dYt =
√

bXtYt dW
2
t , (7.18)where W 1 and W 2 are two independent Brownian motions has a unique strongsolution.Here the 
atalyst-rea
tant-type of the problem helps obtaining a proof for thistheorem. In a �rst step we will show that there exists a strong unique solution

X for equation (7.17), sin
e g is lo
ally Lips
hitz-
ontinuous. That means for anyBrownian motion path W 1(ω) on a probability spa
e (Ω′,A′,P′) there exists a path
X(ω) whi
h solves the 
atalyst's SDE for this spe
i�
 ω ∈ Ω′. After that we showin the se
ond step that the solutions of the 
atalyst die out after almost sure �nitetime. Then in the last step we take a �xed 
atalyst path X(ω) and 
onsider (7.18)for this single path. This �xed rea
tant SDE has a strong unique solution andaltogether we get that whenever starting with two independent Brownian motionswe 
an 
onstru
t a solution (X,Y ) of the SDE system.The proof of this theorem is split up in three parts. We will put the proof of thistheorem in the next subse
tion and denote the steps here in a short overview:Step 1: The 
atalyst SDE has a unique strong solution.Step 2: The 
atalyst dies out after almost sure �nite time.Step 3: The rea
tant SDE for �xed 
atalyst has a unique strong solution.7.4.2 The proofStep 1: The 
atalyst SDE has a unique strong solutionLet us start with a lemma about the 
atalyst:
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atalyst SDE has a unique strong solution): The SDE dXt =
√

g(Xt) dW
1
t has a unique strong solution, for g satisfying Condition 2.1.3.Remark 7.4.3:The theorems used for the proof in this �rst step are due to Engelbert and S
hmidtand are well presented in [KS00℄. Their approa
h to one-dimensional problemsallows deeper results than the multi-dimensional theory via Lips
hitz-
ontinuity. Thelatter is presented in Theorem 5.2.1 in the SDE book [Øks05℄ of Øksendal. They
annot be used as there was not postulated a global Lips
hitz-
ontinuity for g. Wedid not postulate that, sin
e we also wanted to treat 
ases where g grows faster thanlinear. 3Proof: This proof relies on Corollary 5.10 of [KS00℄, whi
h says that there existsa strong unique solution to dXt = σ(Xt)dWt, if the four 
onditions (E) and (i)-(iii)hold for fun
tions f : R → [0,∞] and h : [0,∞] → [0,∞]:(E)

I(σ) ⊆ Z(σ), i.e. : {x ∈ R : ∃ǫ > 0 s.t. ∫ x+ǫ

x−ǫ

dy

σ2(y)
= ∞} ⊆ {x ∈ R : σ(x) = 0}(7.19)(i) at every x ∈ I(σ)c, the quotient (f/σ)2 is lo
ally integrable; i.e., there exists

ǫ > 0 (depending on x) su
h that
∫ x+ǫ

x−ǫ

(

f(y)

σ(y)

)2

dy <∞; (7.20)(ii) the fun
tion h is stri
tly in
reasing and satis�es h(0) = 0 and
∫ ǫ

0
h−2(u)du = ∞; ∀ǫ > 0 (7.21)(iii) there exists a 
onstant a > 0 su
h that

| σ(x+ y) − σ(x) |≤ f(x)h(| y |); ∀x ∈ R, y ∈ [−a, a]. (7.22)Assertion (E) is relatively easy to prove: Sin
e g is 
ontinuous, g(x) must be zero,if x ∈ I(σ). The remaining three points will be proven in reverse order, sin
e itseems more intuitive: As g is lo
ally Lips
hitz-
ontinuous, for any 
ompa
tum Kthere will be a 
onstant LK , s.t.:
| g(x) − g(y) |≤ LK | x− y |; ∀x, y ∈ K. (7.23)See the Appendix B.4 for a proof. Set K(x) := [x− a, x+ a]. Then LK(x) is �nitefor any x and a sin
e the interval is 
ompa
t.Next de�ne f(x) = L
1/2
K(x) and we have:

|
√

g(x + y) −
√

g(x) |2 ≤ | g(x + y) − g(x) |≤ LK(x) | y | ∀y ∈ [−a, a]. (7.24)But this is the squared version of (iii) for h(u) = u1/2. This fun
tion h also satis�es
ondition (ii) sin
e u 7→ 1/u is not integrable in a neighbourhood of zero and the
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onditions being 
learly satis�ed.It remains to show (i). But the integral will be �nite if one 
hooses x− ǫ > 0, sin
ethe denominator stays stri
tly away from zero and the nominator is bounded fromabove by LK for K = [x− ǫ− a, x+ ǫ+ a].Step 2: The 
atalyst dies out after almost sure �nite timeIn the third step we want to prove that for a given sample path Xt(ω) = x(t)of the 
atalyst, there is a solution to the rea
tant SDE. Before we 
an do that weneed to know a bit more about the 
atalyst. The following lemma shows that italmost surely dies out after �nite time and this will prove Lemma 2.2.4 about theextin
tion time of the 
atalyst:Lemma 7.4.4: Every 
atalyst pro
ess X with g satisfying the usual 
onditions diesout almost sure in �nite time, i.e.
τ0 = inf{t ≥ 0 : Xt = 0} <∞ a.s. , (7.25)and 0 is an exit boundary for X.Proof: We will use the notations and theorems from [RW79, Se
tions V.44-51℄.Another �ne a

ount for boundary behavior of di�usions is given in [KT81℄.Sin
e the 
atalyst SDE (7.17) has no drift, X is on the natural s
ale (i.e. thes
aling fun
tion is the identity). From equation (47.30) in [RW79℄ we see that thespeed measure m is given by:

m(dx) =
1

g(x)
dx. (7.26)First we need to 
he
k that τ0 < ∞ a.s. by Theorem 51.2(ii) and for that purpose
al
ulate by taking into a

ount (G4) from page 14:

∫

0+

xm(dx) =

∫

0+

x
dx

g(x)
≤
∫ δ(ǫ)

0
x
c′ + ǫ

x1+β
dx =

= (c′ + ǫ)

[

x1−β

1 − β

]δ(ǫ)

0

=
c′ + ǫ

1 − β
δ1−β <∞,

(7.27)where one should remember that 0 ≤ β < 1. Thus it follows that P x[τ0 < ∞] =
1 ∀x > 0.Now let us 
he
k that 0 is an exit boundary by De�nition (51.3): Sin
e P x[τ0 <
∞] = 1 > 0, we have that 0 is a

essible. However with

∫

0+

m(dx) > (c′ − ǫ)

∫ δ

0
x−1−β dx = ∞, (7.28)it follows that 0 is an exit boundary.Step 3: The rea
tant SDE for �xed 
atalyst has a unique strong solution
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ess 53With the lemma from the previous step at hand we will now show existen
e anduniqueness of the rea
tant SDE for a �xed 
atalyst realization x(t) = Xt(ω). Wealready know that almost surely x(t) will go to zero after �nite time T . For su
h afun
tion the following lemma holds:Lemma 7.4.5 (The rea
tant SDE has a unique strong solution): For any 
ontin-uous fun
tion x : [0,∞) → [0,∞), with x([T,∞)) = {0} for a T <∞ the SDE
dYt =

√

bx(t)Yt dW
2
t (7.29)has a unique strong solution.Proof: Sin
e x is a 
ontinuous fun
tion on a 
ompa
tum and identi
ally zerooutside, it is bounded from above by a 
onstant k, i.e. x(t) < k ∀t ∈ [0,∞).Then due to the 
ontinuity of σ(t, y) =

√

bx(t)
√
y in both 
oordinates there existsa weak solution to (7.29), see e.g. [EK86, Theorem 5.3.10℄. Sin
e σ is Hölder-

1/2-
ontinuous in the se
ond 
oordinate, pathwise uniqueness follows by a theoremof Yamada and Watanabe for one-dimensional SDEs [EK86, Remark 5.3.9℄. Butpathwise uniqueness and weak existen
e imply existen
e and uniqueness of a strongsolution (e.g. [Kle08, Theorem 26.18℄ or [KS00, Corollary 5.3.23℄ ).Combining the three previous steps we have shown existen
e and uniqueness of astrong solution to the SDE system 7.17 and 7.18.7.5 Simple properties of the di�usion pro
essWe will introdu
e some notation when we start the pro
esses. If X0 = x > 0 and
Y0 = y > 0, then we will denote the solution of the SDE (or the martingale problem)for these initial values by (Xx

t , Y
x,y
t ). This makes sense, sin
e the 
atalyst evolvesautonomously of the rea
tant and so the initial value of the rea
tant does not in�u-en
e the evolution of the 
atalyst. Sometimes we also might 
onsider probabilitiesor expe
tations for given initial values. Then it sometimes is helpful not to �ll theformula with two many supers
ripts and we will denote the probability as P(x,y)and the expe
tation as E(x,y). If not required for our 
onsiderations at all we try toavoid the sub- and supers
ripts for a better reading.We begin with some expe
tation values of the 
atalyst and the rea
tant di�usions:Proposition 7.5.1: [Expe
tation values of the SDE system℄ If (Xx, Y x,y) is aunique strong solution for the martingale problem (A, δx × δy), then we get the fol-lowing expe
tation values, where γ is a 
onstant only depending on g and α, C is asin (G2) from page 14:

0 < α < 2: E [Xx
t ] = x, E [Y x,y

t ] = y,E [Xx
t Y

x,y
t ] = xy,

(7.30)
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0 ≤ α < 1: E [(Xx

t )α] ≤ 1 + x, (7.31)E [g (Xx
t )] ≤ C(2 + x), (7.32)

1 ≤ α < 2: E [(Xx
t )α] ≤

(

xα +
C + γ

C

)

eCα(α−1)t − C + γ

C
, (7.33)E [g (Xx

t )] ≤ (Cxα + C + γ) eCα(α−1)t − γ. (7.34)Proof: The �rst statements in (7.30) are 
lear, sin
e X and Y are martingales.Additionally XY is also a martingale, sin
e U does not 
ontain any 
ross-derivativesof x and y.More interesting are the other results. It is 
lear that (7.31) implies (7.32) and(7.33) implies (7.34), sin
e from the 
ondition (G2) on g (in page 14), we have:E [g (Xx
t )] ≤ E [C(1 + (Xx

t )α)] ≤ C + C E [(Xx
t )α] . (7.35)So now we will show (7.31)

0 ≤ α < 1 : An easy 
al
ulation gives:E [(Xx
t )α] = E [(Xx

t )α 1{Xx
t ≤1} + (Xx

t )α 1{Xx
t >1}

]

≤

≤ 1 +E [Xx
t 1{Xx

t >1}
]

≤ 1 + x.
(7.36)

1 ≤ α < 2 : For this 
ase we will apply It�'s rule for the fun
tion x 7→ xα and takeexpe
tations:E [(Xx
t )α] =xα +E [∫ t

0
α(Xx

s )α−1
√

g(Xx
s ) dWs

]

+E [∫ t

0
α(α − 1)(Xx

s )α−2g(Xx
s ) ds

]

=

=xα + α(α− 1)

∫ t

0
Ex [1{Xs≤1}(Xs)

α−2g(Xs)
]

ds

+ α(α − 1)

∫ t

0
Ex [1{Xs>1}(Xs)

α−2g(Xs)
]

ds ≤

≤xα + α(α− 1)

∫ t

0
Ex [1{Xs≤1}(Xs)

α−2γ(Xs)
1
]

ds

+ α(α − 1)

∫ t

0
Ex [1{Xs>1}(Xs)

α−2C(1 + (Xs)
2)
]

ds.

(7.37)
Here γ is a real number, s.t. g(x) ≤ γx holds on [0, 1]. This exists by the
onditions set on g on page 14:If a is s.t. [0, a) is a neighbourhood of zero, where the Lips
hitz-
onstant L0in zero bounds g(x)/x, then we have

g(x) ≤ L0x for x ∈ [0, a) (7.38)
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ess 55on the other hand g(x)/x is 
ontinuous on [a,1℄, so bounded by a 
onstant c0.If γ is 
hosen to be the maximum of L0 and c0/a, then we are done.To 
ontinue with (7.37), we look at the �rst summand of the expe
tation anduse the fa
t that the random variable was trun
ated to be smaller than 1. Forthe se
ond summand use that α− 2 < 0:E[(Xx
t )α] ≤ xα + α(α − 1)(γ + C)t+ α(α− 1)

∫ t

0
CE[(Xx

s )α] ds (7.39)This already makes you look for Gronwall's inequality, whi
h we adapt nowto get:E[(Xx
t )α] ≤ xα + α(α − 1)(γ + C)t

+ Cα(α− 1)

∫ t

0
(xα + α(α− 1)(γ + C)s)eCα(α−1)(t−s) ds

=xα + α(α− 1)(γ + C)t+ Cα(α− 1)xαeCα(α−1)t [e
−Cα(α−1)s]t0

−Cα(α− 1)

+ Cα2(α− 1)2(γ + C)eCα(α−1)t

∫ t

0
se−sCα(α−1) ds =

=xα + α(α− 1)(γ + C)t+ xα(eCα(α−1)t − 1)

+ Cα2(α− 1)2(γ + C)eCα(α−1)t

([

s
e−Cα(α−1)s

−Cα(α− 1)

]t

0

+

+
1

Cα(α− 1)

∫ t

0
e−Cα(α−1)sds

)

=

=α(α − 1)(γ + C)t+ xα(eCα(α−1)t) − tα(α− 1)(γ +C)

+
γ + C

C
eCα(α−1)t

[

−e−Cα(α−1)s
]t

0
=

=(xα +
γ + C

C
)eCα(α−1)t − γ + C

C
.

(7.40)

Then we are done and have shown the proposition.Another easy to verify 
onsequen
e of the SDE-stru
ture is the following propo-sitionProposition 7.5.2 (Quadrati
 Variations): If (Xx, Y x,y) is a strong unique solu-tion for the martingale problem U with initial values X0 = x and Y0 = y, then wehave:
〈X,X〉t =

∫ t

0
g(Xs) ds,

〈Y, Y 〉t =

∫ t

0
XsYs ds,

〈X,Y 〉t =0.

(7.41)We will omit the proof of this proposition, whi
h 
an be done as in [Kle08℄, page555. The third statement 
an already be 
on
luded by proposition 7.5.1.
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ess 567.6 The Feller-property of the di�usion pro
essThe next a bit more tedious thing to prove is the existen
e of a Feller semigroup forthe di�usion pro
ess (X,Y ).7.6.1 The main result and the strategy of the proofWith the on
oming lemma the proof of Lemma 2.2.2 will be 
omplete:Lemma 7.6.1: If g satis�es Conditions 2.1.3, then the di�usion pro
ess (X,Y ) isa Strong Markov pro
ess and moreover a Feller pro
ess.We will do the proof in several steps and separate them in some subse
tions.Very fast we will see that the pro
ess is Markovian and this will not 
ost us alot of time. It will be a bit more exhausting to show the Feller-property expli
itly.From the Markov property we are given a Markov-semigroup St:
St :C0(R

2,R) → {h : R2 → R}, where
Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y] ∀f ∈ C0(R

2,R).
(7.42)Unfortunately we 
annot 
on
lude the Feller-property of this semigroup easily,sin
e we neither have boundedness nor ellipti
ity of the di�usion matrix. So wetake a di�erent approa
h and prove the Feller-property in a dire
t way. For this wewill use the abbreviation C0 for C0(R

2,R). And we need to show the following twostatements:(i) ∀f ∈ C0,∀x, y ≥ 0 : limt→0(Stf)(x, y) = f(x, y) .(ii) St(C0) ⊆ C0 ∀t > 0.They are a su�
ient 
ondition for St being a strongly 
ontinuous 
ontra
tionsemigroup on C0. This 
an be found in [RY91, Proposition III.2.4℄. Then we knowthat (X,Y ) is a Feller-pro
ess.Before these two statements are proven a 
ompa
t 
ontainment 
ondition isshown. The proof of the se
ond property is split up in two parts as well: van-ishing at in�nity and 
ontinuity. The �rst requires one step the latter four steps.Altogether we get the following proo�ng s
heme in eight steps:Step 1: (X,Y ) is a Markov pro
ess and has the Markov-semigroup St.Step 2: (X,Y ) satis�es a 
ompa
t 
ontainment 
ondition.Step 3: Proof of (i). Convergen
e of the sequen
e (Stf)(x, y) for t tending to zeroto f(x, y).Step 4: If f vanishes at in�nity, then so does Stf for any t ≥ 0.Step 5: If f is 
ontinuous, then so is Stf : Preparation.Step 6: If f is 
ontinuous, then so is Stf in a point (x, y) with x > 0, y > 0.Step 7: If f is 
ontinuous, then so is Stf in a point (x, 0) with x > 0.Step 8: If f is 
ontinuous, then so is Stf in a point (0, y) with y ≥ 0.
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ess 57The proof is not put into a �proof environment�, but held within these steps. Somelemmas and propositions will arise, but all will be belonging to the 
orrespondingparts of the proof.7.6.2 The proofStep 1: The pro
ess (X,Y ) is Markov pro
ess with Markov semigroup StDue to the existen
e of a unique strong solution for the SDE
dXt =

√

g(Xt) dW
1
t ,

dYt =
√

bXtYt dW
2
t ,the pro
ess (X,Y ) is a Markov-pro
ess. Hen
e there is a Markov-semigroup St,whi
h satis�es:

Stf(x, y) = E[f(Xt, Yt)|X0 = x, Y0 = y] ∀f ∈ C0(R
2,R). (7.43)Step 2: Compa
t 
ontainment 
ondition of (X,Y )In this step we will write an estimate des
ribing how far the bivariate pro
ess (Xt, Yt)
an go away from a starting point (x, y) for a given �nite time t. We will �nd itappropriate to use the notation a ∨ b for indi
ating that in the 
ase α < 1 we have

a and for α ≥ 1 we have b. We start with an easy 
al
ulation about the modulus of
X and Y : E[‖(Xx

t ,Y
x,y
t ) − (x, y)‖2] = E[(Xx

t − x)2 + (Y x,y
t − y)2]

=E[(

∫ t

0

√

g(Xx
s ) dW 1

s )2 + (

∫ t

0

√

bXx
t Y

x,y
t dW 2

s )2]

= E[

∫ t

0
g(Xx

s )ds +

∫ t

0
bXx

s Y
x,y
s ds]

=

∫ t

0
(E[g(Xx

s )] + bE[Xx
s Y

x,y
s ]) ds.Now we will use what we 
al
ulated in Proposition 7.5.1 :E[‖(Xx

t ,Y
x,y
t ) − (x, y)‖2] ≤

∫ t

0

[

(1 + x) ∨
(

(Cxα + C + γ)eCα(α−1)s − γ
)

+

=bxyt+ t(1 + x) ∨ C(1 + xα) + γ

Cα(α− 1)
(eCα(α−1)t − 1) − γt.(7.44)Now we 
an use the Doob-inequality for p = 2, sin
e (Xx

t , Y
x,y
t ) − (x, y) is amartingale with expe
tation 0 and we get the following estimate:P[ sup

0≤s≤t
‖(Xx

t , Y
x,y
t ) − (x, y)‖ > k0] ≤

≤ 1

k2
0

(

xyt+ t(1 + x) ∨ C(1 + xα) + γ

Cα(α− 1)
(eCα(α−1)t − 1)

)

.
(7.45)
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ess 58Remark 7.6.2:Note that the right hand side is stri
tly in
reasing in t. 3Lemma 7.6.3: For any given ǫ > 0, t ≥ 0, (x, y) ∈ R2
+, there is a 
ompa
tum

K = K(ǫ, t, x, y) s.t. the pro
ess (Xx
s , Y

x,y
s ) stays within K with probability ≥ 1− ǫ,whenever 0 ≤ s ≤ t.Proof: The proof is 
lear by (7.45).Step 3: Continuity of St for t→ 0We start by showing the �rst 
ondition (i) for the Feller-property. Let therefore

f ∈ C0 a fun
tion, (x, y) ∈ R2
+ a starting point and an ǫ > 0 be given. Then all weneed to show is that we 
an �nd a t0, s.t.

|(Stf)(x, y) − f(x, y)| < ǫ ∀t < t0. (7.46)By 
ontinuity of f in the point (x, y) it is true that for given ǫ we 
an �nd a δ s.t.for all (x̃, ỹ) with ‖(x, y) − (x̃, ỹ)‖ ≤ δ:
|f(x, y) − f(x̃, ỹ)| < ǫ

2
. (7.47)Additionally 
hoose t0 in (7.45), s.t. for k0 = δ, the right hand side is smaller than

ǫ/2‖f‖∞. Then we get by the isotonity of (7.45) for t ≤ t0:
|(Stf)(x, y) − f(x, y)| = |E(x,y)[f(Xt, Yt) − f(x, y)] | ≤

≤E(x,y)

[

|f(Xt, Yt) − f(x, y)|(1{‖(Xt ,Yt)−(x,y)‖≤δ} + 1{‖(Xt,Yt)−(x,y)‖>δ})
]

≤
≤ ǫ

2
+ 2‖f‖∞

ǫ

2‖f‖∞
= ǫ. (7.48)This is already what we needed to show for (i).Step 4: If f vanishes at in�nity, then so does StfLet us 
onsider the behaviour of Stf 
lose to in�nity. Therefore let an f ∈ C0, a�xed time t and an ǫ > 0 be given. We need to 
he
k whether Stf vanishes 
lose toin�nity:

lim
(x,y)→∞

(Stf)(x, y) = 0. (7.49)Or equivalently:
∀ǫ ∃n s.t. (Stf)(x, y) < ǫ ∀(x, y) with either x > n or y > n. (7.50)It is 
lear that we need to 
onsider two 
ases, one where x is diverging and anotherone, where y is diverging. We will only deal with the �rst one, sin
e the methodsfor both 
ases would be the same and the se
ond one is even easier to show.
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ess 59So let x0 > 0 be given. We will use the Doob-inequality estimate in (7.45) with
k0 = x0/2 to get:P [‖(Xx0

t , Y x0,y
t ) − (x0, y)‖ >

x0

2

]

≤ P [ sup
0≤s≤t

‖(Xx0
s , Y x0,y

s ) − (x0, y)‖ >
x0

2

]

≤ 4

bx2
0

(

x0yt+ t(1 + x0) ∨
C(1 + xα0 ) + γ

Cα(α− 1)
(eCα(α−1)t − 1)

)

=

=
4byt

x0
+ 4t

1 + x0

x2
0

∨ 4
C(1 + xα0 ) + γ

x2
0 Cα(α− 1)

(eCα(α−1)t − 1). (7.51)Now it is 
lear that for given t the right hand side 
an be bounded from above byany positive bound if x0 is su�
iently large (remember that α < 2). Intuitively weshowed that if we start in x0 far away from zero, (Xt, Yt) 
an rea
h an area with
Xt < x0/2 within a short time with only small probability and we shall use that nowto get (7.49). Therefore we 
hoose x0 so large that (7.51) is smaller than ǫ/2‖f‖R2

+and s.t. ‖f‖[x0/2,∞)×R+
< ǫ/2 (remember f ∈ C0). Then we get

(Stf)(x0, y) =E[f(Xx0
t , Y x0,y

t )] =

=E(x0,y)

[

f(Xt, Yt)(1{‖(Xt,Yt)−(x0,y)‖≤x0
2
} + 1{‖(Xt,Yt)−(x0,y)‖>x0

2
})
]

≤

≤‖f‖[x0/2,∞)×R+
+ ‖f‖R2

+

ǫ

2‖f‖R2
+

≤ ǫ

2
+
ǫ

2
≤

≤ǫ. (7.52)Clearly the argument still holds for any any other starting point > x0. So for given
ǫ > 0 there is a x0 s.t. (7.50) is true for all x > x0. For the se
ond 
oordinate a y0
an be found the same way. Then n = max(x0, y0) makes (7.50).Step 5: If f is 
ontinuous, then so is Stf : PreparationThe most di�
ult thing to show is that for given f ∈ C0, the image under St is a
ontinuous fun
tion for any t. Hen
e for the on
oming steps keep t > 0 and f ∈ C0�xed.Suppose the points x and y are �xed. Assume that x̃ and ỹ are 
lose to xand y and we have solutions to the martingale problem (2.2.3) with initial values
(Xx

0 , Y
x,y
0 ) = (x, y) and (X x̃

0 , Y
x̃,ỹ
0 ) = (x̃, ỹ). What we need to show is the following:

∀ǫ > 0 ∃δ > 0 s.t. ∀x̃, ỹ with ‖(x̃, ỹ) − (x, y)‖ < δ : |Stf(x, y) − Stf(x̃, ỹ)| < ǫ(7.53)We will do that by showing that the solutions �
ome together� as time goes on.To do that we require a 
oupling argument:
|Stf(x, y) − Stf(x̃, ỹ)| ≤|E [f(Xx

t , Y
x,y
t ) − f(Xx

t , Y
x,ỹ
t )

]

|+

+ |E [f(Xx
t , Y

x,ỹ
t ) − f(X x̃

t , Y
x̃,ỹ
t )

]

| (7.54)
≤‖f‖E [P (Ty,ỹ > t|Xx)] + ‖f‖P(Tx,x̃ > t̃ ∪ T̂y,ỹ > t),(7.55)
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ess 60where the following 
oupling times are used
Ty,ỹ := inf{s > 0 : Y x,y

s = Y x,ỹ
s },

Tx,x̃ := inf{s > 0 : Xx
s = X x̃

s },
T̂y,ỹ := inf{s > Tx,x̃ : Y x,ỹ

s = Y x̃,ỹ
s } and

t̃ < t, where t̃ is �xed. (7.56)The idea is to 
ouple the pro
esses mentioned in the previous lines a

ording tothe te
hnique presented in [Lin92, page 214℄. To des
ribe the idea shortly we letthe pro
esses in (7.54) run independently until its 
oupling times, i.e. the �rst timethey meet. Then the pro
esses run together and that is why we only need to worryabout the question whether the 
oupling times 
an be bounded from above by anypositive ǫ, if we 
hoose the initial points x̃ and ỹ su�
iently 
lose to x and y.We will bene�t from the 
atalyti
 setting of the problem and we note that for these
ond summand we �rst want the 
atalyst to 
ouple at time Tx,x̃, whi
h will be avery small time and then as the rea
tants have not moved apart to dramati
ally we
an still be sure that the rea
tant 
ouples su�
iently fast.We treat several 
ases in the next steps and start with the most di�
ult one.Step 6: If f is 
ontinuous, then so is Stf in a point (x, y) with x > 0, y > 0(A) We start with the �rst summand and give a preparatory lemma:Lemma 7.6.4: Let a Brownian motion W be given. In the 
ase x > 0, y > 0 thefollowing holds:For all s > 0, ǫ > 0 there exist δ1 > 0, δ2 > 0 s.t.P(〈Y x,y, Y x,y〉s > δ1) > 1 − ǫ, (7.57)P(W (r) < δ2 ∀r ≤ δ1) <ǫ. (7.58)Proof. The proof is given by simple 
al
ulations using (7.45):
〈Y x,y, Y x,y〉s =

∫ s

0
Xx
r Y

x,y
r dr ≥ (7.59)

≥ s̃
xy

4
1{|Xx

r −x|<x
2
,|Y x,y

r −y|< y
2

∀r<s̃}. (7.60)And by (7.45) and a 
hoi
e of s̃ su�
iently small (note that the quadrati
 variationis monotonous in s) this 
an be bounded from below with a 
onstant δ1 with prob-ability > 1 − ǫ.Additionally by the distribution of level-hitting times for Brownian motion (
om-pare [RY91, p.107℄) it is 
lear that the se
ond 
laim also holds by 
hoosing δ2appropriately.Then we 
an start thinking about the 
oupling time Ty,ỹ for a given 
atalyst
Xx started in a �xed point x. By the Martingale Representation Theorem for themartingale Y x,y

s − Y x,ỹ
s it holds for a Brownian Motion W that:

{Ty,ỹ > t} = {Y x,y
s 6= Y x,ỹs ∀s ≤ t} = (7.61)

= {W (〈Y x,y − Y x,ỹ, Y x,y − Y x,ỹ〉s) 6= y − ỹ ∀s ≤ t} (7.62)
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ess 61and sin
e 〈A−B,A−B〉s ≥ 〈A,A〉s for independent pro
esses, we have:
{Ty,ỹ > t} ⊆ {W (〈Y x,y, Y x,y〉s) 6= y − ỹ ∀s ≤ t}. (7.63)By the pre
eding lemma we get by the �rst line for a good 
hoi
e of δ1 thatP(Ty,ỹ > t) ≤ (1 − ǫ)P(W (s) 6= y − ỹ ∀s ≤ δ1) + ǫ, (7.64)and then by the se
ond line for 
hoosing y − ỹ < δ2:P(Ty,ỹ > t) ≤ (1 − ǫ)ǫ+ ǫ < 2ǫ. (7.65)So the right 
hoi
e of ỹ is already done to bound the �rst summand in (7.55).(B) To 
ontrol the se
ond summand we need to follow some more 
ompli
atedpaths. First we give a lemma similar to the one before:Lemma 7.6.5: Let a Brownian motion W be given. In the 
ase x > 0 the followingholds:For all t̃ > 0, ǫ > 0 there exist δ1 > 0, δ2 > 0 s.t.P(〈Xx,Xx〉t̃ > δ1) > 1 − ǫ, (7.66)P(W (r) < δ2 ∀r ≤ δ1) <ǫ. (7.67)Proof. The proof uses (7.45) and Condition 2.1.3 ((C2) and (C4)) and is similar tothe one before. For ˜̃t < t̃ < t and α < 1:
〈Xx,Xx〉t̃ =

∫ t̃

0
g(Xx

r )dr

≥
∫ ˜̃t

0
g(Xx

r )1{|Xx
s −x|<αx ∀s≤˜̃t} + 1{|Xx

s −x|≥αx ∀s≤˜̃t}dr

≥
∫ ˜̃t

0
min

z∈[x−αx,∞)
g(z)1{|Xx

s −x|<αx ∀s≤˜̃t} dr

≥ ˜̃t(c′(x− αx)1+β ∧ g0)1{|Xx
s −x|<αx ∀s≤˜̃t}.

(7.68)
But by the Doob estimate in (7.45) the right hand side 
an be bounded from belowby a positive 
onstant with probability > 1 − ǫ as in the previous lemma.The se
ond line is proven the same way as above.The idea is not to let the rea
tant move too far apart its starting point until time
t̃. Hen
e, for given ǫ > 0, δ̃ > 0 �x 0 < t̃ < t s.t. (by (7.45)):P(|Y x,ỹ

s − ỹ| < δ̃ ∀s < t̃) > 1 − ǫ andP(|Y x̃,ỹ
s − ỹ| < δ̃ ∀s < t̃) > 1 − ǫ.

(7.69)Then �nd, by Lemma 7.6.5 and the ideas at the end of part (A), x̃ in the neighbor-hood of x s.t.: P(Tx,x̃ > t̃) < ǫ. (7.70)(C) To bound the se
ond expression in (7.55) note that:
P (Tx,x̃ > t̃ ∪ T̂y,ỹ > t) ≤ P (Tx,x̃ > t̃) + P (Tx,x̃ > t̃ ∩ T̂y,ỹ > t). (7.71)
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ess 62The �rst summand 
an be bounded by part (B). For the se
ond summand observethe following:At time t̃ the pro
esses Y x,ỹ and Y x̃,ỹ di�er at most by 2δ̃ by (7.69) and the
atalysts have already �merged�. Hen
e at time t̃ we are in the situation of 
ase(A) where we need to wait for the merger of two rea
tants with �xed 
atalyti
ba
kground. But this 
an be done with a probably di�erent 
hoi
e of x̃.Step 6: If f is 
ontinuous, then so is Stf in a point (x, 0) with x > 0We will argue similar as in the previous step, but we 
annot apply Lemma 7.6.4:we 
annot bound Y x,ỹ from below.We go ba
k to (7.53) and write for x̃ > 0, ỹ > 0:
|Stf(x, 0) − Stf(x̃, ỹ)| ≤|E [f(Xx

t , Y
x,0
t ) − f(X x̃

t , Y
x̃,0
t )

]

|+

+ |E [f(X x̃
t , Y

x̃,0
t ) − f(X x̃

t , Y
x̃,ỹ
t )

]

| (7.72)
≤‖f‖P(Tx,x̃ > t) +E[f(X x̃

t , 0) − f(X x̃
t , Y

x̃,ỹ
t )]. (7.73)The bound on the �rst summand is 
lear by part (B) of the previous step. These
ond summand is not too di�
ult to bound sin
e it is just a one-dimensionalproblem. Hen
e set

T0 := inf{s > 0 : Y x̃,ỹ = 0} and (7.74)
T√ỹ := inf{s > 0 : Y x̃,ỹ

s =
√

ỹ}. (7.75)Now we divide the probability spa
e into the following three (not ne
essarily disjoint)sets:
{T0 < T√ỹ, T0 < t} ∪ {T√ỹ < T0, T√ỹ < t} ∪ {T0 > t, T√ỹ > t}. (7.76)Clearly we want to bound the se
ond summand from above with the help of thesesets. Note that P[T√ỹ < T0|X x̃

s ] =
√

ỹ. (7.77)Hen
e,E[f(X x̃
t ,0) − f(X x̃

t , Y
x̃,ỹ
t )] (7.78)

≤ 0 + 2‖f‖P[T√ỹ < T0|(X x̃
s ] +E[ sup

z∈(0,
√
ỹ)

|f(X x̃
t , 0) − f(X x̃

t , z)|]. (7.79)And sin
e f is 
ontinuous in the se
ond 
oordinate 0, we 
an 
hoose ỹ so 
lose tozero, s.t. the right hand side is bounded by ǫ. If additionally for the �rst summandwe had 
hosen x̃ so 
lose to x that
‖f‖P (Tx,x̃ > t) < ǫ, (7.80)then we obtain:

|Stf(x, 0) − Stf(x̃, ỹ)| ≤ 2ǫ. (7.81)Hen
e this step is done.Step 7: If f is 
ontinuous, then so is Stf in a point (0, y) with y ≥ 0This step involves similar problems as the previous one: non-appli
ability of Lemma
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ess 637.6.5. The advantage, however, is that we only have to deal with some sort of one-dimensional problem. We have:
|Stf(0, y) − Stf(x̃, ỹ)| ≤|f(0, y) − f(0, ỹ)| + |E [f(0, ỹ) − f(X x̃

t , Y
x̃,ỹ
t )

]

|. (7.82)The �rst summand 
an be bounded by the right 
hoi
e of ỹ and the se
ond oneneeds a similar argument as just before: Let us �rst 
ouple the 
atalyst X x̃ to zeroand after that �short� time the rea
tant has not left ỹ too mu
h:
T0 := inf{s > 0 : X x̃

s = 0}, (7.83)
T√x̃ := inf{s > 0 : X x̃

s =
√
x̃}. (7.84)Then we divide the probability spa
e as in the step just before in (7.76) and get:

|E [f(0, ỹ) − f(X x̃
t , Y

x̃,ỹ
t )

]

| ≤E[|f(0, ỹ) − f(0, Y •,ỹ
t )|] + 2‖f‖P(T0 > T√x̃)

+E[ sup
z∈[0,

√
ỹ]

|f(0, ỹ) − f(z, Y •,ỹ
t )].

(7.85)Here we introdu
ed Y •,ỹ
t as a sto
hasti
 pro
ess given as a rea
tant, whose 
atalysttotal mass is in between 0 and √

x̃. We need to show that Y •,ỹ
t is not too far from

ỹ. By the Doob-inequality:P[ sup
0≤s≤t

|Y •,ỹ
t − ỹ| > δ1] ≤

1

δ21
E[

∫ t

0
bXrY

•,ỹ
r dr]

≤ bt

δ21

√
x̃ỹ.

(7.86)And if we 
hoose x̃ so 
lose to zero s.t.
√
x̃ <

δ21ǫ

3btỹ‖f‖ ∧ ǫ

2‖f‖ (7.87)and ỹ s.t.
|f(0, y) − f(0, ỹ)| < ǫ/3, (7.88)we get that by (7.85):
|Stf(0, y) − Stf(x̃, ỹ)| ≤ ǫ. (7.89)And that was all we needed to show.Step 8: If f is 
ontinuous, then so is Stf in the point (0, 0)The shortest and easiest step is hopefully a good time to re
over for the reader:

|Stf(0, 0) − Stf(x̃, ỹ)| ≤ |f(0, 0) − f(0, ỹ)| + |f(0, ỹ) − Stf(x̃, ỹ)|. (7.90)The �rst summand 
an be bounded by 
ontinuity of f and the se
ond summand
an be done as the previous Step 7.Now all the steps we needed to prove the Feller-property of (X,Y ) are taken.Therefore Lemma 7.6.1 is proved. ���



7.7 Convergen
e of the total mass pro
ess to (X,Y ) 647.7 Convergen
e of the total mass pro
ess to (X, Y )Now we will prove the 
onvergen
e of the total-mass-pro
esses, Theorem 2.3.1:Theorem 7.7.1 (Weak 
onvergen
e of the total masses):When g satis�es Condition 2.1.3, then
L[(ηtot,n, ξtot,n)] =⇒ L[(X,Y )] as n→ ∞, (7.91)where 
onvergen
e is weak 
onvergen
e in the path spa
e DR+ [0,∞).The proof of this theorem 
an be put into a wider 
ontext. For di�usion limitsthere is a wide number of theorems available, some of whi
h 
an be found in [EK86℄.We will give a rather general proposition, whi
h does not use the Feller-propertyshown in the previous se
tion. We will show the following proposition:Proposition 7.7.2: Let (Zn)n∈N be a sequen
e of martingales in Rd 
orrespondingto 
losable pregenerators Ωn on Cc(R

d,R). Zn has 
àdlàg paths and satis�es the
ompa
t 
ontainment 
ondition:For every λ > 0 and T > 0, there exists a 
ompa
t set Γλ,T ⊂ Rd,independent of n su
h that
inf
n
P [Zn(t) ∈ Γλ,T for 0 ≤ t ≤ T ] ≥ 1 − λ. (7.92)Let additionally Z be the Rd-valued unique solution of the (Ω,D(Ω)) martingaleproblem, where D(Ω) ⊂ C0(R

d,R). Assume that C∞
c is a 
ore for Ω and the followingtwo properties hold:(i) L[Zn0 ] → L[Z0],(ii) For every f ∈ C∞

c it is true that:
lim
n→∞

‖Ωnf − Ωf‖Rd = 0. (7.93)Then Zn =⇒ Z, where 
onvergen
e is in distribution in DRd [0,∞).Proof: The proof will go along some theorems from [EK86℄, expli
itly Theorem3.9.1, 3.9.4 and 4.8.10, whi
h are all quoted in the appendix.The proof is split into three parts. In a �rst part we will show tightness of thesequen
e (Zn)n∈N in DRd [0,∞) by Theorem 3.9.1 and 3.9.4. In a se
ond part wewill show 
onvergen
e of the �nite-dimensional distributions of Zn to those of Zand the third part puts together these results and shows weak 
onvergen
e in thepath spa
e DE[0,∞).(A) We use Theorem 3.9.1 in [EK86℄ and noti
e that the 
ompa
t 
ontainment
ondition is already given. So it su�
es to verify relative 
ompa
tness of (f ◦Zn)n∈Nfor any f ∈ H = C∞
c (Rd,R). Thus we 
an look at Theorem 3.9.4 and we only needto show that for any f ∈ H, T > 0 
ondition (3.9.18) holds for p = 2:

sup
n
E

[∫ T

0
|(Ωnf)(Znt )|2dt

]

<∞ . (7.94)



7.7 Convergen
e of the total mass pro
ess to (X,Y ) 65Let us start the 
al
ulation:
|(Ωnf)(Znt )|2 ≤ 2(|(Ωf)(Znt )|2 + |(Ωnf)(Znt ) − (Ωf)(Znt )|2). (7.95)The �rst summand is 
onstant in n and bounded from above by a bound on deriva-tives on f (remember that f has 
ompa
t support). The se
ond one is boundedsin
e we have (7.93) on 
ompa
ta. With this easy argument, the �rst part is al-ready done.(B) In the se
ond part we use Theorem 4.8.10 and show (
) to get the 
onvergen
eof f.d.d.'s in (a) and we note that Z was the unique solution of the (Ω,D(Ω))-martingale problem. By the �rst part (Zn)n∈N is relatively 
ompa
t and we take

M = {1(−∞,a)(·s) : a, s ∈ Q, s ≥ 0}.Let f ∈ C∞
c (Rd,R), T > 0, ξn(t) = f(Znt ), φn(t) = (Ωnf)(Znt ). Now we have to
he
k (8.51),(8.52), (8.53), (8.54) in 
hapter 4 and the martingale property (9.16) in
hapter 3. The martingale property is satis�ed, sin
e Zn is a solution of the dis
retemartingale problem. The �rst 
ondition (8.51) is veri�ed, sin
e f is bounded. Weshow (8.52):

E[ |φn(t)| ] = E[|Ωnf(Znt )|] ≤ E[ |(Ωf)(Znt )| ]+E[ |(Ωnf)(Znt )−(Ωf)(Znt )| ]. (7.96)With the same arguments as in the �rst part this expe
tation is uniformly boundedin n and in a time 0 ≤ t ≤ T . So (8.52) is shown. Clearly (8.53) holds by de�nition,so it only remains to show (8.54):
E[ |φn(t) − Ωf(Znt )| ] = E[ |Ωnf(Znt ) − Ωf(Znt )| ] → 0 as n→ ∞, (7.97)sin
e f has 
ompa
t support and by (7.93). So the se
ond part is also done.(C) In this part we use Theorem 3.7.8 of [EK86℄. The requirements of (b): relative
ompa
tness and f.d.d. 
onvergen
e are ful�lled and were shown in the �rst andse
ond part. So 
onvergen
e in path spa
e follows: L[Zn] → L[Z] in DRd [0,∞).Now it is an easy exer
ise to adopt this proposition for the proof of Theorem7.7.1:Proof: (of Theorem 7.7.1 )We set Zn = (ηtot,n, ξtot,n) and Z = (X,Y ). Then all we have to do is to show therequirements of Proposition 7.7.2, where the index in the bra
ket indi
ates wherethey were already proven:

• (ηtot,n, ξtot,n)n∈N satis�es the 
ompa
t 
ontainment 
ondition (Lemma 7.3.3),
• (ηtot,n, ξtot,n) has 
àdlàg paths for ea
h n (Lemma 7.2.1),
• The (U,D(U))-martingale problem has a unique solution (Theorem 7.4.1) .
• For f ∈ C∞

c , we have ‖Unf − Uf‖R2
+
→ 0 as n→ ∞.We only need to show the last argument and let f ∈ C∞

c be given. Let K be the
ompa
tum in R2
+, s.t. f |Kc ≡ 0. Then we have

‖Unf−Uf‖R2
+

= ‖Unf − Uf‖K

=‖n
2

2
g(x)[f(x+

1

n
, y) − 2f(x, y) + f(x− 1

n
, y)] +

n2

2
bxy[f(x, y +

1

n
)

− 2f(x, y) + f(x, y − 1

n
)] − 1

2
g(x)

∂2f

∂x2
(x, y) − 1

2
bxy

∂2f

∂y2
(x, y)‖K .

(7.98)



7.7 Convergen
e of the total mass pro
ess to (X,Y ) 66With Taylor's expansion up to se
ond order of the non-f(x, y)-summands around
(x, y) we get:

‖Anf −Af‖R2
+

= 2‖ 1

2n
g(x)fxxx(x̂, y) +

1

2n
xyfyyy(x, ŷ)‖K ≤

≤ 1

n
‖g(x)fxxx(x̂, y) + bxyfyyy(x, ŷ)‖(x,y),(x̂,ŷ)∈K → 0 as n→ ∞.

(7.99)This is all we needed to show. So we 
an use Proposition 7.7.2 to show Theorem2.3.1.



8 Proofs of the main results fromChapters 4 and 5Within this 
hapter the proofs of the main results from Chapter 4 and 5 are pre-sented. They are put together in one 
hapter, sin
e the proofs used for the tree-valued-pro
ess and the 
ontour-pro
ess depend on ea
h other by the mappings Cand T , whi
h map trees to 
ontours and vi
e versa.8.1 Preliminary 
onsiderations for the quen
hed analysis8.1.1 Regular 
onditional probabilities and quen
hed analysisThe quen
hed analysis will present some results about the rea
tant pro
ess 
ondi-tioned on the 
atalyst total mass pro
ess. In order to des
ribe results about thequen
hed point of view it is su�
ient to 
onsider single 
atalyst sample paths only.This is true sin
e Troot and DR2
+
[0,∞) are 
omplete and separable metri
 spa
es.Therefore by Theorem 5.3.19 in [KS00℄ regular 
onditional probabilities, i.e. ker-nels, exist (see Theorem A.2.1 in the Appendix):

K(η,A) = P [((ηtot
t )t≥0, ξ

for
r ) ∈ A|(ηtot

t )t≥0 = η
]

. (8.1)Clearly the same is true for the res
aled pro
esses and the di�usion, where for ea
hwe get a transition kernel: All of these kernels 
an be brought together as di�erentkernels on the 
ommon probability spa
e as in De�nition 2.3.3. Indeed we thinkof all res
aled 
atalysts realized on the 
ommon probability spa
e as in Chapter 2,(2.18):
Kn(η,A) := prob. of n-res
aled pro
ess in A under ηtot,n = η , (8.2)
K(x,A) := prob. of limit pro
ess in A under X = x . (8.3)Note that yet we 
annot really speak about the se
ond line, sin
e we do not knowif a limit obje
t exists for trees or 
ontours. As later we will be able to show that,we do not hesitate to introdu
e the notation already.8.1.2 Spe
i�
ation of the quen
hed 
atalystsThis is the point where we do not take the 
atalyst pro
esses to be generated bya 
atalyst bran
hing s
heme, but by a wider 
lass of pro
esses, and as we already
onditioned, by a wider 
lass of fun
tions.Take a �xed sequen
e of 
àdlàg fun
tions xn and a 
ontinuous fun
tion x s.t.

xn : [0, t̂n] → R+ and
x : [0, t̂] → R+.

(8.4)



8.2 The rea
tant limit forest exists: The proof strategy 68The �rst fun
tion x shall play the role of the total mass di�usion X as partof the SDE (2.9). The fun
tions xn shall play the role of the dis
rete total masspro
esses ηtot,n as part of the individual bran
hing rate of the rea
tant. Thereforethe fun
tions are additionally required to have the following properties:Condition 8.1.1: (i) x(0) = xn(0) = 1 ,(ii) x(t̂) = xn(t̂n) = 0,(iii) before the absorption times x and xn are stri
tly positive: xn(c) > 0, when
c ∈ (0, t̂n),(iv) t̂n → t̂ as n tends to in�nity and(v) for any T > 0 it holds:

lim
n→∞

sup
t≤T

|xn(t) − x(t)| = 0. (8.5)Indeed the 
atalyst total mass pro
ess and its res
aled versions de�nitely satisfyall these 
onditions, see Corollary 2.3.2 and (2.18).But note that there are also some properties, whi
h ηtot has, but whi
h are notne
essary for the proofs to 
ome: it is not required that the jumps of xn are of mag-nitude 1/n only. The range of possible 
atalysts is therefore indeed wider than theones given by the 
atalyst total mass pro
ess in Chapter 2. Any res
aled sequen
eof fun
tions satisfying the Condition 
an be a 
atalyst and the proofs 
an be done.Remark 8.1.2:From now on take the fun
tions xn and x to be �xed for the whole 
hapter. Allprobabilities even if not expli
itely indi
ated are understood to be quen
hed, i.e. 
on-ditioned on ηtot,n = xn,X = x.We will abbreviate notation and simply write ξfor,n for the rea
tant forest with 
at-alyst xn and whi
h is 
ut at the height of the non-random extin
tion time t̂n of the
atalyst. 38.2 The rea
tant limit forest exists: The proof strategyThe main theorem from Chapter 4 
laims that the sequen
e of res
aled trees 
on-verges:Theorem 8.2.1 (The rea
tant limit forest exists):There exists a random variable Y for ∈ Troot, s.t.:
L
[

ξfor,n; ηtot,n
]

n→∞−−−→ L
[

Y for;X
]

. (8.6)The law of Y for is given by
L
[

Y for;X
]

= lim
δ→0

L
[

T ((ζδu)0≤u≤α4/b
)
]

, (8.7)where 
onvergen
e is in the Prohorov-metri
 of probability measures, T is the map-ping des
ribed on page 31.



8.3 Tightness of the rea
tant tree-valued pro
ess 69The di�usion ζδ is the unique solution of the (Aδ,D(Aδ)) martingale problem, where
D(Aδ) is given by:

D(Aδ) = {f ∈ C1([0, τ δ ], [0,∞)) : f ′|{0,τδ} = 0,
f ′(·)
X·

∈ C2
[0,τδ]([0,∞))} (8.8)and for ea
h f ∈ D(Aδ):

Aδf(c) =

(

2f ′

Xc

)′
(c). (8.9)Furthermore α4/b is the lo
al time inverse at level 0 of ζδ of 4

b .The proof of this theorem will o

upy the rest of this 
hapter, sin
e it is ratherinvolved. We will split the proof in several se
tions 
ontaining various lemmas, butalso some theorems, whi
h are worth to be mentioned as well. In a short des
riptionthe proof goes like this:
• First we show that the sequen
e (ξfor,nt ; ηtot,n)n∈N is tight in Troot. This isdone with an argument that shows that the stru
ture of the rea
tant tree israther regular with respe
t to the 
atalyst: one 
an �nd an ǫ-net in ea
h tree,where the overall number of net-points is bounded uniformly in n for a �xed
atalyst. For this see Se
tion 8.3.
• In a se
ond step we translate the problem from the tree-setting to the 
ontoursetting. In the 
ontour setting the 
ut rea
tant 
ontours of trees whi
h are
ut at a 
ertain height form a tight series and all possible limit 
ontours solvea martingale problem. This martingale problem is then shown to be uniquelysolvable. Therefore the 
ut 
ontours 
onverge weakly to a 
ut limit 
ontour.This 
an be found in Se
tion 8.4.
• In the end we show that the unique 
ut tree 
orresponding to the unique limit
ontour form a Cau
hy sequen
e in the 
ontour 
utting parameter. But anylimit point of the tight tree sequen
e (L[ξfor,n; ηtot,n]

)

n∈N
must have the samelaw on the 
ut trees. Therefore there 
an only be one limit law on Troot, sin
ethe 
ut-tree law is uniquely determined by the unique 
ontour law. This partis done in Se
tion 8.5.Ea
h of these points is shown in an own se
tion.8.3 Tightness of the rea
tant tree-valued pro
ess8.3.1 The main result and the strategy of the proofIn this se
tion we do the �rst step to prove Theorem 8.2.1 and prove Proposition4.2.1. This proposition 
laims:Proposition 8.3.1: Under the hypotheses of Condition 8.1.1 the family (ξfor,n)n∈Nis tight in Troot.



8.3 Tightness of the rea
tant tree-valued pro
ess 70Sin
e the proof is a bit longer �rst the strategy of the proof is given and then theformal proof follows.In fa
t by Lemma 2.5 of [EPW06℄ what needs to be shown is the following:For ea
h γ > 0 there is a 
ompa
t subset Γγ of Troot su
h that for all n ∈ N:P[ξfor,n ∈ Γγ ] ≥ 1 − γ. (8.10)To get this for �xed n assume ea
h tree ξfor,n to be 
ut in ǫ-thi
k sli
es. Ea
hsli
e 
ontains a 
ertain number of di�erent ar
 pie
es. Out of ea
h ar
 pie
e 
hoosea single point.If with high probability an upper bound n(ǫ) on the number of these 
hosen points
an be given for ea
h ǫ, then by Lemma 2.5 in [EW06℄ we have a pre
ompa
t set.Moreover this upper bound 
an be established with high probability for the randomset of forests ξfor,n. So the main task will be
ome estimating numbers of an
estorsand hen
e it is good to look at the tree from a ba
kward perspe
tive (look-down).Indeed this bound 
an be given via an argument from [DK96℄, whi
h relates lookingat bran
hing in inverse time on the one hand and to the Kingman 
oales
ent on theother hand.Therefore, the proof is split into the following steps:Step 1: The Kingman 
oales
ent and its behaviour 
lose to zero.Step 2: Des
ription of a set Γγ,Lm ⊂ Troot of trees whi
h is pre
ompa
t in theGromov-Hausdor�-metri
 using [EPW06℄.Step 3: Bran
hing looked at in inverse time dire
tion is like a time-
hanged King-man 
oales
ent, as in [DK96℄.Step 4: Proof of the tightness property, via showing that the res
aled rea
tant treesare in Γγ,Lm with probability 1 − γ.8.3.2 The proofStep 1: The Kingman 
oales
entIn 1982 J.F.C Kingman presented in his paper [Kin82℄ the so-
alled �Kingman�-
oales
ent. It is a sto
hasti
 pro
ess des
ribing the evolution of a partition of anarbitrary 
ountable set. Ea
h pair of partition elements merges after exponentialtime independent of all other possible partition elements partners.To be more pre
ise let a n ∈ N and a set A 
ontaining at least n elements begiven. The n-
oales
ent (R
(n)
t )u≥0 is a pro
ess starting with the partition of theset A into n di�erent partition elements A1, A2, . . . , An. There are (n2) possiblepairs of partition elements, whi
h merge at 
onstant rate 1 ea
h. After the �rstmerging of two partition elements there are n − 1 partition elements left and thepro
ess 
ontinues as before by merging at 
onstant rate of the now possible (n−1

2

)pairs. The pro
ess 
ontinues until it rea
hes the exit state, where there is only onepartition element left, the whole set A. Let the times between two mergers from kto k−1 partition elements be 
alled Tk. Then this time is exponentially distributedwith mean 2/k(k − 1).It is possible to extend this de�nition to starting with a given 
ountably in�nitepartition of the set A. When rea
hing a partition with n partition elements this



8.3 Tightness of the rea
tant tree-valued pro
ess 71pro
ess 
ontinues as the merging for the n-
oales
ent. This extension is possiblebe
ause of the 
onvergen
e of the sum of the expe
tations of Tk and the pro
essshall be 
alled the 
oales
ent (Rt)t≥0. More about this is re�e
ted in the AppendixB.1.Quite many things are known about the Kingman 
oales
ent, some of whi
h 
anbe found in [Ald99℄, page 27. Here we will state an easy lemma we use later on:Lemma 8.3.2: For the Kingman 
oales
ent (Rt)u≥0 it is true that
E[#Rt] ≤ 16/t+ 3. (8.11)Proof: The proof 
onsists of four small parts and essentially only uses the Markovinequality:(A) By de�nition #Rt is the number partition elements at time t. It is a deathpro
ess starting at infinity with rate (k2) in state k. Then ea
h of the waitingtimes between k and k − 1 partition elements is exponentially-(k2)-distributed. Let

T1, T2, . . . be this sequen
e of independent exponentially distributed random vari-ables with E[Tk] = 1/
(k
2

). Then it holds for
Sn =

∞
∑

k=n+1

Tk, (8.12)that
{Sn ≥ t} = {#Rt ≥ n}. (8.13)(B) Additionally 
al
ulate the Legendre transform of Sn for λ < (n2):

E[eλSn ] =
∞
∏

k=n+1

E[eλTk ] =
∞
∏

k=n+1

(

1 − λ
(k
2

)

)−1

= exp

(

−
∞
∑

k=n+1

log(1 − λ
(k
2

))

)

≤ exp

(

−
∞
∑

k=n+1

∞
∑

m=1

( λ

(k
2)

)m

)

= exp

(

∑

k=n+1

∞ 2λ

k(k − 1) − 2λ

)

.

(8.14)
By 
hoosing λn = λ = n(n−1)

4 we get:
E[eλnSn ] ≤ exp

(

4n(n− 1)
∑

k=n+1

∞(k(k − 1))−1

)

= exp(4(n − 1)). (8.15)Then we get by the Markov inequality:
P [#Rt ≥ n] = P [Sn ≥ t] ≤ e−λntE[eλnSn ] ≤ exp(−n(n− 1)

4
+ 4(n − 1)). (8.16)
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tant tree-valued pro
ess 72(C) With the help of the pre
eding we 
an bound the estimation of #Rt:
E[#Rt] =

∞
∑

n=1

P [#Rt ≥ n]

≤
⌊16/t⌋
∑

n=1

P [#Rt ≥ n] +
∞
∑

n=⌊16/t+1⌋+1

P [#Rt ≥ n]

≤ 16

t
+

∞
∑

n=⌊16/t⌋+1

e−(n−1).

(8.17)
An estimate of the last sum yields:

E[#Rt] ≤
16

t
+ 3 (8.18)

Step 2: A pre
ompa
t set Γγ in TrootThe 
onstru
tion of Γγ is the next point to do now. Lemma 2.5 from [EW06℄ willbe used, whi
h states that a set in Troot is pre
ompa
t, if it has an ǫ-net, i.e. forea
h tree in this set, there are at most n(ǫ) points in ea
h tree, s.t. every point inthe tree is 
overed by balls with radius ǫ around these n(ǫ) points.Let a set of trees and ǫ > 0 be given. First 
ut the trees horizontally into sli
eswith height ǫ. Ea
h sli
e 
ontains a 
ertain number of di�erent ar
 pie
es. Out ofea
h ar
 pie
e 
hoose a single point. To get pre
ompa
tness of this set of trees byLemma 2.5 from [EPW06℄ it is su�
ient that the number of these 
hosen pointsis bounded uniformly by a 
onstant in the set of trees. This is in fa
t the way to
onstru
t the 
ompa
t subset Γγ .First some notation is introdu
ed. Therefore remember the de�nitions of the tree-height h, the 
ut-operator Qt, the leaf-operator ∂Qt and the trimming operator Sǫin Chapter 3 (De�nition 3.2.1). Then de�ne Att−ǫ(T, ρ) to be the set of an
estorsat time t− ǫ of the individuals alive at time t, i.e.:
Att−ǫ(T, ρ) = Sǫ(Qt(T, ρ)) ∩ ∂Qt−ǫ(T, ρ). (8.19)Then we 
onstru
t pre
ompa
t sets as follows:Lemma 8.3.3: For a positive non-de
reasing sequen
e of integers (Lm)m∈N, theset

Γ := {(T, ρ) ∈ Troot :

⌊2(m+1)h(T,ρ)−1⌋
∑

k=0

#Ak2
−(m+1)

(k−1)2−(m+1)(T, ρ) ≤ Lm∀m ∈ N} (8.20)is pre
ompa
t in Troot.
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tant tree-valued pro
ess 73Proof: To prove this lemma we use the already mentioned Lemma 2.5 in [EPW06℄.We use the following observation: If we 
hoosem0 = ⌈− log2 ǫ⌉∨M , then 2−(m0+1) ≤
ǫ/2. That means the sli
es 
orresponding to m0 are thinner than ǫ/2.Now we will prove that for a given (T, d, ρ) ∈ Γ the following set R is an ǫ-net of
T :

R(ǫ, T ) =

⌊2(m0+1)h(T,ρ)⌋−1
⋃

k=0

Ak2
−(m0+1)

(k−1)2−(m0+1)(T, ρ). (8.21)Given a point x ∈ T and its height h(x) = d(ρ, x), the point x must have anan
estor a1 at the time 2−(m0+1)⌊2(m0+1)h(x)⌋ just before (on the �oor of the x-sli
e). This an
estor 
learly has another an
estor a2 in the sli
e before at time
2−(m0+1)⌊2(m0+1)h(x) − 1⌋. But this an
estor a2 has 
hildren in the next sli
e,namely a1. So for individual a2 it holds that:

a2 ∈ A2−(m0+1)(⌊2(m0+1)h(x)⌋)

2−(m0+1)⌊2(m0+1)h(x)−1⌋(T, ρ), (8.22)and sin
e sli
es are at most ǫ/2 :
x ∈ Bǫ(A

2−(m0+1)⌊2(m0+1)h(x)⌋
2−(m0+1)⌊2(m0+1)h(x)−1⌋(T, ρ)) (8.23)Thus all points lie in balls around the ǫ-net (x is in fa
t in the annulus betweenradius ǫ/2 and ǫ). When thinking of the sli
es-idea then we left out the last sli
e,but this will be helpful further on, sin
e the last sli
e 
an 
ontain some problemati
bran
hing behaviour.What remains to show now for the appli
ation of the 
ited lemma is that thenumber of points n(ǫ, T ) in the ǫ-net R(ǫ, T ) for ea
h T ∈ Γ is bounded uniformlyby n(ǫ) < ∞. But this is 
lear by de�nition of Γ, sin
e n(ǫ, T ) ≤ Lm0 . So for anygiven ǫ > 0 
hoose n(ǫ) = Lm0 . Hen
e the lemma is proved.Step 3: The look-down: From the tree to the 
oales
entThe interesting thing to do now is to give a uniform estimate in k,m and n for thenumber Ak2−(m+1)

(k−1)2−(m+1)(T ), when T = ξfor,n. We get that estimate by the look-downfrom the top of the tree. Bran
hing in forward time means 
oales
ing in inverse time.To 
al
ulate this estimate a 
on
ept developed by Donnelly and Kurtz (see [DK96,Se
tion 3℄ using the Kingman 
oales
ent introdu
ed in Step 1 (see [Kin82℄) is used.In their paper they 
onsider a population of parti
les evolving in 
ontinuous timewith bran
hings after exponential-one-times. Ea
h of the parti
les is assigned adi�erent level. They proof in Theorem 3.2 that the number of parental levels attime t−u of the 
hildren levels at time t has the same distribution as the Kingman
oales
ent at time u. What we need here is just the same: we do not speak of levels,but of di�erent individuals.Here, however, the situation is a bit di�erent. A bran
hing event after time t, attime t+u of a single parti
le o

urs not at the �rst jump of N(u) as in [DK96℄, butat the �rst jump of N(n
∫ t+u
t bxn(s) ds).



8.3 Tightness of the rea
tant tree-valued pro
ess 74Consider now the non-random time 
hange νt,n(u) given by
∫ t

t−νt,n(u)
nbxn(s) ds = u. (8.24)This 
hange is stri
tly monotone in u sin
e the integrand is positive as long as t < t̂0.Then for a Poisson pro
ess N it is trivially true that:

N(

∫ t

t−νt,n(u)
nbxn(s) ds) = N(

∫ t

t−u
ds). (8.25)Now �x u, t > 0, where 0∨(t−

∫ t
0 nbx

n(s) ds) < t−u < t, whi
h is always possible,for example if 0 < u < t− δ. Then
#Att−νt,n(u)(ξ

for,n,xn
) = number of levels at time t− νt,n(u),whi
h have des
endants at time t, where bran
hingo

urs with rate nbxn(s)

= number of levels at time t− u,whi
h have des
endants at time t, where bran
hingo

urs with rate one
=#R(u), (8.26)where R is the Kingman 
oales
ent and this last result was shown in Theorem 3.1in [DK96℄. Furthermore

(νt,n(·))−1(νt,n(u)) = u =

∫ t

t−νt,n(u)
nbxn(s) ds, (8.27)whi
h implies

(νt(·))−1(ũ) =

∫ t

t−ũ
nbxn(s) ds. (8.28)Thus we get that

#Att−ũ(ξ
for,n,xn

) = #R(

∫ t

t−ũ
nbxn(s) ds). (8.29)Now re
all what we have done in Step 1. In Lemma 8.3.2 an estimate for E[#R(t)]was given. By applying this result, we getE[#Att−ũ(ξ

for,n)] ≤ 16

(
∫ t

t−ũ
nbxn(s) ds

)−1

+ 3. (8.30)Step 4: Proof of Tightness via the previous stepsNow to show the proposition we apply the previous results to show that (8.10) holds.First we note that the height of the rea
tant tree is bounded by t̂n, the hittingtime of zero of the 
atalyst sample path xn. Sin
e these hitting times 
onverge
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tant tree-valued pro
ess 75to the hitting time t̂ of the di�usion 
atalyst, all of the rea
tant tree heights arebounded from above. We manipulate the expression on the left hand side by simplerewriting and the Markov inequality:P[ξfor,n ∈ Γ] == P[

⌊2(m+1)h(ξfor,n,ρ)−1⌋
∑

k=1

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n) ≤ Lm∀m ∈ N]

≥1 −
∑

m≥1

P[

⌊2(m+1) t̂n−1⌋
∑

k=1

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n) ≥ Lm]

≥1 −
∑

m≥1

1

Lm
E[

⌊2(m+1) t̂n−1⌋
∑

k=0

#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n)]

≥1 −
∑

m≥1

1

Lm

⌊2(m+1) t̂n−1⌋
∑

k=0

E[#A2−(m+1)k
2−(m+1)(k−1)

(ξfor,n)].

(8.31)
At this point we use on the right hand side above the result proven in the previousstep:P[ξfor,n ∈ Γ] ≥ 1 −

∑

m≥1

2m+1 t̂n

Lm



16 + 16

(

∫ 2−(m+1)k

2−(m+1)(k−1)
nbxn(s) ds

)−1


 . (8.32)To 
ontrol this expression in n we have to use the 
onvergen
e of the 
atalyst to thedi�usive limit x. Therefore 
onsider a �xed m and take any ǫm > 0, su
h that
ǫm < 1/2 min

0≤s≤t̂0−2−m
x(s). (8.33)Then one 
an sele
t a natural number Nǫ,m su
h that ∀r ≤ t̂0 − 2−m ∀n ≥ Nǫ,m:

1/2 min
0≤s≤t̂0−2−m

x(s) ≤ x(r) − ǫm < xn(r). (8.34)Now 
hoose Lm so big that it satis�es the following two equations:
Lm ≥ 4(m+1) t̂

(

1 + γ

γ

)m

16

(

( min
0≤s≤t̂−2(m+1)

bXs)
−1 + 1

) (8.35)and
Lm ≥ 4(m+1) t̂n

(

1 + γ

γ

)m

16 sup
n≤Nǫm,m

(

( min
0≤s≤t̂−2(m+1)

bxn(s))−1 + 1

)

. (8.36)Then obviously for this �xed m it holds that in the 
ase n ≥ Nm,ǫm :
4m+1t̂n

Lm
16

(

(

min
0≤s≤t̂0,n

nbxn(s) ds

)−1

+ 1

)

≤ 4m+1t̂n

Lm
16

(

(

1/2 min
0≤s≤t̂0−2−m

bXs

)−1

+ 1

)

≤

≤
(

γ

1 + γ

)m

(8.37)
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tant 
ontour 76and in the 
ase n < Nm,ǫm :
4m+1t̂n

Lm
16

(

(

min
0≤s≤t̂0,n

nbxn(s) ds

)−1

+ 1

)

≤
(

γ

1 + γ

)m

. (8.38)So we are done sin
e then in both 
ases we obtain for any n ∈ N:P[ξfor,n ∈ Γ] ≥ 1 −
∑

m≥1

22m+2t̂n

Lm

(

min
0≤s≤t̂0−2−m

nbxn(s)

)−1

≥ 1 −
∑

m≥1

(

γ

1 + γ

)m

= 1 − γ.

(8.39)So we have shown that with probability > 1 − γ the rea
tant forest ζ for,n stayswithin a pre
ompa
t set. Hen
e the sequen
e (ζ for,n)n∈N is tight.After �nishing all four steps we are done with the proof of Proposition 8.3.1.
���Next we would like to show that there exists a unique limit. This task will takeseveral steps and will start with results about the 
ontour pro
ess.8.4 Convergen
e of the trun
ated rea
tant 
ontourThis se
tion is devoted to show Theorem 5.3.1 about the 
onvergen
e of the rea
tant
ontour pro
ess. Sin
e 
ontour and tree are related via the mappings C and T thisis the next step to 
ome 
loser to an asymptoti
 result about trees.8.4.1 The main result and the strategy of the proofIn order to obtain a result about a di�usion-limit of the 
ontour-pro
ess we introdu
esome further notation. The key point is to 
ut o� the tree on
e the 
atalyst is 
loseto zero, sin
e there the rea
tant bran
hing behavior slows down signi�
antly. Hen
ewe de�ne a δ-hitting time of the 
atalyst. For δ > 0 set:

t̂n,δ = inf{t ≥ 0 : xn(t) ≤ δ} ≤ t̂n <∞,

t̂δ = inf{t ≥ 0 : x(t) ≤ δ} ≤ t̂ <∞.
(8.40)By the 
ut-operator Qt the 
ut rea
tant tree, when the 
atalyst falls below δ, isgiven by:

ξ̃n,δ = Qt̂n,δ (ξ̃
n). (8.41)The theorem we are going to show is in a slightly more general setting than theoriginal Theorem 5.3.1. The rea
tant tree is traversed with a general positive speed

kn in the n-th approximation step. In the notation we omit further referen
e tothe dependen
e of C on k. In the original setting of the theorem it was k = 1 andthis will 
ome out to be a good 
hoi
e for some appli
ations. So the 
ut rea
tant
ontour with traversal speed kn is given by:
Cn,δ := C(ξ̃n,δ; kn). (8.42)
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ated rea
tant 
ontour 77Then it is possible to establish the following 
onvergen
e result of the rea
tant
ontour, when the 
atalyst is given as xn and x respe
tively:Theorem 8.4.1 (Rea
tant limit 
ontour):Consider the linear operator (Aδ ,D(Aδ)), where
Aδf(c) =

1

2

(

f ′

b
2kxc

)′

(c), (8.43)de�ned for f ∈ D(Aδ) with
D(Aδ) = {f ∈ C1([0, τ δ ], [0,∞)) : h′|{0,T δ} = 0,

h′

x
∈ C1

[0,∞)[0, T
δ]}. (8.44)Then under the hypotheses (8.1.1), the following holds:(i) The (Aδ,D(Aδ)) martingale problem is well-posed and(ii) if ζδ is the solution of the (Aδ ,D(Aδ)) martingale problem, then:

L[(Cn,δu )
0≤u≤L(Cn,δ ,

4
b )

]
n→∞−−−→ L[(ζδu)0≤u≤(l0· (ζδ))−1(

4
b ))

], (8.45)where 
onvergen
e is weak 
onvergen
e of 
ontinuous pro
esses.To show this theorem, �rst it is ne
essary to get a 
learer des
ription of thedis
rete 
ontour pro
ess. Therefore it is augmented to a two-dimensional pro
ess,the se
ond 
oordinate being the sign of the slope of the 
ontour. This R2-valuedpro
ess is Markovian and a generator 
an be identi�ed up to the time the tree istraversed. The same is done for res
aled and 
ut 
ontour pro
esses and we forgetabout the traversal time L(C, 4/b) for a while. So we think of the Markov pro
essas given by its generator. With the sto
hasti
 averaging te
hnique one 
an showtightness of the res
aled rea
tant 
ontours and identify one limit pro
ess. This limitpro
ess is shown to be unique. In the next step the traversal times of the res
aled
ontours are analysed and 
ompared with the lo
al time of the limit. A last stepputs together the ideas.The formal proof of this theorem is quite long and therefore needs to be split inseveral steps a

ording to the following program:Step 1: Dis
rete (
ontour, slope of 
ontour)-pro
ess (C1, V 1) is shown to be Marko-vian in [0, t̂1] × {−1, 1} and its generator is identi�ed.Step 2: The δ-hitting time 
ut (
ontour, slope of 
ontour)-pro
ess (C1,δ, V 1,δ) isshown to be Markovian in [0, t̂1,δ ] × {−1, 1} and its generator is identi�ed.Step 3: The res
aled, δ-hitting time 
ut (
ontour, sign of slope of 
ontour)-pro
ess
(Cn,δ, V n,δ) is shown to be Markovian in [0, t̂n,δ] × {−1, 1} and its generatoris identi�ed.Step 4: Using Sto
hasti
 averaging ([Kur92℄) the sequen
e (Cn,δ)n∈N is tight andlimit points solve the (Aδ ,D(Aδ))- martingale problem.Step 5: Uniqueness of the (Aδ ,D(Aδ))- martingale problem is established.
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e of the trun
ated rea
tant 
ontour 78Step 6: Traversal-time L(Cn,δ, 4
b ) and inverse of lo
al time of ζδ are 
ompared.Step 7: Here the pie
es are put together to observe the 
laim.The proof is not put into a �proof environment�, but held within these steps. Somelemmas and propositions will arise, but all will be belonging to the 
orrespondingparts of the proof.For the understanding of the 
atalyti
 setting and the quen
hed analysis we referthe reader to the notation at the beginning of this 
hapter, see page 68.8.4.2 The proofStep 1: Identi�
ation of the (Cu, Vu)-generatorThe 
ontour pro
ess (Cu)u≥0 is obtained by traversing the rea
tant forest ξfor with
onstant speed k and denoting the height, i.e. the distan
e of the root and thetraversed point against the yet passed traversing time (for a de�nition see Se
tion5.1). This yet passed traversing time will be denoted with small Latin letters u or

v in 
ontrast to the time of the bran
hing pro
ess, whi
h we so far denoted with sor t.We de�ne the slope (sign) (Vu)u≥0 of the 
ontour pro
ess:
Vu := sign ( slope(Cu)) ∈ {−1, 1}. (8.46)So far the �sign� 
ould have been substituted by 1

k , sin
e slopes are +k and −k,but later it will be helpful to already introdu
e it like that. There are some points,where the slope is not well de�ned, exa
tly, when the 
ontour 
hanges its sign from
1 to −1 or the other way round. Then V is 
hosen to be right 
ontinuous at thesepoints, so that it has 
àdlàg paths. The pairing (Cu, Vu)u≥0 is then a pro
ess in thestate spa
e

E1
cont × Eslope = [0, t̂1] × {−1, 1} (8.47)and the following lemma holds, whi
h is just the extended version of Lemma 5.2.4:Lemma 8.4.2: The pro
ess (Cu, Vu)u≥0 is a E1

cont × Eslope-valued Markov-pro
essstopped at a random time. Its generator is given by the 
losure of the operator
(A1,D(A1)), where:

D(A1) = {h ∈ C1,0(Econt × Eslope,R) :
∂h

∂c
|∂Econt×Eslope

≡ 0} (8.48)and for f ∈ D(A1):
A1f(c, v) = kv

∂

∂c
f(c, v) +

b

2
kx1(c)(f(c,−v) − f(c, v)). (8.49)The random time is rea
hed when the rea
tant tree has been traversed, i.e. until

L(C, 4
b ) given by:

L(C, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cv∈[0,ǫ)}

2k

bx1(v)
dv = 4

b}. (8.50)After that time the rea
tant 
ontour stays zero.
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hing tree, birth-and-death tree, 
ontour pro
ess
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Proof: The proof of this lemma 
onsists itself of several parts. First it is shownthat the lengths of line-segments of the 
ontour are independent. After this theMarkov property and the pre-generator are obtained.A: Indepen
e of the line-segments. At a �rst glan
e the independen
e of 
ontourline segments seems surprising, when looking at the bran
hing tree on the left andthe 
ontour on the right in Figure 8.1. A 
ontour line segment is the sum of thelifetimes of various rea
tant individuals. The tri
k is to look at and to understandthe tree related to the 
ontour (via the mappings C and T ) and its planar embeddingin several di�erent ways:
• We were dealing so far with a bran
hing pro
ess whose individuals have abran
hing rate of x1(t) = bηtot

t at time t with 0 or 2 o�spring (left of Figure8.1).
• The other way is to look at the pro
ess as a birth- death -pro
ess whoseindividuals die at rate b

2x
1(t) = b

2η
tot
t and during all their lifetime have birthevent (with o�spring 1 )with rate b
2x

1(t) = b
2η

tot
t , everything independent ofother individuals (middle of Figure 8.1).In the Appendix B.3 we show that the 
ontour pro
ess related to these two pro
essesare indeed the same.But the planar embeddings 
an be made di�erent: The right (birth and death)pro
ess will be 
alled the one where 
hildren are atta
hed to the right of the tree.Now we will show that when traversing the genealogi
al tree, the length of the newlyatta
hed line-segments are independent of the history. First we will not worry aboutthe 
ase a 
ontour tou
hes the 
riti
al upper and lower levels T 1,0 and 0:Ea
h (birth and death) individual I lives until the �rst jump of a Poisson pro-
ess M I

d ( b2
∫ ·
t̃ x

1(s) ds) and gives birth at the jumps of an independent pro
ess
M I
b ( b2

∫ ·
t̃ x

1(s) ds) (the subs
ript b means birth and has nothing to do with thebran
hing rate b). Here t̃ denotes the birth time of individual I.
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ated rea
tant 
ontour 80We will start with the �rst individual starting at the root. Let us then 
all:
θ := inf{t ≥ 0 : M I

d ( b2

∫ t

0
x1(s) ds) = 1}the death time,

σ0 := 0,

σn := inf{t ≥ σn−1 : M I
b ( b2

∫ t

σn−1

x1(s) ds) = 1} the n-th birth event and
Λ := M I

b ( b2

∫ θ

0
x1(s) ds) the number of 
hildren. (8.51)

The 
ontour pro
ess starts with a slope +1 line segment of length θ. Then thelength of the next line segment is independent sin
e it is given by the �rst jump ofan independent (reverse) Poisson pro
essM I
b ( b2

∫ θ
θ−t x

1(s) ds) in s. This distributionis independent of θ, sin
e it does not matter for its jump time distribution, wherewe start a Poisson pro
ess (here in θ) and the dire
tion it runs (here time-inverse).So in the 
ontour the length of the �rst −1 line segment is independent of the past.After this birth event of the last 
hild, let us 
all it Λ, has assembled two Poissonpro
esses, one for birth events and one for the death event. Both are independentamong themselves and of anything previous, sin
e it is a new individual. The slope
+1 line segment is indepedent of anything before just by 
onstru
tion.Now 
omes the key observation: The birth times of this individual Λ are given bythe jump times of the MΛ

b -pro
ess. We again let it run ba
kward from the killingtime, whi
h does not a�e
t the distribution. If the �rst jump time lies above thelevel of the birth of individual Λ then we 
an pro
eed in our argumentation as beforeand get independen
e of the −1 line segment. But if the �rst jump lies below thelevel of the birth of individual Λ then it has no 
hildren. That is 
lear. But forthe 
ontour pro
ess it means that it goes down until the next 
hild of the initialindividual, down to Λ − 1.Then if individual Λ was killed at time θΛ, then the length of the −1 line segmentis given by the �rst jump of the following pro
ess in s:
MΛ
b ( b2

∫ θΛ

θΛ−s∨σΛ

x1(s) ds) +M I
b ( b2

∫ σΛ∨(θΛ−s)

θΛ−s
x1(s) ds). (8.52)But the segment of the Poisson pro
ess M I

b we plugged in, was unused before, soit is independent of all previously 
onstru
ted elements. That is why this −1 linesegment is independent of the past. One 
an 
ontinue like this until the end of thetree.Now we need to be a bit more 
areful about what happens if jumps of the inversebirth pro
ess happen below level (= time) zero. We stop the previously 
onstru
tedbun
h of line segments when its building together ends up below zero. Then the
ontour pro
ess is just de
reasing to zero with slope −1 and stops there. Then thetree is traversed.Conversely if an individual rea
hes the upper level t̂1, then the death time of theindividual is just t̂1. The next atta
hed line-segment is an independent de
reasingline-segment. Its time-inverse Poisson pro
ess starts from that level t̂1 on and isindependent of all previous line-segments.
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ated rea
tant 
ontour 81So we have shown that the length of new line segments are independent of theones before. Then it is 
learthat (Cu, Vu)u≥0 is Markovian, sin
e the whole historyof (Cu, Vu)0≤u≤v up to time v has the same information for further development asjust knowing the value (Cv, Vv). This is true, sin
e the evolution of C in a shorttime interval after time v is just depending if we are a
tually running up or down inthe 
ontour, i.e. in the previous setting if we are on a birth (Mb) or on a death (Md)Poisson pro
ess. Additionally by the value of Cv we know where to start the pro-
ess, whi
h gives the starting time in the time 
hange integral of the Poisson pro
ess.B: Markov property and pregenerator. Now in a se
ond argument we want toidentify the generator of this Markov pro
ess (C, V ). How do the 
omponentsevolve? Cu in fa
t simply grows linearly with slope kVu. So its part of the generatoris simple. The slope Vu is a jump-pro
ess with values 1 and −1. The jump rate isthe individual death rate at this point at this point of the tree (where the 
ontour
urrently traverses it). But this is b
2x

1(Cu) and multiplying it with the speed oftraversion k we get b
2kx

1(Cu), sin
e Cu is the distan
e root to the 
urrently traversedpoint. So the generator A1 for f ∈ C1,0(E1
cont ×Eslope) is given by:

A1f(c, v) = kv
∂

∂c
f(c, v) + b

2kx
1(c)(f(c,−v) − f(c, v)). (8.53)The domain of A1 will need some restri
tions, sin
e when the 
ontour rea
hes

0 or the possible maximal tree top t̂1, then it should be re�e
ted not to leave thedomain Econt. The right way to do this is to restri
t the domain of A1 to:
D(A1) = {h ∈ C1,0

E1
cont×Eslope

[0,∞) :
∂h

∂c
|∂E1

cont×Eslope
≡ 0}. (8.54)Sin
e D(A1) is dense in CE1

cont×Eslope
[0,∞) and A1 is the sum of a 
losable operator(�rst summand) and a perturbation (se
ond summand), also A1 is 
losable (see e.g.Theorem 1.7.1. in [EK86℄ ).Clearly the time L(C, 4

b ) gives the time, when the tree is traversed on
e.Remark 8.4.3:Sometimes we will suppress the supers
ript 1, or later n for the 
ontour state spa
e
Econt for the sake of readibility.Se
ondly we will not worry about the time L(C, )̇ in the forth
oming until Step 6and will treat the 
ontour pro
ess as a pro
ess traversing not only one tree (forest inthe next steps) and staying zero, but traversing an in�nite set of random trees (orforests). 3Step 2: Identi�
ation of the (C1,δ, V 1,δ) generatorThe same what was shown for the rea
tant tree or 
ontour 
ut at height t̂1 is alsotrue for tree and rea
tant 
ut at height t̂1,δ. This pro
ess is 
alled C1,δ and to it aslope pro
ess V 1,δ is atta
hed, the same way as in step 1:

C1,δ := C(QT 1,δ (ξ̃1) : k),

V 1,δ
u := sign ( slope(C1,δ

u )) ∈ {−1, 1}.
(8.55)
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ated rea
tant 
ontour 82The only di�eren
e is the state spa
e of the 
ontour 
hanges from
Econt = [0, t̂1] to E1,δ

cont = [0, t̂1,δ] (8.56)and we have:Lemma 8.4.4: The pro
ess (C1,δ
u , V 1,δ

u )u≥0 is a E1,δ
cont × Eslope-valued Markov-pro
ess stopped at a random time. Its generator is given by the 
losure of the operator

(A1,δ,D(A1,δ)), where:
D(A1,δ) = {h ∈ C1,0(Econt × Eslope,R) :

∂h

∂c
|
∂E1,δ

cont×Eslope
≡ 0} (8.57)and for f ∈ D(A1):

A1,δf(c, v) = kv
∂

∂c
f(c, v) +

b

2
kx1(c)(f(c,−v) − f(c, v)). (8.58)The random time is rea
hed when the rea
tant tree has been traversed, i.e. until

L(C, 4
b ) given by:

L(C, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{C1,δ

v ∈[0,ǫ)}
2k

bx1(v)
dv = 4

b}. (8.59)After that time the rea
tant 
ontour stays zero.This result does require a proof, but the proof would just be the same. Or one
an state that the 
utting time t̂1 was 
hosen arbitrarily in Lemma 8.4.2 and didnot play any role yet. So it 
an also be repla
ed by t̂1,δ.Step 3: Identi�
ation of the generator of the (Cn,δ, V n,δ)In this step a res
aled version of the lemma proven in Step 2 will be given. For thatpurpose we re
all the de�nition of the δ-hitting times t̂n,δ of xn and the res
aled
ut 
ontour pro
ess (Cn,δu )u≥0 in (8.42). The slope of this pro
ess is kn and asbefore a sign of slope pro
ess (V n,δ
u )u≥0 is atta
hed the same way as it was with thenon-res
aled pro
ess:

V n,δ
u := sign(slope(Cn,δu )) ∈ {−1, 1} (8.60)The state spa
e of the 
ontour Econt is given by

En,δcont = [0, t̂n,δ] (8.61)and the slope state spa
e Eslope stays the same:
Eslope = {−1, 1} (8.62)Then the following lemma holds:Lemma 8.4.5: The pro
ess (Cn,δu , V n,δ

u )u≥0 is a En,δcont × Eslope-valued a Markov-pro
ess stopped at a random time. Its generator is given by the 
losure of the operator
(An,δ,D(An,δ)), where

D(An,δ) = {h ∈ C1,0(En,δcont × Eslope,R) :
∂h

∂c
|
∂En,δ

cont×Eslope
≡ 0} (8.63)
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e of the trun
ated rea
tant 
ontour 83and for f ∈ D(An,δ):
An,δf(c, v) = knv

∂

∂c
f(c, v) + b

2kn
2xn(c)(f(c,−v) − f(c, v)). (8.64)The random time is rea
hed when the rea
tant forest has been traversed, i.e. until

L(Cn, 4
b ) given by:
L(Cn, 4

b ) = inf{u ≥ 0 : lim
ǫ→0

1

ǫ

∫ u

0
1{Cn,δ

v ∈[0,ǫ)}
2k

bx1(v)
dv = 4

b}. (8.65)After that time the rea
tant 
ontour stays zero.For the sake of not repeating the same proof as of Lemma 8.4.2 another time,argumentation is kept sparse here. Just two things are mentioned:First we explain where the fa
tors n and n2 
ome from. The fa
tor n dates fromthe 
hanged traversal speed through the rea
tant tree as given in de�nition 5.2.3.The fa
tor n2 splits up in one fa
tor �n�, whi
h multiplied with xn(c), so nxn(c),represents the number of 
atalyst individuals speeding up bran
hing. The otherfa
tor n belongs to the in
reased traversal speed through the tree. Additionally wesee that after traversing a tree of the forest the next tree is independent of everythingprevious.Se
ondly the 
ontour is �nished when the 
ontour has already traversed the n treesin the rea
tant forest. But sin
e the slope of the line segment is kn the randomtime was 
hosen 
orre
tly.The pairing (Cn,δu , V n,δ
u )u≥0 
an in some sense also be seen as a random evolutionwith driving pro
ess V n,δ and driven pro
ess Cn,δ. More about that 
an be foundin Chapter 9 of [EK86℄.Step 4: Tightness of the 
ontour and des
ription of limit 
ontoursNow 
learly the next task is to show 
onvergen
e and to obtain a limit of the pro
ess

(Cn,δ, V n,δ) for n → ∞. This is not straightforward, sin
e standard results as forexample about generator 
onvergen
e 
annot be used, e.g. Proposition 7.7.2 here orLemma 4.5.1 in [EK86℄. But what will happen for large n is that the slope �averages�out and will be positive or negative with equal probability. These te
hniques wereintrodu
ed in [Kur92℄ and are 
alled sto
hasti
 averaging. This step is subdividedin two parts, where the �rst one 
orresponds to Theorem 2.1 and the se
ond one toExample 2.3, both in Kurtz's paper.A: the limit 
ontour solves a martingale problem Let us de�ne the followingo

upation times measure on B(R+) × P({−1, 1}) for the slope pro
ess, where
y ∈ Eslope = {−1, 1} by:

Γn,δ([0, u] × y) =

∫ u

0
1{y}(V

n,δ
v ) dv. (8.66)Additionally lm(Eslope) is de�ned to be the set of measures on B(R+)×P({−1, 1}),s.t. for every µ ∈ lm(Eslope) and every u ≥ 0:

µ([0, u] × Eslope) = u. (8.67)Then the following lemma holds:
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e of the trun
ated rea
tant 
ontour 84Lemma 8.4.6: The sequen
e ((Cn,δu ,Γn,δ)u≥0)n∈N is relatively 
ompa
t in the spa
e
DEcont [0,∞)×lm(Eslope), and for any limit point (ζδ,Γδ) there exists a �ltration {Gt}su
h that

f(ζδu) −
∫ u

0

∫

Eslope

Aδf(ζδs , y)Γ
δ(ds × dy), (8.68)is a {Gu}-martingale for ea
h f ∈ D(Aδ) where Aδ is as in Theorem 8.4.1.Proof: The result is just taken from Theorem 2.1 in [Kur92℄, where one has to
he
k some prerequisites before applying this theorem. We will put them in theorder as given in the quoted theorem to avoid 
onfusion:Clearly En,δcont = [0, t̂n,δ ] and Eslope are 
omplete separable metri
 spa
es. The sam-ple paths of the pro
ess (Cn,δ, V n,δ) are 
àdlàg by de�nition. Additionally (Cn,δ)n∈Nsatis�es the 
ompa
t 
ontainment 
ondition sin
e t̂n,δ → t̂δ < ∞ and therefore theunion ⋃n∈N[0, t̂n,δ ] is 
ontained in a 
ompa
tum. The sequen
e (V n,δ)n∈N is rela-tively 
ompa
t, sin
e its state spa
e Eslope is already 
ompa
t. After these prelimi-nary thoughts the harder things to prove are the following four assertions:(i) For ea
h f ∈ D(Aδ) there is a pro
ess (ǫf,n,δu )u≥0 for whi
h the followingexpression is a {Fn

u }-martingale:
f(Cn,δu ) −

∫ u

0
Aδf(Cn,δs , V n,δ

s ) ds + ǫf,n,δt , (8.69)where {Fn
u } is the �ltration generated by (Cn,δ, V n,δ).(ii) The domain of Aδ , D(Aδ), is dense in Cb(Eδcont,R).(iii) For ea
h f ∈ D(Aδ) and ea
h T > 0, there exists p > 1 su
h that

sup
n
E [∫ T

0
|Aδf(Cn,δu , V n,δ

u )|p du
]

<∞. (8.70)(iv) The 
orre
tion pro
ess ǫf,n,δ vanishes in the following sense:
lim
n→∞

E[sup
u≤T

|ǫf,n,δu |
]

= 0. (8.71)The third expression is 
lear, sin
e the state spa
es are 
ontained in a 
ompa
tum(t̂n,δ → t̂δ!) and Aδf is 
ontinuous. For the �rst, se
ond and fourth expression moree�ort is ne
essary. The �rst and the fourth expression are somehow related so webegin with them:We want to 
onstru
t ǫf,n,δ and therefore note that all f ∈ D(Aδ) 
an be writtenwith a 
ontinuously di�erentiable fun
tion h ∈ C1
[0,∞)[0, t̂

δ ] with h(0) = h(t̂δ) = 0:
f(c) = f(0) +

∫ c

0
x(s)h(s) ds, (8.72)for all 0 ≤ c ≤ t̂δ. The idea now is to de�ne a fun
tion whi
h is �
lose� to f , butlies in the domain of An,δ instead of Aδ. Therefore set for f ∈ D(Aδ)

f̃n(c) = f(0) +

∫ c

0
xn(s)h(

t̂n,δ

t̂δ
s) ds. (8.73)
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e of the trun
ated rea
tant 
ontour 85Now the boundary 
onditions on f̃n already 
oin
ide with the ones for fun
tionsin D(An,δ) and it remains to augment f̃n with a se
ond 
oordinate. Hen
e de�neanother fun
tion
fn(c, v) = f̃n(c) +

v

bnxn(c)
(f̃n)′(c), (8.74)whi
h is in the domain of the operator An,δ and by applying this operator to thatfun
tion one obtains:

An,δfn(c, v) =knv(f̃n)′(c) +
knv2

bn

(

(f̃n)′

xn(c)

)′

(c)−

− bk

2
n2xn(c)

2v

bnxn(c)
(f̃n)′(c)

=

(

(f̃n)′

k
bx

n(c)

)′

(c).

(8.75)
Then the 
orre
tion pro
ess ǫf,n,δ is de�ned as:

ǫf,n,δu =

∫ u

0
(Aδf −An,δfn)(Cn,δs , V n,δ

s ) ds+ (8.76)Clearly by Lemma 8.4.5 the expression in (8.69) is a martingale and assertion (i) isshown.Now we prove the fourth statement and 
all in the de�nition of ǫf,n,δ the �rstsummand with the integral part (I) and the other three summands part (II). Wewill show that both of them vanish in the sense of (8.71):E[sup
u≤T

|ǫf,n,δu |
]

≤T‖Aδf −An,δfn‖c∈[0,t̂δ]+

+ ‖f̃n(c) − f(c) +
v

bnxn(c)
(f̃n)′(c)‖(c,v)∈[0,t̂δ ]×{−1,1}.

(8.77)For part (I) we get by using the triangle-inequality:
(I) =‖Aδf −An,δfn‖[0,t̂δ] ≤ T‖h′(c) −

(

h(
t̂n,δ

t̂δ
·)
)′

(c)‖ ≤

≤T‖h′(c) − t̂n,δ

t̂δ
h′(c)‖ + T

t̂n,δ

t̂δ
‖h′(c) − h′(

t̂n,δ

t̂δ
c)‖.And this expression vanishes for n → ∞ by Corollary 2.3.2 and the uniform 
onti-nuity of h′ as it vanishes outside a 
ompa
tum by Lemma 2.2.4. Then it remainsto treat part (II). It is

(II) ≤
∫ t̂δ

0
|xn(s)h( t̂

n,δ

t̂δ
s) − x(s)h(s)| ds +

1

bn
‖h‖

≤
∫ t̂δ

0
|xn(s) − x(s)| |h( t̂

n,δ

t̂δ
s)| ds+

+

∫ t̂δ

0
|x(s)| |h( t̂

n,δ

t̂δ
s) − h(s)| ds +

1

bn
‖h‖.
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ated rea
tant 
ontour 86Sin
e t̂n,δ → t̂δ, (8.1.1) and the 
ontinuity of h all terms vanish for n→ ∞.For 
ondition (ii) it is su�
ient to approximate all pie
ewise linearly 
ontinuousfun
tions on [0, t̂δ ], sin
e they are already dense in Cb(Eδcont,R). But any pie
ewiselinear fun
tion 
an be approximated arbitrarily 
lose, sin
e x is bounded below by
δ. B: the limit o

upation measure of V is identi�ed. After this proof the question iswhether the rather 
ompli
ated expression in the previous lemma with the measure
Γ 
an be simpli�ed. The following lemma gives the answer:Lemma 8.4.7: The pro
ess ζδ of the previous lemma is a solution of the (Aδ,D(Aδ))-martingale problem.Proof: Note that Lemma 1.4 from [Kur92℄ shows us that the measure Γδ(ds×dy)
an be de
omposed into the measure γδs(dy)λ(ds), where λ is the Lebesgue measure.Then what we need to do is to determine γδs(dy).The idea of the proof is taken from Example 2.3 in the same work. Therefore de�nean operator B : C({−1, 1},R) → C([0, t̂δ] × {−1, 1},R), where

h(v) 7→ Bf(c, v) =
bk

2
x(c)(h(−v) − h(v)). (8.78)As before it is ne
essary to de�ne a 
orre
tion term αh,n,δt in this way:

αh,n,δt =
bk

2
n2

∫ t

0

(

x(Cn,δs ) − xn(Cn,δs )
)

h(V n,δ
s ) ds. (8.79)Then by Lemma 8.4.5, for ea
h h ∈ C({−1, 1},R) the following pro
ess is a mar-tingale

h(V n,δ
t ) −

∫ t

0
n2Bh(Cn,δs , V n,δ

s ) ds+ αhn,δ(t), (8.80)and for ea
h T > 0:
lim
n→∞

E [sup
t≤T

n−2|αh,n,δt |
]

=

= lim
n→∞

E [bk
2

sup
t≤T

n−2n2|
∫ t

0
x(Cn,δs ) − xn(Cn,δs )h(V n,δ

s ) ds|
]

≤

≤ lim
n→∞

‖h‖∞ T
bk

2
E [sup

s>0
|x(Cn,δs ) − xn(Cn,δs )|

]

≤

≤ lim
n→∞

‖h‖T bk

2
‖x(c) − xn(c)‖∞,c∈[0,t̂δ∨t̂n,δ ] = 0.

(8.81)
The se
ond modulus expression tends to zero by (8.1.1).Note that for any n ∈ N the following expression is still a martingale:

n−2h(V n,δ
t ) −

∫ t

0
Bh(Cn,δs , V n,δ

s ) ds+ n−2αhn,δ(t). (8.82)
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ated rea
tant 
ontour 87Then by taking weak limits n → ∞ (and 
hanging the sign) we get with the helpof the previous Lemma 8.4.6 the following expression:
∫ t

0

∫

{−1,1}
Bh(ζδ, y) Γδ(ds× dy) =

= (h(1) − h(−1))
bk

2

∫ t

0
(1 − 2γδs(1))x(ζ

δ)ds.

(8.83)Sin
e we are in a 
ompa
t metri
 state spa
e and we have 
àdlàg paths, this weaklimit is still a martingale, now w.r.t. the �ltration of ζδ. Additionally this pro
essis 
ontinuous, sin
e it is an integral expression. Furthermore, the total variation ofthis 
ontinuous martingale is �nite, be
ause it is an integral expression. Thereforeit must already be 
onstant and be
ause of the initial value, this 
onstant must bezero. Hen
e, for all t ≥ 0 it is valid that:
(h(1) − h(−1))

∫ t

0
(1 − 2γδs(1))x(ζ

δ)ds = 0. (8.84)Now remember that the values of x were always required to be ≥ δ, be
ause the
atalyst was to be stopped before rea
hing δ. So the only way to get the left handside expression equal to zero for any fun
tion h is to have:
γδs(1) =

1

2
∀s > 0. (8.85)Then the previous Lemma 8.4.6 
an be reformulated by using the de
omposition of

Γδ and this result. Then the lemma is proven.Step 5: Uniqueness of the Martingale problemIn the previous step existen
e for the (Aδ,D(Aδ)) problem was shown. In this stepthe uniqueness is shown. To do this �rstly another martingale problem (transfor-mation of drift) is 
onstru
ted and then uniqueness of the latter is proved.A: transformation of drift De�ne the s
ale fun
tion s, given by
s :

{

[0, t̂δ ] → [0,
∫ t̂δ

0 x(u)du]

t 7→ b
2k

∫ t
0 x(u)du

, (8.86)and the pro
ess Bu = s(ζδu) are de�ned. Then for a su�
iently regular f , when cdenotes the repla
ement 
hara
ter:
Aδ(f ◦ s)(ζδu) =

k

b

(

(f ◦ s)′
x(c)

)′
(ζδu)

=
k

b

(

(f ′ ◦ s(c))s′
x(c)

)′
(ζδu)

=

(

(f ′ ◦ s(c))x(c)
2x(c)

)′
(ζδu)

=
1

2
((f ′′ ◦ s)(c)s′(c))(ζδu) =

b

4k
f ′′(Bu)x(ζ

δ
u)

=
b

4k
f ′′(Bu)x(s

−1(Bu)).

(8.87)
Thus (Bu)u≥0 is a martingale under the law of ζδ. Even the following lemma holds:



8.4 Convergen
e of the trun
ated rea
tant 
ontour 88Lemma 8.4.8: If ζδ solves the (Aδ,D(Aδ)) martingale problem, then the pro
ess
(Bu = s(ζδu))u≥0 solves the (B,D(B)) problem, where

Bf =
b

4k
x(s−1(·))f ′′(·),de�ned for f ∈ D(B), where

D(B) = {H ∈ C2([0, s(t̂δ)],R) : H ′|{0,s(t̂δ)} ≡ 0}.Proof: Let H ∈ D(B), then
• H ◦ s : [0, t̂δ ] → [0,∞] and this mapping is C1 sin
e it is 
omposed of two
C1-mappings.

• (H ◦ s)′|{0,t̂δ} ≡ 0.
• H ′ ◦ s ∈ C1 sin
e both mappings are C1 mappings.So the 
omposition H ◦s is in the domain of the operator Aδ and we 
an do a similar
al
ulation as done before the lemma to obtain:

Aδ(H ◦ s)(u) =
b

4k
H ′′(s(u))x(u). (8.88)Sin
e ζδ solves the Aδ martingale problem, we have that the following pro
ess is amartingale:

(

H ◦ s(ζδt ) −
∫ t

0
AδH ◦ s(ζδu)du

)

t≥0

=

=

(

H(Bt) −
∫ t

0

b

4k
x(s−1(Bu))H

′′(Bu)du

)

t≥0

.

(8.89)So (Bt)t≥0 solves the (B,D(B)) problem.B: uniqueness of the martingale problem The last lemma is not yet the desiredresult for this step, but it dire
tly leads to:Lemma 8.4.9: The (Aδ ,D(Aδ)) martingale problem has a unique solution ζδ.Proof: The existen
e was already given in Step 4. Assume the 
ontrary about theuniqueness, i.e. assume there are two solutions ζδ,1 and ζδ,2. Then by the previouslemma s(ζδ,1) and s(ζδ,2) are two solutions of the (B,D(B))-martingale problem.But by Corollary IX 1.14 in [RY91℄ the (B,D(B))-martingale problem is well-posed,so uniqueness holds. Therefore it is valid that:
∫

[0,ζδ,1]
x(u) du =

∫

[0,ζδ,2]
x(u) du. (8.90)So the one-dimensional distributions of ζδ,1 and ζδ,2 are the same, sin
e x is apositive fun
tion. Then by Theorem 4.4.2 in [EK86℄ the two pro
esses ζδ,1 and ζδ,2have the same distribution in C[0,t̂δ][0,∞). Furthermore this theorem also statesthat the unique ζδ is a Markov pro
ess.
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e of the rea
tant limit forest 89Step 6: Analysis of the 
ontour traversal time L(Cn,δ, 2
k )So now we need to go ba
k to 
onsidering 
ontour pro
esses as pro
esses traversingtrees. Sin
e for the res
aled 
ontours Cn the slope in
reased to n it is still truethatthe traversal time of the rea
tant tree is given by:

L(Cn,δ, 4
b ) = inf{u ≥ 0 : lim

ǫ→0

1

ǫ

∫ u

0
1{Cn,δ

v ∈[0,ǫ)}(x
n(v))−1 dv =

4

b
}. (8.91)For the limit 
ontour ζδ we wonder if a limit of this fun
tional L(·, 4

b ) exists and whatit is. In fa
t if it turned out to be zero, then it would be the 
ase that the rea
tantlimit 
ontour is de�ned on the degenerate interval [0, 0] and it would 
ontain nouseful information.But we see that the fun
tional L(·, ·) on 
ontinuous fun
tions C([0,∞), [0,∞))is measurable with respe
t to an in�nity-norm with de
reasing weights (d(f, g) =
∑∞

n=1 2−n(supt∈[0,n] |f(t)−g(t)|∧1) ). Then we 
an use a version of Theorem 13.29in [Bre68℄.Hen
e we see that L(Cn,δ, 4
b ) 
onverges weakly to L(ζδ, 4

b ) and the latter is nothingelse than the inverse of ζδ's lo
al time at level 0 of lo
al time 4
b (for more aboutlo
al times of the rea
tant 
ontour see 9.2.3):

L
[

L(Cn,δ,
4

b
)

]

n→∞−−−→ L
[

(l0· (ζ
δ))−1(

4

b
)

]

. (8.92)Hen
e the �duration� of the 
ontour 
onverges weakly.Step 7: Putting the steps of the proof togetherIn Step 3 the generators of the dis
rete 
ontour pro
esses Cn,δ were identi�ed. InStep 4 we got tightness of the dis
rete 
ontour pro
esses and saw that the limit pointswere des
ribed by a pregenerator Aδ. The 
orresponding (Aδ ,D(Aδ)) martingaleproblem is well posed, i.e. a unique solution ζδ exists (Step 5). In the next stepwe showed 
onvergen
e of the tree traversal time to a lo
al time inverse (Step 6).So the tight sequen
e (Cn,δ)n must already 
onverge to the di�usion ζδ, whi
h is
onsidered until its lo
al time hits at zero hits a 
ertain level. Hen
e we are donewith the proof of Theorem 8.4.1.With having 
ompleted all the steps we have shown 
onvergen
e of the rea
tant
ontour. ���8.5 Convergen
e of the rea
tant limit forestWith all the pre
eding steps done it is not di�
ult any more to show Theorem 4.2.2,whi
h is the main result about trees:Proposition 8.5.1: For any δ > 0 there exists a subsequen
e of the sequen
eof 
ut rea
tant trees (Qt̂n,δ (ξfor,nm); ηtot,nm)m∈N that 
onverges in distribution to
(Y for,δ;X) = Tunord(ζ

δ).Proof: By Proposition 8.3.1 it is 
lear that one 
an take a subsequen
e of forests
(ξfor,nm; ηtot,nm)m∈N whi
h 
onverges in distribution to a random forest (Y for;X).
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e of the rea
tant limit forest 90The trun
ation mappings Q·(·) : R+×Troot → Troot do not violate this 
onvergen
e,sin
e they are jointly 
ontinuous and the killing times tn,δ 
onverge:
L[Qt̂n,δ (ξ

for,nm);xnm ]
m→∞−−−−→ L[Qt̂δ (Y

for);x]. (8.93)This 
onvergen
e is to be understood as weak 
onvergen
e in the probability mea-sures on rooted 
ompa
t R-trees.But in Theorem 8.4.1 it was shown that there is also weak 
onvergen
e inDR([0, t̂δ ])for the rea
tant 
ontour:
L[C(Qt̂nm,δ(ξ̃

nk) : kn2
m)]

m→∞−−−−→ L[ζδ]. (8.94)The mapping Tunord from De�nition 5.1.3 is 
ontinuous and bounded and thereforeit holds that
L[Tunord(C(Qt̂nm,δ(ξ̃nm) : kn2

m))]
k→∞−−−→ L[Tunord(ζ

δ)]. (8.95)But it is true by de�nition of the rea
tant forest that
Tunord(C(Qt̂nm,δ(ξ̃

nm) : kn2
m)) = ξfor,nm . (8.96)Hen
e the result is shown.Proof: (Proof of Theorem 4.2.2: The rea
tant limit tree)The question roughly speaking is whether there exists a limit obje
t of Tunord(ζ

δ)for δ → 0. From Proposition 8.3.1 we know that the sequen
e (ξfor,n)n∈N is tight.But from the previous proposition we know that any limit forest Y for needs to ful�l
L[Qt̂δ (Y

for)] = L[Tunord(ζ
δ)], so this law is independent of the limit forest 
hosen.Clearly we need to show that there is a unique limit forest Y for. To do so we showthat the sequen
e (L[Tunord(ζ

δ])δ>0 is a Cau
hy sequen
e as δ → 0 for the Prohorovmetri
 on the probability measures M1(T
root). Thus sin
e M1(T

root) is 
omplete, there is a limit forest distribution L[Z]. Moreover for any limit forest Y for, thesequen
e (L[Qt̂δ (Y
for)])δ>0 is Cau
hy with the same limit distribution P = L[Z].So the distribution of Y for is uniquely determined and given by the distribution of

limδ→0 Tunord(ζ
δ).To verify that (L[Tunord(ζδ)])δ>0 is Cau
hy , �x 0 < δ′ < δ and re
all a 
hara
-terization of the Prohorov metri
 (Theorem 3.1.2 in [EK86℄). Then:

dPr(L(Tunord(ζδ),L(Tunord(ζδ
′
))) =

= inf
µ

inf{ǫ > 0 : dµ(((T, ρ), (T
′, ρ′)) : dGHroot((T, ρ), (T ′, ρ′)) > ǫ) ≤ ǫ}, (8.97)where the in�mum for µ is taken over all probability measures µ ∈ M1(T

root×Troot),with marginal distributions
µ(· × Troot) = L(Tunord(ζ

δ)) (8.98)and
µ(Troot × ·) = L(Tunord(ζ

δ)). (8.99)
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e of the joint law for the rea
tant forest 91As our goal is to give an upper bound for this distan
e, it will be su�
ientto des
ribe a spe
i�
 probability measure µ ful�lling the properties and showingthat the right hand side expression for this spe
i�
 µ vanishes as δ, δ′ → 0. We
hoose µ to be the probability measure on Troot × Troot, s.t. positive measure isasso
iated to those tree pairs ((T, ρ), (T ′, ρ′)), whi
h have the same root and thesame trun
ated ex
ursion C(Qt̂δ (·)). Additionally the marginals need to obey thepostulated properties. By this a measure µ on Troot × Troot is well-de�ned.Note that in the Gromov-Hausdor�-distan
e between a pair of trees from thesupport of µ is 
learly less than t̂δ′ − t̂δ. Thus
dPr

(

L(T (ζδ),L(T (ζδ
′
))
)

≤ t̂δ
′ − t̂δ. (8.100)Furhermore, sin
e t̂δ → t̂ as δ → 0, the sequen
e is Cau
hy.8.6 Convergen
e of the joint law for the rea
tant forestWithin this se
tion we provide a proof of Theorem 4.2.3. This is the �rst non-quen
hed result in this 
hapter. Be aware that we leave the world of �xed 
atalystsequen
es x and xn here.8.6.1 The main result and the strategy of the proofWe restate Theorem 4.2.2 whi
h gives the annealed tree 
onvergen
e:Theorem 8.6.1:The sequen
e of the pair of res
aled 
atalyst total mass and res
aled rea
tant forest
onverges:

L(ηtot,n, ξfor,n) ⇒ L(X,Y for). (8.101)Here 
onvergen
e is understood as weak 
onvergen
e on the set of probability mea-sures on DR1
+
[0,∞) × Troot with the produ
t topology.We are going to split up the proof in four steps, sin
e it is rather long. A partof one step is left in the appendix, sin
e it is a general result and its proof 
an bedone easier when using some ideas developed in the 
hapter about point pro
esses.For the proof we assume that the limit law is the produ
t measure of the limit
atalyst total mass times the limit quen
hed probability kernels. We will start with
onsidering the �rst 
oordinate, the 
atalyst total mass pro
ess, and restri
t itspaths and the time, where it is positive to a 
ompa
tum. In a se
ond step we takea Lips
hitz-fun
tion

H : DR2
+
[0,∞) × Troot → R (8.102)and need to show the ordinairy weak 
onvergen
e argument. Sin
e we 
annot dothat dire
tly we apply the quen
hed rea
tant tree 
onvergen
e and the 
atalyst totalmass 
onvergen
e to redu
e the problem to a question of 
ontinuity of a mappingdepending on the 
atalyst. In the third step we relate trees and 
ontours via Tunord.Therefore, the question translates to 
ontinuous dependen
e of the 
ontour on its
atalyst, whi
h is nothing else than the derivative of the s
ale fun
tion. In thelast step we show that di�usions depend 
ontinuously on their s
ale fun
tion under
ertain restri
tions and this will end the proof.



8.6 Convergen
e of the joint law for the rea
tant forest 92Step 1: Restri
tions of 
atalyst total mass ηtot,n, X to 
ompa
ta.Step 2: Rewriting the 
laim to a question of 
ontinuity.Step 3: Translation of the 
ontinuity question to a 
ontour question of 
ontinuity.Step 4: Continuity of the 
ontour di�usion on its s
ale fun
tion.All ǫ, ǫ̃ mentioned later are positive and �xed. When writing ǫn, then we wantto indi
ate that n needs to be 
hosen appropriately to get ǫ. So n depends on ǫ inthat 
ase.8.6.2 The proofStep 1:We want to speak about the law of the 
atalyst total mass pro
esses. Therefore wede�ne for a set of fun
tions A in DR+ [0,∞)

‖A‖ := sup
f∈A

‖f‖ (8.103)and
T (A) := sup

f∈A
{t ≥ 0 : f(t) = 0}. (8.104)Then we 
an bound the measure P(ηtot,n ∈ ·) in the following way:P(ηtot,n ∈ A) ≤ P(ηtot,n ∈ A, ‖A‖ ≤M,T (A) ≤M)

+P(ηtot,n ∈ A, ‖A‖ > M,T (A) ≤M)

+P(ηtot,n ∈ A,T (A) > M).

(8.105)Observe that by Lemmas 7.3.3 and 7.3.1 the last two summands 
an be boundedfrom above by any positive 
onstant for an appropriate 
hoi
e of M .The same 
an be done for the measure P(X ∈ ·) on CR+ [0,∞) by Lemmas 7.6.3and 7.4.4.Hen
e let us de�ne
νn(dx) := P[ηtot,n ∈ dx, ‖x‖ ≤M,T (x) ≤M ] (8.106)and
ν(dx) := P[X ∈ dx, ‖x‖ ≤M,T (x) ≤M ]. (8.107)Then we 
an write for given ǫ > 0 and an appropriate M = M(ǫ) the followingP(ηtot,n ∈ dx) ≤ νn(dx) + ǫM ,P(X ∈ dx) ≤ ν(dx) + ǫM .

(8.108)Step 2:For a 
ontinuous Lips
hitz 
ontinuous fun
tion
H : DR2

+
[0,∞) × Troot → R (8.109)
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e of the joint law for the rea
tant forest 93we need to show the following:
∫

dP[ηtot,n = x, ξfor,n = y]H(x, y)
n→∞−−−→ dP[X = x, Y for = y]H(x, y). (8.110)We rewrite this using the quen
hed probability kernels Kn(·, ·) and K(·, ·) de�nedin (8.2) and (8.3):

∣

∣

∣

∣

∫

dP(X = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

Kn(x, dy)H(x, y)

∣

∣

∣

∣(8.111)This 
an be bounded by a de
omposition as follows:
≤
∣

∣

∣

∣

∫

dP(X = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

K(x, dy)H(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

dP(ηtot,n = x)

∫

K(x, dy)H(x, y) −
∫

dP(ηtot,n = x)

∫

Kn(x, dy)H(x, y)

∣

∣

∣

∣

.The se
ond summand tends to zero by the quen
hed result about tree 
onvergen
ein Theorem 4.2.2 (for a �xed 
atalyst sequen
e). When 
hoosing n su�
iently highit 
an be a
hieved to bound it by a positive ǫn.With the help of part (A) the �rst summand 
an be bounded from above by
2‖H‖ ǫM +

∣

∣

∣

∣

∫

ν(dx)

∫

K(x, dy)H(x, y) −
∫

νn(dx)

∫

K(x, dy)H(x, y)

∣

∣

∣

∣

(8.112)and we rewrite that to
2‖H‖ ǫM +

∣

∣

∣

∣

∫

ν(dx)Ĥ(x) −
∫

νn(dx)Ĥ(x)

∣

∣

∣

∣

, (8.113)where
Ĥ(x) =

∫

K(x, dy)H(x, y). (8.114)Thus, by the total mass 
onvergen
e ( νn ⇒ ν in Theorem 2.3.1) we are done ifwe 
an show that Ĥ is bounded and 
ontinuous (in Skorokhod topology). The �rstis 
lear, sin
e H is bounded and we are dealing with probability kernels. To show
ontinuity in x is more subtle and we use two parts to do that. First we relate theproblem to 
ontour pro
esses.Step 3:For two 
àdlàg 
atalyst paths x and x̃ observe that:
|Ĥ(x) − Ĥ(x̃)| ≤|

∫

K(x, dy)H(x, y) −
∫

K(x, dy)H(x,Qτδy)|

+ |
∫

K(x, dy)H(x,Qτδy) −
∫

K(x̃, dy)H(x̃, Qτδy)|

+ |
∫

K(x̃, dy)H(x̃, Qτδy) −
∫

K(x̃, dy)H(x̃, y)|.

(8.115)
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tant forest 94Sin
eH is Lips
hitz-
ontinuous, note that the �rst and the third line 
an be boundedfrom above by any possible 
onstant ǫ̃ if we 
hoose δ su�
iently small. Now weremember (Proposition 8.5.1) that we were able to express the 
ut trees with limitthe 
ontour pro
ess via the Lips
hitz-
ontinuous mapping Tunord:
Qτδ(Y for)

d
= Tunord(ζ

δ). (8.116)Hen
e
|Ĥ(x)− Ĥ(x̃)| ≤ 2δ‖H‖+ |E[H(x,Tunord(ζδ))|X = x]−E[H(x̃,Tunord(ζ

δ))|X = x̃]|.The 
ontinuity in the �rst 
oordinate is evident and giving up the �rst 
oordinatewe 
an de�ne G := H ◦ Tunord. Clearly this mapping is Lips
hitz-
ontinuous sin
eboth fa
tors are. We will show 
ontinuity not only for mappings G of that spe
ialform but for any kind of Lips
hitz mappings G. Therefore we 
an also deal withthe following mapping
G : (C[0,M ][0,∞), ‖ · ‖sup) → R (8.117)and we need to take 
are of

Ĝ :

{

D[0,M ][0,M ] → R

x 7→ E[G(ζδ)|X = x]
. (8.118)We note that we are done when showing 
ontinuity of that mapping by (8.117).Step 4:Let us 
all ζδ,x and ζδ,x̃ the 
ontours 
orresponding to 
atalysts x and x̃. By Theorem5.3.1 the limit 
ontour was the solution of a martingale problem. Hen
e we 
ande�ne s
ale-fun
tion and a random time-
hange to relate the 
ontour to a Brownianmotion β (this be
omes 
learer in Se
tion 9.2, espe
ially Lemma 9.2.2). Hen
e,de�ne

sx(t) =
b

2

∫ t

0
x(r) drsx̃(t) =

b

2

∫ t

0
x̃(r) dr (8.119)Now we use a result proven in the appendix (Chapter B.2) about the di�eren
e oftwo di�usions stemming from two di�erent s
ale fun
tions. The time until we needto 
onsider the two di�usions is almost surely �nite and hen
e we 
an use the resultpresented in the appendix. Therefore, we 
an 
hoose the two fun
tions x and x̃ so
lose that the following expression 
an be bounded by:

|Ĝ(x) − Ĝ(x̃)| ≤E [|G(ζδ,x) −G(ζδ,x̃)|
]

≤‖G‖E [‖ζδ,x − ζδ,x̃‖
]

≤‖G‖ δ−3ǫ.

(8.120)This ends the proof sin
e we were able to establish 
ontinuity of the mapping Ĝ inSkorokhod topology by (8.118).After this result the proof is done. ���
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tant forest 95Remark 8.6.2:Naïvely one 
ould guess that νn ⇒ ν and Kn ⇒ K implies
νn ×Kn ⇒ ν ×K. (8.121)But we have seen in the proof that this is a question of 
ontinuous dependen
e ofsome elements.



9 Proofs of the main results fromChapter 6In this 
hapter we give the proofs 
on
erning the genealogi
al point pro
esses.The proofs for the �rst re
tant point pro
ess results and its limit are put in a �rstse
tion. They are mostly done by 
lassi
al Poisson approximation ideas. A se
ondse
tion inhabits a proposition treating the relationship between limit point pro
essand limit 
ontour. The proof of this proposition needs quite some e�ort and usesex
ursion theory. The third se
tion of this 
hapter 
ontains a proof of a 
omparisonresult between 
lassi
al and 
atalyti
 forests. And in the last se
tion we give aproof of results about joint-
onvergen
e of the trees and limit-
ontour extensionabove level τ δ. These last proofs are put here at the end of this 
hapter, sin
e eitherthey need notation from here or they require the genealogi
al point-pro
ess as a fulldes
ription of the pro
ess.Before starting we give a remark.Remark 9.0.3:Within this 
hapter there might arise 
onfusion about the word �time� or �time in-dex�. We will talk about
• time level or simply level if we mean the height in the tree (e.g. t in ηtot

t ) and
• the term �time�, if we mean the time index in the di�usion pro
ess to thegenealogi
al tree (e.g. u in ζδu). 39.1 Law and 
onvergen
e of the rea
tant point pro
essFirst we provide the proof of a lemma about the rea
tant point pro
ess.Lemma 9.1.1: For a �xed 
atalyst (ηtot

s )s≥0 realization and �xed t < T 1,0 therea
tant point pro
ess Ξt has total mass
Ξt(N × [0, t]) = ξtott − 1. (9.1)The point pro
ess Ξt is given by the random points {(i, σi) : 1 ≤ i ≤ ξtott − 1}, wherethe σi are independent and identi
ally distributed [0, t]-valued random-variables.They have distribution given by

P (σ1 ≥ h) =
2
b +

∫ t
0 η

tot
s ds

∫ t
0 η

tot
s ds

∫ t
h η

tot
s ds

2
b +

∫ t
h η

tot
s ds

, (9.2)for every 0 < h < t.Proof: In the 
ase of ξtott ≤ 1 nothing needs to be shown, sin
e there are noMRCAs. So let us assumethat ξtott − 1 ≥ 2. Then the σi are the depths of a
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0t
Di Ui

Figure 9.1: The downward ex
ursion relates to an upward-down birth-and-deathpro
ess.downward ex
ursion from level t of the 
ontour pro
ess (C, V ), as given in Lemma5.2.4 
ut at height T 1,0. This pro
ess was strong Markovian, so these downward-ex
ursions are independent and identi
ally distributed.Let us de�ne the times, when the 
ontour C 
rosses the level t:
D0 := 0;Ui := inf{s > Di : Cs = t} for i ≥ 0;

Di := inf{s > Ui−1 : Cs = t} for i ≥ 1
(9.3)are the up
rossing and down
rossing times of the 
ontour. These times are the�
ontour times� of ea
h individual alive at time t.Now we have to think of the depth σi of this downward ex
ursion between Di and

Ui. But we 
an look at this downward ex
ursion as the 
ontour of a downward treeas in Figure 9.1. The downward tree behaves like a birth-and-death pro
ess withrates b
2η

tot
s for birth and death ea
h (the rates were identi�ed in the �rst part of theproof of Lemma 8.4.2). But the depth of a downward ex
ursion is nothing else thanthe extin
tion time of this birth-and-death pro
ess.An exer
ise in Feller's book ([Fel68, Problem XVII.10.11℄) shows that a birth-and-death pro
ess (Ns)s≥0, N0 = 1 with rates (λs)s≥0 for ea
h is extin
t at time swith the following probability:

P (Ns = 0) =

∫ s
0 λr dr

1 +
∫ s
0 λr dr

. (9.4)In our situation it is λs = b
2η

tot
t−s and we obtain:

P (σ1 ≥ h) = P (Nt−h = 0|Nt = 0) =

=
P (Nt−h = 0)

P (Nt = 0)
=

=
1 + b

2

∫ t
0 η

tot
s ds

b
2

∫ t
0 η

tot
s ds

b
2

∫ t
h η

tot
s ds

1 + b
2

∫ t
h η

tot
s ds

,

(9.5)whi
h had to be proved.Now we want to prove a result for the res
aled rea
tant point pro
ess. Thesituation is more 
omplex, sin
e two extant individuals 
an be members of di�erenttrees. Hen
e their MRCA lies at time level 0. This is re�e
ted in Proposition 6.2.7whi
h we state here again and give a proof of it:
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tant point pro
ess 98Proposition 9.1.2: We 
an spe
ify the distribution of the rea
tant point pro
ess
Ξtn,n at time tn. For kn ∈ {1, 2, . . . , nξtot,ntn − 1}(i) the number of points at level 0 is given by

κn := Ξtn,n({ 1
n ,

2
n , . . . ,

kn
n } × {0}) d

= Bin (kn,P(σn ≥ tn)) and (9.6)(ii) the number of points between 0 and tn − hn is given by
Ξtn,n({ 1

n ,
2
n , . . . ,

kn
n } × (0, tn − hn))

d
= Bin (kn − κn,P(σn ≥ hn|σn < tn)) .(9.7)Here Bin(n, p) is the law of a binomially distributed random variable with parameters

n, p and σn is the extin
tion time of a birth-and-death pro
ess with reprodu
tion anddeath rate (nb2 η
tot,n
tn−s)0≤s≤tn .Proof: Sin
e we have 
onditioned on the total mass of the rea
tant at time tn,we know that there are nξtot,ntn rea
tant individuals alive at that time. Among the

nξtot,ntn − 1 most re
ent 
ommon an
estors of these individuals there are some whi
hlie at time level zero and some whi
h lie above. The �rst ones 
ontribute to κnthe others to the se
ond line in the proposition. The idea, similar to the previousproof, is to look at the 
ontour pro
ess and relate MRCAs to minimal points of thedownward ex
ursions.First we note that there are nξtot,ntn − 1 downward ex
ursions from level tn to
onsider. We already showed that the 
ontour pro
ess rea
hes its minimum in adownward ex
ursion at the extin
tion time of a birth-and-death pro
ess with rate
( b2nη

tot,n
tn−s)s≥0 ea
h. In the 
ase n = 1 we knew that extin
tion would o

ur beforethe ex
ursion rea
hes level zero. For the general n it is in fa
t the 
asethat if thisextin
tion does not happen before rea
hing time level zero, then this means the
ontour goes to zero and then starts traversing the next tree of the forest. Thisgives a point at level zero.As all of the ex
ursions are independent the number of ex
ursions �dropping�below level zero among the �rst kn ex
ursions is therefore given by:

κn := Ξtn,n({ 1
n ,

2
n , . . . ,

kn
n } × {0}) d

= Bin (kn,P(σn ≥ tn)) . (9.8)Thus the �rst line is already proven. It remains to show the se
ond line. Thereare now kn−κn most re
ent 
ommon an
estors that lie above time level zero. Ea
hof these 
ontours independent of the others has probability P(σn > hn|σn < tn) to�drop� at least below level tn − hn:
Ξtn,n({ 1

n ,
2
n , . . . ,

kn
n } × (0, tn − hn))

d
= Bin (kn − κn,P(σn > hn|σn < tn)) . (9.9)And that is all we needed to show for the proposition.We 
ontinue 
lasi
ally and want to prove a 
onvergen
e result for Ξtn,n when n→

∞ as Theorem 6.3.1. Its proof is given by the following theorem, when additionallymixing the (here) non-random rea
tant total masses at time tn.
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tant point pro
ess 99It will be a quen
hed result , i.e. we �x a 
atalyti
 ba
kground as in De�nition2.3.3. Additionally let a �xed time t < τ0 be given and a sequen
e of tn approa
hing
t as n→ ∞. Furthermore �x a sequen
e of rea
tant total masses s.t.:

lim
n→∞

|Yt − ξtot,ntn | = 0. (9.10)The next theorem uses these ingredients and shows 
onvergen
e of the res
aled pointpro
ess. Therefore 
ondition the res
aled pro
esses on a 
atalyst total mass pro
ess
ηtot,n and rea
tant total mass ξtot,ntn at time tn.Then the following theorem holds.Theorem 9.1.3:The point pro
ess Ξtn,n 
onverges to a point pro
ess πt on [0, Yt] × [0, τ0]. For
u ∈ [0, 1] and 0 < h < t the limit point pro
ess is given by:

• a Poisson pro
ess at level zero, i.e. on [0, Yt] × {0} spe
i�ed by
πt([0, uYt] × {0}) = Poisson( 2uYt

∫ t
0 bXs ds

) (9.11)
• and another Poisson pro
ess on the set [0, Yt] × (0, τ0] spe
i�ed by

πt([0, uYt] × (0, h)) = Poisson(uYt( 2
∫ t
h bXs ds

− 2
∫ t
0 bXs ds

)) (9.12)Proof: By Theorem 4.2 in [Kal83℄ it is su�
ient to show the 
onvergen
e of Ξtn,nto πt by 
onsidering intensity measures on the sets given in the theorem. Both lineswill be proven via the usual Poisson approximation and we will only do the �rstline, sin
e the proof of the se
ond line uses the same ideas.Therefore let u ∈ [0, 1] be given:
Ξtn,n([0, uYt] × {0}) =

=Ξtn,n([0, uξtot,ntn ] × {0})+
± Ξtn,n([uYt ∧ uξtot,ntn , uYt ∨ uξtot,ntn ] × {0})

=Ξtn,n
(

{ 1
n ,

2
n , . . . ,

⌊nuξtot,ntn
⌋

n } × {0}
)

+

± Ξtn,n
(

{ 1
n ,

2
n , . . . ,

⌊nu|Yt−ηtot,n
tn

|−1⌋
n } × {0}

)

d
= Bin(⌊nuξtot,ntn ⌋,P(σn ≥ tn)

)

+

± Bin(⌊nu|Yt − ξtot,ntn |⌋,P(σn ≥ tn)
)

.

(9.13)
Now it is helpful to remember that the probability P(σn ≥ tn) 
an be 
al
ulatedsimilar as in Lemma 9.1.1 (espe
ially (9.4)) and we get

P(σn ≥ tn) = P(Poisson pro
ess with rate (nηtot,n
tn−s)s≥0 hasnot jumped before time tn)

=
1

1 +
∫ tn
0

b
2nη

tot,n
s ds

.

(9.14)
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ess and limit 
ontour 100And in a limit for n→ ∞ we obtain that:
nP(σn ≥ tn)

n→∞−−−→ 2

b

(∫ t

0
Xsds

)−1

. (9.15)And as ξtot,ntn goes to Yt (remember that by 
onditioning they are not random) the�rst summand gives what we want by the Poisson approximation for n → ∞. These
ond summand by Poisson approximation tends to unit mass at zero. Then as
n→ ∞:

Ξtn,n([0, uYt] × {0}) → Poisson( 2uYt
∫ t
0 bXsds

) (9.16)
9.2 The relationship between limit point pro
ess andlimit 
ontourAfter the limit rea
tant one wonders, if there is a 
onne
tion to the other fun
tionalsof the 
atalyti
 bran
hing setting. We 
an a�rmate su
h a question and proveProposition 6.3.3, whi
h relates the limit point pro
ess with the minima of downwardex
ursions of the 
ontour pro
ess. The proof is quite long and is subdivided intoseveral steps. For the understanding of the proof we will use the slightly moregeneral 
ontour des
ription as in Se
tion 8.4 with tree traversal speed = k. The
ontour runs until lo
al time hits 4

b .9.2.1 Main result and strategy of the proofThe proposition to prove isProposition 9.2.1: Let a �xed 
atalyst X and t < τ0 be given. If δ > 0 is su
hthat t < τ δ, then let ζδ denote the solution of the (Aδ ,D(Aδ)) martingale problem.Then it holds that
πt

d
= πζ

δ,t. (9.17)Here the pro
ess on the right hand side is given as the point pro
ess of minimaof downward ex
ursions from level t:
πζ

δ,t := {(u, inf(ǫ−u ) :, when αtu− 6= αtu and u ≤ α4/b}, (9.18)where ǫ−u is a downward ex
ursion of ζδ from level t and α1 is the �rst time, whenthe lo
al time at level zero rea
hes 4
b and αtu is the inverse of lo
al time at level t of

u (for the exa
t de�nitions see page 42).The proof will be done in several steps. The �rst four preparatory steps are in avery general 
ontext that 
an be applied to any ex
ursion question. The last stepfo
uses on the 
ontour pro
ess ζδ and its downward ex
ursion point pro
ess andthen relates it to the limit point pro
ess.Step 1: S
ale fun
tion and speed measure of a di�usion ζ and relation to Brownianmotion.
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ess and limit 
ontour 101Step 2: Lo
al times of a di�usion ζ and relationship to Brownian lo
al time.Step 3: Ex
ursion depths of a di�usion ζ: Depths 
oordinate.Step 4: Ex
ursion depths of a di�usion ζ: Time 
oordinate.Step 5: Appli
ation of the previous result to the point pro
ess πζδ,t and 
omparisonwith πt.9.2.2 The proofStep 1: S
ale fun
tion and speed measure of a di�usion ζ and relation to BrownianmotionIn this step we follow the des
ription in [RY91, Chapter VII.3℄ and referen
es referto that book. Let (ζu)u≥0 be a regular di�usion on a 
ompa
tum [l, r] with generator
(A,D(A)). Then there exists a fun
tion s and a measure m:

s :[l, r] → R,

m :B([l, r]) → [0,∞),
(9.19)
alled the s
ale fun
tion s and the speed measure m, s.t.

• s is 
ontinuous, stri
tly in
reasing and unique up to a�ne transformations(Proposition VII.3.1).
• s(ζ) is a lo
al martingale.
• if m has density m′ w.r.t. Lebesgue measure. Then it is

Af(x) =
1

2

d

m′(x)dx
d

ds
f(x), (9.20)for bounded f ∈ D(A) and almost any x ∈ (l, r) (Theorem VII.3.12).If s is linear then ζ is said to be on the natural s
alethat means it 
ontains nodrift. If the speed measure density m′ is 
onstantthat means the pro
ess is runningat the same �speed� as Brownian motion. In the 
ase s = id, m = λ, we have ζ = β,where β is a Brownian motion.To use the third property let us hen
eforth assume that m has density with respe
tto the Lebesgue measure λ, i.e. that we 
an write:

m(dx) = m′(x)λ(dx). (9.21)Now we want to start some 
al
ulations to express the distribution of a di�usion
ζ, started in t, as a �transformed� Brownian motion β, started in 0. First we notethat B := (s(ζu) − s(t))u≥0 is a martingale started in 0. As shown in Lemma 8.4.8for spe
ial m and s, it is true that B is a solution of the martingale problem withgenerator

Ãf(x) =
1

2

s′(s−1(x+ s(t)))

m′(s−1(x+ s(t)))
f ′′(x). (9.22)So for a Brownian motion β we 
an write

dBu =

√

s′(s−1(Bu + s(t)))

m′(s−1(Bu + s(t)))
dβu. (9.23)
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hange
γ(t) :=

∫ t

0

m′(s−1(βv + s(t)))

s′(s−1(βv + s(t)))
dv, (9.24)and its well-de�ned inverse

γ−1(u) := inf{t ≥ 0 : γ(t) ≥ u}. (9.25)Then an easy 
al
ulation as in [KS00, Proof of Theorem 5.5.4℄ gives that
(Bu)u≥0

d
= (βγ−1(u))u≥0, (9.26)and even the following lemma holds:Lemma 9.2.2: It is true that

(ζu)u≥0
d
= (s−1(βγ−1(u) + s(t)))u≥0. (9.27)Step 2: Lo
al times of a di�usion ζ and relationship to Brownian lo
al timeThe setting and the notation is the same as in the previous step. If we 
all lhu(ζ) thelo
al time of the di�usion ζ at level h at time u, then we get the following lemma:Lemma 9.2.3: In the setting as above (ζ0 = t, (9.27)) it holds that

lhu(ζ)
d
= (s′(h))−1l

s(h)−s(t)
γ−1(u)

(β), . (9.28)Proof: Before we start with 
al
ulating lo
al times we do an easy but helpful
al
ulation of the quadrati
 variation, whi
h also will be of help in a later proof:
d〈ζδ, ζδ〉u =

(

s′(s−1(Bu + s(t)))
)−2

d〈B,B〉u
=
(

s′(s−1(βγ−1(u) + s(t)))
)−2

dγ−1(u)

=
(

m′(s−1(βγ−1(u) + s(t)))
)−1 (

s′(s−1(βγ−1(u) + s(t)))
)−1

du.

(9.29)Hen
e by the de�nition of lo
al time we get the relationship between lo
al timeof ζ and Brownian motion β:
lhu(ζ) = lim

ǫ→0

1

ǫ

∫ u

0
1{ζv∈[h,h+ǫ)} d〈ζδ, ζδ〉v

= lim
ǫ→0

1

ǫ

∫ u

0
1{s(ζv)−s(t)∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))} d〈ζδ, ζδ〉v (9.30)

= lim
ǫ→0

1

ǫ

∫ u

0
1{βγ−1(v)∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))} (9.31)

(

m′(s−1(βγ−1(v) + s(t)))
)−1 (

s′(s−1(βγ−1(v) + s(t)))
)−1

dv.Now a 
hange of variables z := γ−1(v) gives:
= lim
ǫ→0

1

ǫ

∫ γ−1(u)

0
1{βz∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ))}

(

s′(s−1(βz + s(t)))
)−2

dz =(9.32)
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upation Times Formula leads to:
= lim
ǫ→0

1

ǫ

∫

1{x∈[s(h)−s(t),s(h)−s(t)+s′(h)ǫ+o(ǫ) )}
(

s′(s−1(x+ s(t)))
)−2

lxγ−1(u)(β) dx

=(s′(h))−1l
s(h)−s(t)
γ−1(u)

(β), (9.33)where in the last step we used that Brownian lo
al time is 
ontinuous in x and s′ isright-
ontinuous.In fa
t it looks if we had made our life a bit 
ompli
ated with some fa
tors andsummands 
an
elling out in the end of the proof. But we will see the merits of thispuzzling 
al
ulation in the next steps, where we 
an use the setting just presented.Step 3: Ex
ursion depths of a di�usion ζ: Depths 
oordinateIn this step we des
ribe the �depths� part of the ex
ursion point pro
ess. In Step 4the �time� part (or 
oordinate) is dealt with.Let ζ be a regular di�usion as above and let t be in the interior of the state spa
e
(l, r) of ζ. Remember the de�nitions of αtu(ζ), ǫ−u , U−

t and πζ,t from page 42.The point pro
ess πζ,t measures the depth of the downward ex
ursions from level tof ζ. Then it holds the following lemma, des
ribing the depths 
oordinate:Lemma 9.2.4: The pro
ess πζ,t is a Poisson point pro
ess and the se
ond 
oordinate
nζ,t of the intensity measure for 0 < h < t is given by

nζ,t(dh) = s′(t)
s′(h)

2(s(t) − s(h))2
dh. (9.34)And the intensity measure of ex
ursions rea
hing zero is given by

nζ,t({0}) = s′(t)
1

2s(t)
. (9.35)In the last line of the lemma there should not be {0}, but (−∞, 0]). If we restri
tto di�usions ζ re�e
ted at zero, as we will do later, then it does not matter.Proof: By Theorem VI.57.6 from [RW79℄ we know that the measure on downwardex
ursions is a Poisson point pro
ess

N(dl ⊗ de) = dl ⊗ n(de), (9.36)where the �rst 
oordinate is measured in lo
al time.If we set for H = t− h

Gh := {f ∈ U−
t : inf(f) < h = t−H}, (9.37)the set of ex
ursions going below h we are interested in the law of n(Gh). To obtainthat law we adapt the proof of Theorem VI.57.12 in the same book to our situation.Therefore set

T := inf{l > 0 : N((0, l] ×Gh) > 0}, (9.38)
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ontour 104that is the �rst time an ex
ursion with depth t − h arises. Sin
e N is Poissonwith rate n(Gh) we know that the waiting time T is exponentially distributed andtherefore
E[T ] = (n(Gh))

−1 . (9.39)We additionally de�ne the time when the pro
ess ζ rea
hes the level t− h, when itis started in t:
τ := inf{r : ζr = t−H, ζ0 = t}. (9.40)By Lemma 9.2.2 we have that for a Brownian motion started in 0:

τ
d
= inf{r : βγ−1(r) = s(t−H) − s(t), β0 = 0}. (9.41)For Brownian motion re�e
ted at zero the Tanaka formula gives that the followingexpression is a martingale:

(

(βu)
− − 1

2
ls(t)u (β)

)

u≥0

. (9.42)Now the Optional Sampling Theorem for the optional time γ−1(τ) yields:
E[(βγ−1(τ))

−] =
1

2
E[l0γ−1(τ)(β)]. (9.43)But the left hand side is equal to (s(t−H)− s(t))− and for the right hand side we
al
ulate:

1

2
E[l0γ−1(τ)(β)] =

1

2
s′(t)E[ltτ (ζ)] =

=
1

2
s′(t)E[T ]

=
1

2
s′(t) (n(Gh))

−1 .

(9.44)And putting left and right hand side of (9.43) together we get:
n(Gh) = s′(t) (2s(t) − s(h))−1 . (9.45)That is just the �rst line of the lemma. The se
ond line does not need to be provenadditionally, sin
e it is just the spe
ial 
ase of h = 0.Step 4: Ex
ursion depths of a di�usion ζ: Time 
oordinateIn this step we will talk about the �rst 
oordinate of the point pro
ess πζ,t. Ex
ur-sions arise, when lo
al time grows. So the natural �rst 
oordinate for the intensitymeasure ℵζ,t of πζ,t is given by:

dltu(ζ) := (lt· (ζ))
−1(du). (9.46)This is the uniform distribution on the set {u : ζu = t}.As we are going to deal with tree ex
ursions later, we put the following question:What happens if we want to 
onsider the di�usion ζ only until its lo
al time at zerorea
hes 4

b? Until whi
h u 
an the uniform measure for the lo
al time be interesting?
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ontour 105We already noti
e that things here get a bit 
ompli
ated. So to make things 
lear:Here we are going to deal with a di�usion ζ starting at zero and we will apply theresults from Step 2, but in the 
ase t = 0. We will write ζ̃ instead of ζ in this stepand only in this step, where we deal with a di�usion ζ starting in t = 0.To be more pre
ise we give some de�nitions and a lemma, whi
h are put in awider framework:For a Brownian motion β and r > 0 set:
r∗ := inf{u ≥ 0 : l0u(β) = rs′(0)}. (9.47)By Lemma 9.2.3 it is then:

γ(r∗) d
= αr := inf{u ≥ 0 : l0u(ζ̃) = r}, (9.48)and the following lemma holds:Lemma 9.2.5: If (Zh)h≥0 is a solution of the following SDE

dZh =
√

4Zhs′(h)dβh , Z0 = rs′(0), (9.49)then
(lhαr

(ζ̃))h≥0
d
= (

Zh
s′(h)

)h≥0. (9.50)Remark 9.2.6:This result des
ribes the total mass of the lo
al time on the set {u : ζu = h}. Hen
eit 
an be 
al
ulated via an inhomogeneous Feller di�usion with 
atalyst rate 4s′. 3Proof: By the se
ond Ray-Knight theorem, we know that (lar∗(β))a≥0 is a squaredzero-dimensional Bessel pro
ess started in rs′(0) (see Chapter VI.52 in [RW79℄).Using Lemma 9.2.3 we have that the following expression is also a squared zero-dimensional Bessel pro
ess started in rs′(0):
(

s′(s−1(a)) ls
−1(a)
αr

(ζ̃)
)

a≥0
. (9.51)Then we 
al
ulate:

(

s′(s−1(a)) ls
−1(a)
αr

(ζ̃)
)

=s′(0)l0αr
(ζ̃) +

∫ a

0

√

4s′(s−1(u)) l
s−1(u)
αr (ζ̃)dβu

=s′(0)r +

∫ s−1(a)

0

√

4s′(z) lzαr
(ζ̃) s′(z)dβz,

(9.52)and get by setting
Zz := s′(z)lzαr

(ζ̃), (9.53)the following SDE:
dZz =

√

4Zzs′(z)dβz and Z0 = s′(0)l0αr
= s′(0)r. (9.54)Hen
e the lemma is shown by rearranging the de�nition of Z.
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 forest 106Step 5: Appli
ation of the previous result to the point pro
ess πζδ,t and 
ompar-ison with πt.The previous general results 
an now be taken up to for the 
ase of the di�usion ζδ,i.e. where:
m(dx) = λ(dx),

s(h) =
b

2k

∫ h

0
Xs ds,

ζδ0 = 0.

(9.55)Additionally we have to stop the 
ontour, when its lo
al time at level 0 rea
hes
4
b , i.e. at time α4/b. Note that it is su�
ient to 
ompare intensity measures of πtand πζ

δ,t to obtain equality in distribution. The point pro
ess πζδ,t of depths ofdownward ex
ursions from level t has the intensity measure ℵζδ,t. We will 
al
ulatethis intensity measure on a small re
tangle of size du× dh.Its �rst (=time) 
oordinate is uniformly distributed with a total mass given byLemma 9.2.5 for r = 4
b :

ltα4/b
(ζδ) =

Zt
s′(t)

=
2kZt
bXt

d
=

4Yt
bXt

, (9.56)sin
e in this 
ase k
2Z behaves like a rea
tant Y with a �xed 
atalyst medium (Xs)s≥0(
onsider (9.49)).Se
ondly the depth measure nζδ,t is given by Lemma 9.2.4:

nζ,t(dh) = Xt
Xh

2(
∫ t
t−hXs ds)2

dh. (9.57)Hen
e, in the produ
t measure evaluated on a re
tangle the fa
tors Xt 
an
el outand we get:
ℵζδ,t(du⊗ dh) = 1[0,Yt](u)du⊗ 2Xh

(
∫ t
t−h bXs ds)2

dh. (9.58)And this is almost the proof of Proposition 6.3.3, sin
e this is the same intensitymeasure than that of πt. One 
an argue similarly for the points at level 0, but weomit the reprodu
tion of the ideas.Now after having done all the ne
essary steps we are done with the proof ofProposition 9.2.1. ���9.3 Comparison result between 
lassi
al forest and the
atalyti
 forestIn this se
tion we give the proof of Proposition 4.3.1. Therefore we re
all thefollowing de�nition of an integral over the 
atalyst total mass . This integral is abit di�erent, than in the previous se
tion, sin
e here we are only going to deal with
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ontour downward ex
ursions from level t. Therefore the integral starts from level
t on and a

umulates the 
atalyst downwards:

st :

{

[0, τ0] → [0,∞)

h 7→ b
2k

∫ t
t−hXs ds

(9.59)In fa
t it is st(h) = s(t) − s(t − h) for the 
ase k = 1 and this short
ut is morehandy than always writing the di�eren
e.Then we want to prove the following proposition:Proposition 9.3.1 (Stret
hing tree metri
): Let Z for be a 
lassi
al Galton-Watsonforest, i.e. bran
hing rate equal to 2 with 
ontour pro
ess β run until lo
al time atlevel 0 rea
hes 2. Let Y for a 
atalyti
 bran
hing forest with �xed 
atalyst 
ontour
(Xs)0≤s≤τ0 . Then for any t < τ0 let

Ỹ for
t := ∂Qst(t)(Z

for) (9.60)and for u1, u2 ∈ Ỹ for
t , i.e. u1, u2 ∈ ∂Qs(t)(Z

for) de�ne:dỸ for(u1, u2) := 2s−1
t

(

1
2dZfor(u1, u2)

)

. (9.61)Then it holds that
(Ỹ for,dỸ for)

d
= (∂QtY

for;X). (9.62)Proof: First we 
laim that the 
ontour of the ordinary Galton-Watson pro
ess isindeed equal to re�e
ted Brownian motion β if we 
hoose the traversal speed kZ = 1and b = 2 by looking at Proposition 5.3.1:
C(Z for, 1) = β. (9.63)Note that 
omparing the distribution of extant individuals ∂QtY for and (Ỹ for, dỸ for)as metri
 spa
es means 
omparing them in the Gromov-Hausdor� metri
.But any ultrametri
 spa
e is 
hara
terized by its minimal spanning tree [GPW08,Remark 2.2℄. Therefore it is su�
ient to 
ompare distributions of the minimalspanning trees. These spanning trees themselves are 
hara
terized by the MRCApoints, whi
h denote the most re
ent 
ommon an
estors of two individuals alive attime t. These MRCA points are just the points of the point pro
ess πt (in the 
aseof ∂QtY for) and πβ,t (in the 
ase of ∂Qst(t)Z

for). Hen
e we only need to show thatthe law of πt is the same as the st-transformed law of πβ,t and we do this by showingthe equivalen
e of their intensity measures ℵt and ℵβ,t similar as in the pre
edingproof and hen
e 
hoose δ > 0 s.t. t < τ δ.We will use notation from the previous se
tion, in the sense that the 
ontourtraversal speed is set to be k > 0 and we will spe
ify this k. Espe
ially the readershould be familiar with Steps 4 and 5 in that se
tion.As the intensity measures 
onsist of two independent 
oordinates, we separatethe proof into two parts and start by 
omparing the time 
oordinate (or lo
al time
oordinate, to be more pre
ise) and treat the ex
ursion 
oordinate, i.e. the ex
ur-sion measures nt and nβ,t later.The �rst 
oordinate is Lebesgue measure in both 
ases, whi
h is supported untillo
al time at level 0 hits 2 for Z and 4/b for Y . Then the only question is the total
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h 
ase, i.e. how mu
h lo
al time at level t (for
Y for) and at level st(t) (for Z for) until the end of the ex
ursion.Then by Lemma 9.2.3:

s′t(t)l
t
α4/b

(ζδ) = l
st(t)
γ−1(α4/b

(β). (9.64)To spe
ify the lower index on the right hand side observe that:
r = γ−1(α4/b ⇔ γ(r) = α4/b

⇔ l0γr
(ζδ) =

4

b

⇔ l0r(β) = s′(0)
4

b
=

b

2k

4

b
=

2

k
.

(9.65)We want to 
all αβ the inverse lo
al time of β at zero. Then by 
hoosing k = 1 weget for (9.64):
s′t(t)l

t
α4/b

(ζδ) = l
st(t)

γ−1(αβ
2

(β). (9.66)So the time parts of the point pro
esses are already related.Se
ondly we need to show that the �ex
ursion-parts� nt and nβ,t of the intensitymeasures 
orrespond. Therefore let 0 < h1 < h2 < t be given and 
al
ulate on theone hand for the measure nt by Theorem 9.1.3:
nt([h1, h2]) =

s′t(t)
2

(

1

st(h2)
− 1

st(h1)

)

. (9.67)On the other hand we observe for the intensity measure nβ,t of Z for that the met-ri
 transformation for two extant individuals u1, u2 ∈ ∂Qst(t)(Z
for) works like thefollowing:

1

2
dỸ for(u1, u2) ∈ [h1, h2] ⇔

1

2
dZfor(u1, u2) ∈ [st(h1), st(h2)]. (9.68)Hen
e it is:

nt,Ỹ
for

([h1, h2]) = nβ,t([st(h1), st(h2)])

=
1

2

(

1

st(h2)
− 1

st(h1)

)

.
(9.69)By multiplying the �rst and the se
ond 
oordinate of the intensity measures thefa
tor s′t(t) 
an
els out and we get similar as in Step 5 of the previous se
tionthat

Ỹ for
t and ∂QtY for have the same distribution.The next proposition was given in the 
ontour pro
ess 
hapter. Its proof requiresresults shown in this 
hapter about the lo
al time pro
ess of the 
ontour. First werestate it:Proposition 9.3.2: Let a �xed 
atalyst (Xt)t≥0 and its killing time τ0 be given.For δ > 0 let ζδ be the rea
tant limit 
ontour. ThenP[lim

δ→0
〈ζδ, ζδ〉α4/b

<∞|X] = P[ρ0 < τ0] (9.70)and P[lim
δ→0

〈ζδ, ζδ〉α4/b
= ∞|X] = P[ρ0 > τ0]. (9.71)
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ase there is nothing to show, sin
e the quadrati
 variation ofa bounded di�usion until an almost sure �nite time is �nite.In the se
ond 
ase we 
ondition on the event ρ0 > τ0 and we 
an write by (9.64):
{ρ0 > τ0} = {Yt > 0 ∀t < τ0} =

{Xtl
t
α4/b

(ζδ) > 0 ∀t < τ0} =

{ltα4/b
(ζδ) > 0 ∀t < τ0}.

(9.72)So by O

upation Times Formula we get:
1{ρ0>τ0}〈ζδ, ζδ〉α4/b

=

∫ α4/b

0
1{ρ0>τ0}d〈ζδ, ζδ〉u

=

∫ τδ

0
lvα4/b

(ζδ)1{ltα4/b
(ζδ)>0 ∀t<τ0}dv

=

∫ τδ

0

2l
s(v)
2∗ (β)

bXv
1{ls(t)2∗ (β)>0 ∀t<τ0}dv.

(9.73)
Hen
e, the indi
ator just transformed to an indi
ator for non-vanishing of the

β-lo
al time. Therefore the denominator 
an be bounded from below by an almostsure positive random variable φ. Hen
e
〈ζδ, ζδ〉α4/b

≥ φ

∫ τδ

0

1

Xv
dv. (9.74)The integral expression is then a random variable whi
h for δ → 0 tends to in�nityby Lemma 3.1 in [AW05℄ in the 
ase that g(x) = x1+β for β ∈ [0, 1). In fa
t wewanted to have a slightly wider range of bran
hing modi�
ations g a

ording to G4of Condition 2.1.3:

∃β ∈ [0, 1) lim
x→0

g(x)

x1+β
= c′. (9.75)The integral above has its di�
ulties only in the region, where the 
atalyst ap-proa
hes zero.Hen
e, we are only going to 
onsider the integral for a 
atalyst started in X0 = ǫ′and where g lies already ǫ-
lose to its approximation in [0, 2ǫ′]. We set the iterated

δ-hitting times τ ǫk, k ≥ 1 of X (jumps of lo
al time). Then it is 
lear that
∫ τ0

0

1

Xv
dv ≥ sup

k≥1

∫ τ0

τǫ
k

1

Xv
dv. (9.76)Remember that dXt =

√

g(Xt) dBt and we de�ne another well-de�ned di�usion X̃ ,also started in ǫ′ by:
dX̃t =

√

X̃1+β
t dBt. (9.77)If we set

γt =

∫ t

0

ds

g(Bs + δ)
, αt =

∫ t

0

ds

(Bs + δ)1+β
, (9.78)
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Xt = Bγ−1(t) + ǫ′, X̃t = Bα−1(t) + ǫ′ (9.79)Thus, we 
an 
onsider the integral, where the 
atalyst stays in a region 
lose to theorigin and we get by a 
hange of variables:

∫ τ0

τǫ
k

1

Xv
dv =

∫ τ̃0

0

dr

X̃r

(Bα−1
r +δ + ǫ′)1+δ

g(Bα−1
r +δ + ǫ′)

≥
∫ τ̃0

0

dr

X̃r

(c′ − ǫ). (9.80)And the last integral was already shown to have the value in�nity in the previouslymentioned Lemma 3.1 of [AW05℄.



Part IIIAppendix



A Important theorems required in theproofsHere will be denoted some of the theorems quoted from books. The notation will be
onvenient with the usual notation of this diploma thesis, so some of the theoremswill look di�erent than the ones in the mentioned books. They were mostly put inthe order of appearan
e in the book rather than appearan
e in this paper.Clearly the theorems do not substitute a thourough study of the topi
s with thehelp of the books mentioned.A.1 Theorems from the book of Ethier and Kurtz:Markov Pro
essesThe book of Stewart Ethier and Tom Kurtz is one of the widest 
olle
tion of what isknown about Markov pro
esses in general. It 
overs semigroup theory, the basi
s ofsto
hasti
 analysis martingale problem theory and not to forget many appli
ations.Spe
ial emphasis is laid on 
onvergen
e of Markov pro
esseses.A.1.1 Semigroup theoryA �rst result about semigroups and generators is Theorem 1.7.1 from [EK86, p.37℄,whi
h states:Theorem A.1.1 (Theorem 1.7.1 from [EK86℄):Let A be a linear operator on L su
ht that Ā is single-valued and generates as-trongly 
ontinuous 
ontra
tion semigroup on L = Cb(E
1
cont × Eslope,R). Let B be adissipative linear operator on L su
h that D(B) ⊃ D(A). If

‖Bf‖ ≤ α‖Af‖ + β‖f‖, f ∈ D(A), (A.1)where 0 ≤ α < 1 and β > 0, then A+B is single-valued and generates a strongly
ontinuous 
ontra
tion semigroup on L.Another result about Markov jump pro
esses states the following:Theorem 8.3.1 from [EK86, p.376℄Theorem A.1.2 (Theorem 8.3.1 from [EK86℄):Let
Af(x) = λ(x)

∫

(f(y) − f(x))µ(x, dy).Let E be a lo
ally 
ompa
t, non
ompa
t, separable metri
 spa
e and let E∆ = E∪∆be its one-point-
ompa
ti�
ation. Let λ ∈ C(E) be nonnegative and let µ(x,Γ) be atransition fun
tion on E ×B(E) su
h that the mapping x 7→ µ(x, ·) of E into P(E)
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esses 113is 
ontinuous. Let γ and η be positive fun
tions in C(E) su
h that 1/γ and 1/ηbelong to C0(E) and
sup
x∈E

λ(x)

γ(x)
≡ C1 <∞,

lim
x→∆

λ(x)µ(x,K) = 0 for every compact K ⊂ E,

sup
x∈E

λ(x)

∫

γ(x) − γ(y)

γ(y)
µ(x, dy) ≡ C2 <∞,

sup
x∈E

λ(x)

∫

η(x) − η(y)

η(y)
µ(x, dy) ≡ C3 <∞.Then the 
losure of {(f,Af) : f ∈ C0(E), γf ∈ Cb(E), Af ∈ C0(E)} is single-valued and generates a Feller semigroup on C0(E). Moreover, Cc(E) is a 
ore forthis generator.A.1.2 Convergen
e theorems for Markov pro
essesThe next theorems are being useful to show some 
onvergen
e results for Markovpro
esses. In fa
t we �rst state a theorem, whi
h shows where the idea of proofswill go along, but we will not use expli
itely within this thesis. It holds for any kindof sto
hasti
 pro
esses with 
àdlàg paths:Theorem A.1.3 (Theorem 3.7.8 from [EK86℄):Let E be separable and let Zn, n = 1, 2, . . . , and Z be pro
esses with sample pathsin DE[0,∞).If {Zn} is relatively 
ompa
t and there exists a dense set D ⊂ [0,∞) su
h that

(Zn(t1), . . . , Zn(tk)) ⇒ (Z(t1), . . . , Z(tk)) (A.2)holds for every �nite set {t1, . . . , tk} ⊂ D, then Zn ⇒ Z, where 
onvergen
e is
onvergen
e in the distribution on the path-spa
e DE [0,∞).To establish the two 
riteria relative 
ompa
tness and f.d.d.-
onvergen
e thereare several tools available:An important indi
ator for the �rst is the 
ompa
t 
ontainment 
ondition, whi
hstates that one 
an �nd a 
ompa
t subset of the state spa
e in whi
h the pro
essstays with high probability up to a given time.Then one way to show relative 
ompa
tness is to transfer the problem of �ndinga 
ompa
t set in the metri
 spa
e E to �nding a 
ompa
t set in R for a big 
lass ofmappings f from the state spa
e E to R:Theorem A.1.4 (Theorem 3.9.1 from [EK86℄):Let (E, r) be a 
omplete and separable metri
 spa
e, and let {Zn} be a family ofpro
esses with sample paths in DE[0,∞). Suppose that the 
ompa
t 
ontainment
ondition holds. That is, for every λ > 0 and T > 0 there exists a 
ompa
t set
Γλ,T ⊂ E for whi
h

inf
n
P [Zn(t) ∈ Γλ,T for 0 ≤ t ≤ T ] ≥ 1 − λ. (A.3)Let H be a dense subset of Cb(E) in the topology of uniform 
onvergen
e on 
ompa
tsets. Then {Zn} is relatively 
ompa
t if and only if {f ◦ Zn} is relatively 
ompa
t(as a family of pro
esses with sample paths in DR[0,∞) ) for ea
h f ∈ H.
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esses 114By the previous theorem the relative 
ompa
tness question of the sequen
e (Zn)
an be shifted to the real-valued sequen
e (f ◦ Zn) for su�
iently many f . Withthe next theorem relative 
ompa
tness 
an be shown for the latter:Theorem A.1.5 (Theorem 3.9.4 from [EK86℄):Let (E, r) be an arbitrary metri
 spa
e, and let {Zn} be a family of pro
esses withsample paths in DE [0,∞). Let Ca denote a subalgebra of Cb(E) (e.g. the spa
e ofbounded, uniformly 
ontinuous fun
tions with bounded support), and let D be the
olle
tion of f ∈ Cb(E) su
h that for every ǫ > 0 and T > 0 there exist real-valued
Fn-progressive-measurable (Yn, Zn) with uniformly bounded expe
tation in t with:

Yn(t) −
∫ t

0
Zn(s) ds is a martingale, (A.4)

sup
n
E

[

sup
t∈[0,T ]∩Q

|Yn(t) − f(Xn(t))|
]

< ǫ, (A.5)
sup
n
E[

∫ T

0
|Zn(t)|p] <∞ for some p ∈ (1,∞]. (A.6)If Ca is 
ontained in the 
losure of D (in the sup norm), then {f ◦Xn} is relatively
ompa
t for ea
h f ∈ Ca.The following theorem puts together most of the previously mentioned ideas andstates the 
onvergen
e of the Markov pro
ess Zn to a di�usion Z. This 
onvergen
eholds if something 
losely related to the 
onvergen
e of the 
orresponding generatorsholds and relative 
ompa
tness is true.Theorem A.1.6 (Theorem 4.8.10 from [EK86℄):Let (E, r) be 
omplete and separable. Let A ⊂ Cb(E) × Cb(E) and ν ∈ P(E), andsuppose that the DE [0,∞) martingale problem for (A, ν) has at most one solution.Suppose Xn, n = 1, 2, . . . , is a {Gnt }-adapted pro
ess with sample paths in DE [0,∞),

{Xn}n∈N is relatively 
ompa
t, PXn(0)
−1 ⇒ ν, and M ⊂ Cb(E) is separating. Thenthe following are equivalent:(a) There exists a solution X of the DE [0,∞) martingale problem for (A, ν), and

Xn ⇒ X.(
) There exists a 
ountable set Γ ⊂ [0,∞) su
h that for ea
h (f, g) ∈ A and T > 0,there exist integrable (ξn, φn), su
h that:
(ξn(t) −

∫ t

0
φn(s) ds)t≥0 is an {Gnt }- martingale, (A.7)

sup
n

sup
s≤T

E[|ξn(s)|] <∞, (A.8)
sup
n

sup
s≤T

E[|φn(s)|] <∞, (A.9)
lim
n→∞

E

[

(ξn(t) − f(Xn(t)))
k
∏

i=1

hi(Xn(ti))

]

= 0, (A.10)
lim
n→∞

E

[

(φn(t) − g(Xn(t)))
k
∏

i=1

hi(Xn(ti))

]

= 0, (A.11)for all k ≥ 0, 0 ≤ t1 < t2 < · · · < tk ≤ t ≤ T with ti, t 6 ∈Γ� and h1, . . . , hk ∈M .
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esses 115A.1.3 Martingale problemsAnother group of important theorems are put under the headline of Martingaleproblems. First a uniqueness result for one-dimensional SDEs says:Remark A.1.7 (Remark 5.3.9 from [EK86℄):Let σ : [0,∞)×R → R+ and b : [0,∞)×R → R be lo
ally bounded, measurable andsatisfy
|σ(t, x)2 − σ(t, y)2| + |b(t, x) − b(t, y)| ≤ K|x− y|, (A.12)

t ≥ 0, x ∈ Rd, (A.13)for some 
onstant K. Given two solutions
(Ω,F , P, {Ft},W,X) and (Ω,F , P, {Ft},W, Y ) (A.14)of the SDE 
orresponding to (σ, b) it is true that

P [X(0) = Y (0)] = 1 (A.15)implies
P [X(t) = Y (t) ∀t ≥ 0] = 1. (A.16)Next a multi-dimensional analogue:Theorem A.1.8 (Theorem 5.3.10 from[EK86℄):Let σ : [0,∞) × Rd → Rd ⊗ Rd and b : [0,∞) × Rd → Rd be 
ontinuous and satisfy

|σ(t, x)|2 ≤ K(1 + |x|2), x · b(t, x) ≤ K(1 + |x|2), (A.17)
t ≥ 0, x ∈ Rd, (A.18)for some 
onstant K, and let µ ∈ M1(R

d). Then there exists a solution of thesto
hasti
 di�erential equation 
orresponding to (σ, b, µ).The following theorem allows to derive uniqueness of a martingale problem byknowing the uniqueness of the one-dimensional distributions. In a spe
ial 
ase italso allows to prove the strong Markov property of a solution of the martingaleproblem.Theorem A.1.9 (Theorem 4.4.2 from [EK86℄):Let E be separable, and let A ⊂ B(E) × B(E). Suppose that for ea
h µ ∈ P(E)any two solutions X, Y of the martingale problem for (A,µ) have the same one-dimensional distribution that is, for ea
h t > 0,
P [X(t) ∈ Γ] = P [Y (t) ∈ Γ], Γ ∈ B(E). (A.19)Then the following hold.(a) Any solution of the martingale problem for A with respe
t to a �ltration (Gt) isa Markov pro
ess with respe
t to (Gt), and any two solutions of the martingaleproblem for (A,µ) have the same �nite-dimensional distributions.(
) Let Xx be the unique solution of the (A,µ = δx)-martingale problem with 
àdlàgpaths and Px is the law of Xx on DE [0,∞). If su
h a solution exists for any

x ∈ E and the mapping x → Px(B) is measurable for any B ∈ B(DE), then
X is a strong Markov pro
ess.
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ulus 116A.2 Theorems from the book of Karatzas and Shreve:Brownian Motion and Sto
hasti
 Cal
ulusFrom the book Brownian Motion and Sto
hasti
 Cal
ulus [KS00℄ by Ioannis Karatzasand Steven Shreve we take several results whi
h are losely 
onne
ted. First we quotea result about regular 
onditional probabilities. This theorem states the existen
eof probability kernels des
ribing the 
onditional probabilities as long as we are ona 
omplete and separable metri
 spa
e. This is always the 
ase if the state spa
eof the pro
esses we 
onsider itself is 
omplete and separable and the pro
esses areeither 
ontinuous or have 
àdlàg paths. In this thesis the state spa
es are eithersubsets of Rd, the set of 
ompa
t rooted real trees Troot.Theorem A.2.1 (Theorem 5.3.9 from [KS00℄):Let Ω be a 
omplete, separable metri
 spa
e with Borel σ-�eld F = B(Ω) and aprobability measure P . Furthermore let X a measurable mapping from this spa
einto a measurable spa
e (S,S), on whi
h it indu
es the distribution PX−1. Thereexists then a fun
tion Q(x;A) : S×F → [0, 1], 
alled a regular 
onditional probabilityfor F given X su
h that(i) for ea
h x ∈ S,Q(x; ·) is a probability measure on (Ω,F),(ii) for ea
h A ∈ F , the mapping x 7→ Q(x,A) is S-measurable, and(iii) for ea
h A ∈ F , Q(x;A) = P [A|X = x], PX−1 -a.e. x ∈ S.This probability is unique in the sense that for PX−1 -a.e. x ∈ S:
Q(x; {ω : X(ω) = x}) = 1 (A.20)To apply it to the quen
hed situation 
onsider in the 
ase of the tree-valuedpro
ess, the probability spa
e (Ω,F ,P) from the introdu
tion. Then the fun
-tional ((ηtot

t )t≥0, ξ
for
r ), where r is �xed indu
es a probability measure P = P ◦

((ηtot
t )t≥0, ξ

for)−1 on the measurable spa
e (DR1
+
[0,∞) × Troot,B), where B is theBorel-σ-algebra on the produ
t spa
e. Then the proje
tion on the �rst 
oordinatein this spa
e is a measurable mapping by de�nition of the produ
t-σ-algebra. Withthe help of the theorem a regular 
onditional probability exists, i.e. there is a prob-ability kernel Q(·, ·) : DR1

+
[0,∞) × B → [0, 1] s.t. for A ∈ B and P- almost surelyany η ∈ DR1

+
[0,∞) one has the existen
e of the kernels.A next result tells us about the existen
e and the strong uniqueness of a one-dimensional SDE. It is pretty 
lose to the results of Engelbert and S
hmidt andtells that existen
e and strong uniqueness hold under quite general 
onditions:Theorem A.2.2 (Corollary 5.5.10 from [KS00℄):Let σ : R → R be given. The equation dXt = σ(Xt)dWt possesses a unique strongsolution for every initial distribution µ, if the four 
onditions (E) and (i)-(iii) holdfor fun
tions f : R → [0,∞] and h : [0,∞] → [0,∞]:(E)

I(σ) ⊆ Z(σ), i.e. : {x ∈ R :

∫ x+ǫ

x−ǫ

dy

σ2(y)
= ∞} ⊆ {x ∈ R : σ(x) = 0} (A.21)
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esses and Martingales 117(i) at every x ∈ I(σ)c, the quotient (f/σ)2 is lo
ally integrable; i.e., there exists
ǫ > 0 (depending on x) su
h that

∫ x+ǫ

x−ǫ

(

f(y)

σ(y)

)2

dy <∞; (A.22)(ii) the fun
tion h is stri
tly in
reasing and satis�es h(0) = 0 and
∫ ǫ

0
h−2(u)du = ∞; ∀ǫ > 0 (A.23)(iii) there exists a 
onstant a > 0 su
h that

| σ(x+ y) − σ(x) |≤ f(x)h(| y |); ∀x ∈ R, y ∈ [−a, a]. (A.24)Solutions of SDEs and solutions of martingale problems have a strong link andthe next result tells in a quite general version about the Strong Markov property ofsu
h solutions:Theorem A.2.3 (Theorem 5.4.20 from [KS00℄):Let a linear operator A on a subset of C0(R
d,R) be given by:

Af(x) =
∑

1≤i,j≤d
σij(x)

∂2f

∂xi∂xj
(x) +

∑

1≤i≤d
bi(x)

∂f

∂xi
(x) (A.25)Suppose that the 
oe�
ients b, σ are bounded on 
ompa
t subsets of Rd, and thatthe (A, δx)-martingale problem is well-posed for any x ∈ Rd with solution Px ∈

M1(CRd [0,∞)). Then the family Px satis�es the strong Markov property.A.3 Theorems from the book of Rogers and Williams:Di�usions, Markov Pro
esses and MartingalesFrom this very good book [RW79℄ of Chris Rogers and David Williams we onlytake a theorem about the boundary behaviour of a di�usion X on the state spa
e
[0,∞), with measure Px on C([0,∞), [0,∞)), when X(0) = x. This theorem statesthat the hitting time of he boundary 0 
an already be 
al
ulated by 
he
king anintegrability 
riterion for the speed measure of the di�usion:Theorem A.3.1 (Theorem V.51.(ii)):Let X be a di�usion with natural s
ale (e.g. no drift) and speed measure m. For
H0 := inf{t > 0 : Xt = 0} it is true that:

P x[H0 <∞] = 1 for all x > 0 if and only if ∫
0+

xm(dx) <∞. (A.26)



B Additional 
on
epts and proofsB.1 The Kingman 
oales
entIn 1982 J.F.C Kingman presented in his paper [Kin82℄ the so-
alled �Kingman�-
oales
ent. It is a sto
hasti
 pro
ess des
ribing the merging of sets, where mergingof two sets arises after exponential time independent of all other possible two-set-
ombinations.To be more pre
ise we use the notation of [GLW07℄ and let a 
ountable set S begiven. We say that {πλ} is a partition of S, i�
• ∪πλ = S,
• πλ ∩ πλ′ = ∅, when λ 6= λ′ and
• πλ 6= ∅ for all λ.The sets πλ are 
alled partition elements. The set of all partitions of S will be 
alled

ΠS .An equivalen
e relation ∼P on S is indu
ed by a partition P ∈ ΠS :
s1 ∼P s2 :⇔ ∃π ∈ P s.t. s1, s2 ∈ π. (B.1)For a subset S′ ⊂ S we de�ne a mapping ρS′ : ΠS → ΠS′ by the 
orrespondingequivalen
e relations:

s1 ∼ρS′P s2 :⇔ s1, s2 ∈ S′ and ∃π ∈ P s.t. s1, s2 ∈ π. (B.2)This mapping restri
ts a partition of S to a partition of one of its subsets S′.Additionally de�ne a partial ordering ≺ on ΠS :
P ≺ P ′ :⇔ ∀π′ ∈ P ′∃π ∈ P : π ⊆ π′, (B.3)and to 
ount the number of partition elements of P , we write #P .If we restri
t our attention to the 
ase S = N and subsets Sn = {1, 2, . . . , n}, whatwe will do hen
eforth, a metri
 d 
an be introdu
ed on the spa
e ΠS :

d(P,P ′) := 2−N(P,P ′), (B.4)where N(P,P ′) = sup{n ∈ N : ρ{1,2,...n}P = ρ{1,2,...n}P
′}. (B.5)With this metri
 the mapping ρS′ is 
ontinuous for any �nite subset S′ ⊂ N. One
an even then 
he
k that (ΠS , d) is a 
ompa
t, 
omplete, separable metri
 spa
e(the �rst 
an be shown via sequential 
ompa
tness).



B.1 The Kingman 
oales
ent 119Before we start with the 
onstru
tion of the 
oales
ent we set the following spe
ialpartitions of Sn and S:
∆ := {{1}, {2}, . . . , {n}} in the 
ase of Sn
∆ := {{1}, {2}, . . . , } in the 
ase ofS
Θ := {1, 2, . . . , n} in the 
ase of Sn
Θ := {1, 2, . . . } in the 
ase of S (B.6)Now to start with the 
oales
ent we give the following de�nition:De�nition B.1.1 (The n-
oales
ent):The n-
oales
ent (Rnt )t≥0 is a Markov-pro
ess with state spa
e ΠSn , starting at

Rn0 = ∆ with the generator Ωn:
Ωnf(α) =

∑

β≺α,|β|=|α|−1

(f(β) − f(α)) . (B.7)First some properties of this pro
ess 
an be shown, whi
h 
an be found in [Kin82℄:
• the pro
ess (Dn

t )t≥0 := (#Rnt )t≥0 is a death pro
ess starting in n with rate
(k
2

) in state k.
• the pro
ess (Rn

k )1≤k≤n whi
h gives the sequen
e of states in ΠSn for the n-
oales
ent, is ordered in the following sense:
∆ = Rn

n ≺ Rn
n−1 ≺ · · · ≺ Rn

2 ≺ Rn
1 = Θand (B.8)is a Markov pro
ess.

• These two pro
esses D and R are independent.The idea now is to extend this de�nition to a pro
ess de�ned on ΠS and startingin the di�use partition Θ. This �limit� pro
ess should have the property, that whenrestri
ting it to a �nite subset of N, then we got the n-
oales
ent. This was �rstdone by Kingman in [Kin82℄ and we will follow his ideas in a very short des
ription,
alled the paintbox-
onstru
tion:Given a probability ve
tor x = (x1, x2, . . . ) de�ne an i.i.d. sequen
e of randomvariables Z1, Z2, . . . , s.t.:
P(Z1 = r) = xr ∀r ∈ N0. (B.9)This gives us an ex
hangeable probability measure Px on ΠS , where this measureis indu
ed by the following equivalen
e relation:
R = {(i, j) : Zi = Zj ≥ 1}. (B.10)We 
an do the same even if the ve
tor x is random by de�ning the law on thepartitions by:

P =

∫

P
x µ(dx). (B.11)



B.1 The Kingman 
oales
ent 120As a spe
ial 
ase we take it to be uniformly distributed on the k− 1-dimensionalsimplex ∆k, that means:
x0 = xk+1 = xk+2 = · · · = 0, (B.12)

dx1 dx2 · · · dxk−1 = dλk−1|∆k
(x1, . . . , xk−1), (B.13)

xk = 1 − (x1 + · · · + xk−1), (B.14)where dλk−1 is the k − 1-dimensional Lebesgue measure. Then after a uniformrandom 
hoi
e of two of the 
oordinates x1, . . . , xk, say xi and xj and adding upthese two 
omponents we obtain the ve
tor
(x1, . . . , xi + xj, . . . , x̂j , . . . , xk). (B.15)It is easy to see that this ve
tor is uniformly distributed over the k− 1-dimensionalsimplex. By this 
onsistent pro
edure we 
an by a proje
tive limit argument de�nea Markov pro
ess (Rk)k∈N with state spa
e ΠS = ΠN:

P[Rk−1 = η|Rk = ξ] =

{

2/k(k − 1) if η ≺ ξ and #η = #ξ − 1,

0 otherwise, (B.16)where ξ ∈ ΠS ,#ξ = k.Let us additionally we de�ne an independent death pro
ess (Dt)t≥0 starting from
∞ with death rates 1

2k(k − 1) in state k ([Don91℄). Then the pro
ess
R0 := ∆, Rt := RDt for t > 0, (B.17)is a ΠS-valued Markov pro
ess, 
alled the 
oales
ent. The restri
tion ρSn(R) of Rto the �rst n 
oordinates is the ordinary n-
oales
ent.In fa
t in the topology of ΠS we get that for (i, j) ∈ N2, with i 6= j, we have withthe aid of ex
hangeability of the law that for k ∈ N:

P[(i, j) ∈ Rk] = P[(1, 2) ∈ Rk] =
2

k + 1
. (B.18)Therefore it is true that

P[(i, j) ∈ Rt] = E[
2

Dt + 1
] (B.19)and this expression tends to 0 as t → 0. Hen
e the initial distribution of R is

R0 = ∆.More ideas and newer ideas, for example the �look-down� idea are presented inthe work of Donnelly and Kurtz [DK96℄, or in Alison Etheridge's book about su-perpro
esses [Eth00℄ the entran
e law at ∞ is dis
ussed in a paper of Donnelly[Don91℄.



B.2 Di�usions and s
ale fun
tions 121B.2 Di�usions and s
ale fun
tionsLet two di�usions ζ1 and ζ2 be given on a 
ompa
t time interval [0, T ]. Their statespa
e is a 
ompa
tum [L,H] ⊂ R and they are re�e
ted on the boundary. Call s1and s2 the s
ale fun
tions of the di�usion and assume that the speed measure isLebesgue measure. Our aim is to show that, when the derivatives s′1 and s′2 di�erslightly in Skorokhod-metri
, then the di�usions stay 
lose in the sense that
E[ sup

0≤u≤T
|ζ1
u − ζ2

u|]
an be bounded by the Skorokhod distan
e. Hen
e we want to prove some sort of
ontinuity from s
ale fun
tions to di�usions.We state the following proposition:Proposition B.2.1: Assume that the derivatives of the s
ale fun
tions are 
àdlàgand lie in a 
ompa
t interval:
s′1, s

′
2 ∈ [a, b] ⊂ (0,∞). (B.20)Then, for all ǫ > 0 there exists a δ > 0, s.t.:

dSk(s′1, s
′
2) < δ ⇒ E[ sup

0≤u≤T
|ζ1
u − ζ2

u|] < a−3ǫ. (B.21)Proof: The proof is rather straightforward. First we note that similar to Se
tion9.2 in Step 1 we 
an set a random time-
hange for a Brownian motion β:
γ1(t) =

∫ t

0

1

s′1(βv)
dv,

γ2(t) =

∫ t

0

1

s′2(βv)
dv.

(B.22)With that time 
hange one 
an rewrite the di�usions as time-
hanged Brownianmotions as in Lemma 9.2.2. Now we will use the ‖ · ‖ to indi
ate the supremumnorm.
E[ sup

0≤u≤T
|ζ1
u − ζ2

u|] = E[‖s−1
1 (βγ−1

1 (u)) − s−1
2 (βγ−1

2 (u))‖]

≤E[‖s−1
1 (βγ−1

1 (u)) − s−1
2 (βγ−1

1 (u))‖]+
+ E[‖s−1

2 (βγ−1
1 (u)) − s−1

2 (βγ−1
2 (u))‖]

≤‖s−1
1 ‖E[‖βv − s1(s

−1
2 (βv))‖]

+ ‖s−1
2 ‖E[‖βγ−1

1 (u) − βγ−1
2 (u)‖].

(B.23)
(A) For the �rst line we observe that for α := s−1

2 (u):
u = s2(α) ≥ αa‖u− s1(s

−1
2 (u)‖ = ‖s2(α) − s1(α)‖ ≤ ‖α‖ dSk(s′1, s

′
2)(1 + b)(B.24)

≤ a−1‖u‖ dSk(s′1, s
′
2)(1 + b). (B.25)
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e we get
E[‖βv − s1(s

−1
2 (βv))‖] ≤ a−1E[‖βv‖] dSk(s′1, s

′
2)(1 + b). (B.26)(B) For the se
ond line we need to show more and this will require some time.We need to �nd a way to say that the time-
hanges do not di�er too mu
h. Hen
efor a 
onstant r > 0 we split up the problem in two lines

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖] =

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖1‖γ−1
1 (u)−γ−1

2 (u)‖≤r
√
dSk(s′1,s

′
2)

]+

E[‖βγ−1
1 (u) − βγ−1

2 (u)‖1‖γ−1
1 (u)−γ−1

2 (u)‖>r
√
dSk(s′1,s

′
2)

].Triangle inequality and Cau
hy-S
hwarz inequality yield:
· · · ≤E[ sup

0≤r̃≤r
√
dSk(s′1,s

′
2)

|βr̃|]

+ 2E[ sup
0≤s≤T

|β2
s |]P [‖γ−1

1 (u) − γ−1
2 (u)‖2 > r2dSk(s′1, s

′
2)].With Brownian s
aling and Doob's inequality we obtain

· · · ≤ 4

√

dSk(s′1, s
′
2)r

2E[ sup
0≤r̃≤1

|βr̃|] + 8E[|β2
T |]P [· · · ]. (B.27)Hen
e, what remains to be done is to bound the probability expression on the right-hand-side. We do that by using a stri
tly in
reasing smooth fun
tion λ whi
h is the�time-
hange� to relate s′1 and s′2 as Skorokhod fun
tions (see Se
tion 3.5 in [EK86℄,espe
ially (3.5.5) ):

‖γ−1
1 (u) − γ−1

2 (u)‖ ≤‖(γ−1
1 )′‖ ‖u− γ1(γ

−1
2 (u))‖,by setting t := γ−1

1 (u) we get
≤H ‖

∫ t

0

1

s′1(βv)
dv −

∫ t

0

1

s′2(βv)
dv‖

≤H
∫ t

0

|s′2(βv) − s′1(λ(βv))| + |s′1(λ(βv)) − s′1(βv)|
s′1(βv) s

′
2(βv)

dv

≤Ha−2‖γ−1
1 (u)‖dSk(s′1, s

′
2) +Ha−2‖

∫ t

0
s′1(λ(βv)) − s′1(βv) dv‖.(B.28)The �rst summand looks well for a good 
hoi
e of r but the se
ond summand stillneeds further treatment. Unfortunately we will not go into details now. First oneneeds to go ba
k to 
onsidering the probability of the event in (B.27) and applyMarkov inequality. Looking at the line just written we 
an split up s′1 into �nitelymany 
ontinuity 
omponents whi
h 
over most of the interval. Then use a uniform
ontinuity argument to �nish the idea.
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e we get the following:
E[‖βγ−1

1 (u) − βγ−1
2 (u)‖] ≤

≤a−2E[‖βv‖] dSk(s′1, s
′
2)(1 + b)

+ a−2
√

dSk(s′1, s
′
2)rE[ sup

0≤r̃≤1
|βr̃|]

+ 8E[|β2
T |]
Ha−3

r

√

dSk(s′1, s
′
2)

+ 8E[|β2
T |]
Hba−3

r

√

dSk(s′1, s
′
2).

(B.29)
And the expression on the right hand side 
an be bounded from above by a−3ǫ when
hoosing s′1 and s′2 su�
iently 
lose in Skorokhod metri
.B.3 Link between Birth-and-Death pro
esses andBran
hing pro
essesLet two models be given for a rate λ > 0:

• a 
ontinuous time bran
hing pro
ess Br with binary o�spring. Bran
hing ofea
h individual happens independently of the others after an Exp(∫ t+·
t 2λs ds)time. The pro
ess starts with one individual: Br0 = 1.

• a 
ontinuous time birth-and-death pro
ess BD. Ea
h individual independentof the others dies after an exponential time with rate λ and gives birth afteran exponential time with rate λ. New-born individuals are �atta
hed to theright�, i.e. in linear order they are put after the father individual.By simply looking at the generators, the two total mass pro
esses related to the twomodels are the same. It even holds the following lemma:Lemma B.3.1: The 
ontour pro
esses of Br and BD are equal in distribution:
C(Br : σ)

d
= C(BD : σ). (B.30)Remark B.3.2:It is 
ru
ial for this lemma to have binary o�spring for the bran
hing pro
ess. Torelate other o�spring distributions or even random o�spring one gets other results.Proof: We 
ompare the two 
ontours from the start on and show that the lengthsof the line segments are the same.Let X1 be the length of the �rst 
onstant slope line segment in the BD 
ontour.The �rst individual after an exponential time. Hen
e for x > 0

P (X1 > x) = e−λx. (B.31)On the other hand let Y1 be the length of the �rst 
onstant slope line segment ofthe Br 
ontour. The length Y1 is the sum of several line segments in the genealogi
altree. It has probability 1
2 to 
onsist of one line segment, probability 1

4 to 
onsist oftwo line segments, probability 1
8 to 
onsist of three line segments and so on.
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h of these line segments is equal to a lifetime of a bran
hing individual andthis is an Exp(∫ 2λdr)-time. If we 
all E1, E2, . . . a sequen
e of su
h exponentialrandom variables, ea
h starting, where the other one ends, then we 
an write:
P (Y1 > x) =

∞
∑

k=1

P (E1 + · · · + Ek > x, #line segments = k)

=

∞
∑

k=1

P (E1 + · · · + Ek > x)P (#line segments = k)

=

∞
∑

k=1

Γ(k, 2λ)([x,∞))2−k ,

(B.32)
where Γ(k, λ) is Gamma-distribution with parameters k and λ. After a short 
al-
ulation one gets:

P (Y1 > x) =

∫ ∞

x
λe−λs ds = e−λx. (B.33)But this is the same distribution as X1, so the �rst length of the 
ontours 
oin
ide.One 
an 
ontinue this idea for the on
oming line segments as well.B.4 Additional proofsLemma B.4.1 (Lo
al Lips
hitz-
ontinuity implies Lips
hitz-
ontinuity on 
om-pa
ta): Let (E, d), (F, d̃) be metri
 spa
es and f : E → F a lo
ally Lips
hitz-
ontinuous fun
tion. Then f is globally Lips
hitz-
ontinuous on any 
ompa
tum

K ⊂ EProof: Assume the 
ontrary:Let (xn), (yn) sequen
es in K, s.t.: d̃(f(xn), f(yn)) > n d(xn, yn) Sin
e K is 
om-pa
t, there exists a subsequen
e (xnk
) of (xn) and a subsequen
e (ynkl

) of (ynk
)whi
h 
onverge in K. Not to get 
onfused with notation, we will without loss ofgenerality assume that xn → x and xn → y as n → ∞. If x 6 =y then the righthand side in (referen
e) is positive for n → ∞, so the left hand side would need togrow to in�nity. But this 
annot be sin
e f is 
ontinuous and K 
ompa
t. In the
ase x = y, assume that V is the neighbourhood of x, in whi
h Lips
hitz-
ontinuityholds for the Lips
hitz-
onstant Lx < ∞. As xn, yn 
onverge to x, there will be an

N ∈ N s.t. xn, yn ∈ V ∀n ≥ N . So we have:
n d(xn, yn) < d̃(f(xn), f(yn)) < Lxd(xn, yn) ∀n ≥ NBut this 
annot be true.



Notation
‖ · ‖E supremum norm on the set of fun
tions from E to R

αtr = inf{u ≥ 0 : ltu(ζ) = r} p. 42
αr = inf{u ≥ 0 : l0u(ζ) = r}
β one-dimensional Brownian motion started in 0

C0 spa
e of 
ontinuous fun
tions vanishing at in�nity
C(E,F ) spa
e of 
ontinuous fun
tions from E to F
CE [0,∞) spa
e of 
ontinuous fun
tions from [0,∞) to E
C0,∗

[0,∞)[0, L] = {f ∈ C([0, L], [0,∞)) : f(0) = f(L) = 0, f(x) >
0 ∀x ∈ (0, L)}

p. 30
C(· : σ) ordered tree to 
ontour mapping p. 30
DR2

+
[0,∞) Bana
h spa
e of 
àdlàg fun
tions f : [0,∞) → R2

+

D(A) domain of the linear operator A
dGH(·, ·) Gromov-Hausdor�-metri
 on Troot p. 23
ltu(ζ) lo
al time of ζ at time u at level t
M1(Ω) the set of probability measures on Ω

N the natural numbers, {1, 2, . . . }
P(Ω) power set of Ω

R Kingman 
oales
ent p. 70
R2

+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}
R+ = [0,∞)

T 
ontour to ordered tree mapping p. 31
Tunord 
ontour to tree mapping p. 31
Troot spa
e of rooted R-trees p. 21
Troot,lin spa
e of rooted, linearly ordered tree p. 24
T

root,lin
fin spa
e of rooted, linearly ordered tree, with �nitelymany bran
h points p. 24

W 1,W 2 independent Brownian motions



IndexIn this index only few �n-res
aled obje
ts� are listed. Indeed the de�nitions ofthem 
an be found shortly after the other de�nitions of the non-res
aled obje
tsthroughout the thesis. Mostly they are analagous.
α1/b . . . . . lo
al time inverse at level zero of ζδ of 1

b . . . . . 42
Aδ . . . . . generator of the T δ-
ut rea
tant tree . . . . . 82
b . . . . . bran
hing 
onstant for the rea
tant . . . . . 5
B . . . . . 
atalyst 
ontour pro
ess . . . . . 32
C . . . . . rea
tant 
ontour pro
ess . . . . . 32
En,δcont . . . . . state spa
e of rea
tant 
ontour Cn,δ . . . . . 82
Eslope . . . . . = {−1, 1} state spa
e of rea
tant 
ontour slope V . . . . . 82
η . . . . . 
atalyst pro
ess . . . . . 5
ηtot . . . . . 
atalyst total mass pro
ess . . . . . 13
ηfor . . . . . 
atalyst tree-valued pro
ess . . . . . 25
η̃n . . . . . the 
atalyst linear ordered tree . . . . . 32
K(η,A) . . . . . limit transition kernel for the rea
tant . . . . . 67
Kn(η,A) . . . . . res
aled transition kernel for the rea
tant . . . . . 67
L(C, 4

b ) . . . . . 
ontour �lo
al time� fun
tional inverse of 4
b . . . . . 33

πt . . . . . rea
tant limit point pro
ess . . . . . 41
Πt . . . . . 
atalyst point pro
ess . . . . . 38
πζ,t . . . . . point pro
ess asso
iated with ζ . . . . . 42
ξ . . . . . rea
tant pro
ess . . . . . 5
ξtot . . . . . rea
tant total mass pro
ess . . . . . 13
ξfor . . . . . rea
tant tree-valued pro
ess . . . . . 25
ξ̃n . . . . . the rea
tant linear ordered tree . . . . . 32
Ξt . . . . . rea
tant point pro
ess . . . . . 38
Rn,0 . . . . . rea
tant extin
tion time of ξtot,n . . . . . 40
ρ0 . . . . . rea
tant extin
tion time of Y . . . . . 41
T n,0 . . . . . 
atalyst extin
tion time of the ηtot,n . . . . . 16
τ0 . . . . . 
atalyst extin
tion time of X . . . . . 17
Un . . . . . generator of (ηtot,n, ξtot,n . . . . . 45
Xx . . . . . 
atalyst total mass di�usion started in x . . . . . 16
Y x,y . . . . . rea
tant total mass di�usion with Y x,y

0 = y . . . . . 16



Bibliography[AK72℄ Krishna Arthreya and Samuel Karlin. Bran
hing pro
esses with randomenvironments. The Annals of Mathemati
al Statisti
s, 42:1499 � 1520,1972.[Ald93℄ David Aldous. The 
ontinuum random tree. III. Annals of Probability,21(1):248�289, 1993.[Ald99℄ David J. Aldous. Deterministi
 and sto
hasti
 models for 
oales
en
e: areview of the mean-�eld theory for probabilists. Bernoulli, 5:3�48, 1999.[AN72℄ Krishna Arthreya and Peter Ney. Bran
hing Pro
esses. Springer, NewYork, se
ond edition, 1972.[AW05℄ Siva Athreya and Anita Winter. Spatial 
oupling of neutral measure-valued population models. Sto
hasti
 Pro
esses and their Appli
ations,115(6):891�906, Jun 2005.[Bre68℄ Leo Breiman. Probability. Addison Wesley Publishing, Reading, Mas-sa
husetts, �rst edition, 1968.[CDG04℄ Theodore Cox, Donald Dawson, and Andreas Greven. Mutually 
atalyti
super bran
hing random walks: large �nite systems and renormalizationanalysis. Memoirs of the Ameri
an Mathemati
al So
iety, 171:97pp, 2004.[Chi01℄ Ian Chiswell. Introdu
tion to Λ tree. World S
ienti�
, Singapore, 2001.[DK96℄ Peter Donnelly and Thomas Kurtz. A 
ountable representation of the�eming viot measure-valued pro
ess. Annals of Probability, 24:698 � 742,1996.[Don91℄ Peter Donnelly. Weak 
onvergen
e to a markov 
hain with an entran
eboundary: anestral pro
esses in population geneti
s. Annals of Probabil-ity, 19:1102 � 1117, 1991.[EK86℄ Stewart N. Ethier and Thomas G. Kurtz. Markov pro
esses � 
hara
ter-ization and 
onvergen
e. Wiley Series in Probability and Mathemati
alStatisti
s: Probability and Mathemati
al Statisti
s. John Wiley & SonsIn
., New York, 1986.[EPW06℄ Steven N. Evans, Jim Pitman, and Anita Winter. Rayleigh pro
esses, realtrees, and root growth with re-grafting. Probab. Theory Related Fields,134(1):81�126, 2006.[Eth00℄ Alison M. Etheridge. An introdu
tion to superpro
esses, volume 20 ofUniversity Le
ture Series. Ameri
an Mathemati
al So
iety, Providen
e,RI, 2000.



[EW06℄ Steven N. Evans and Anita Winter. Subtree prune and regraft: A re-versible real tree-valued markov pro
ess. Annals of Probability, 34:918 �961, 2006.[Fel68℄ William Feller. An Introdu
tion to Probability and its Appli
ations 1.John Wiley and Sons, New York, third edition, 1968.[GLW07℄ Andreas Greven, Vlada Limi
, and Anita Winter. Coales
ent pro-
esses arising in a study of di�usive 
lustering. Preprint, 2007.arXiv:math/0703875v1 [math.PR℄.[GPW06℄ A. Greven, L. Popovi
, and A. Winter. Genealogy of 
atalyti
 bran
hingpro
esses. Preprint, 2006. arXiv:math/0606313v1 [math.PR℄.[GPW07℄ Andreas Greven, Peter Pfa�elhuber, and Anita Winter. Convergen
ein distribution of random metri
 measure spa
es. Preprint, 2007.arXiv:0806.2224v1 [math.PR℄.[GPW08℄ Andreas Greven, Peter Pfa�elhuber, and Anita Winter. Tree-valued re-sampling dynami
s. Preprint, 2008. arXiv:0806.2224v1 [math.PR℄.[Har61℄ Robert Harris. The Theory of Bran
hing Pro
esses. Springer, New York,se
ond edition, 1961.[Jag09℄ Peter Jagers. Some notes on the history of bran
h-ing pro
esses, from my perspe
tive. Talk in Oberwolfa
h,http://www.math.
halmers.se/ jagers/Bran
hing%20History.pdf, Jan-uary 2009.[Kal83℄ Olav Kallenberg. Random Measures. A
ademi
 Press, New York, thirdedition, 1983.[Ken66℄ D.G. Kendall. Bran
hing pro
esses sin
e 1873. Journal of the LondonMathemati
al So
iety, 41:385 � 406, 1966.[Ken75℄ D.G. Kendall. Bran
hing pro
esses sin
e (and after) 1873. Bulletin of theLondon Mathemati
s So
iety, 7:225 � 253, 1975.[Kin82℄ J.F.C. Kingman. The 
oales
ent. Sto
hasti
 Pro
esses and their Appli
a-tions, 13:235 � 248, 1982.[Kle08℄ A
him Klenke. Wahrs
heinli
hkeitstheorie. Springer, Berlin, se
ond edi-tion, 2008.[KS00℄ I. Karatzas and S. Shreve. Brownian Motion and Sto
hasti
 Cal
ulus.Springer, New York, se
ond edition, 2000.[KT81℄ Samuel Karlin and Howard M. Taylor. A Se
ond Course in Sto
hasti
Pro
esses. A
ademi
 Press, New York, se
ond edition, 1981.[Kur92℄ Thomas Kurtz. Averaging for martingale problems and sto
hasti
 ap-proximation, volume 177 of Le
ture Notes in Control and InformationS
ien
es. Springer, Berlin, 1992.



[LG96℄ Jean Fran
ois Le-Gall. Random trees and appli
ations. Probability Sur-veys, 2:245 � 311, 1996.[Lin92℄ Torgny Lindvall. Le
tures on the 
oupling method. John Wiley and Sons,New York, 1992.[NP89℄ J. Neveu and J. Pitman. The bran
hing pro
ess in a Brownian ex
ur-sion. In Séminaire de Probabilités XXIII, volume 1372 of Le
ture Notesin Math., pages 248�257. Springer, 1989.[Øks05℄ Bernt Øksendal. Sto
hasti
 Di�erential Equations. Springer, Berlin, thirdedition, 2005.[Pen03℄ Christian Penssel. Intera
ting Catalyti
 Feller Di�usions. Logos Verlag,Berlin, se
ond edition, 2003.[RW79℄ L.C.G. Rogers and David Williams. Di�usions, Markov Pro
esses andMartingales. John Wiley and Sons, New York, �rst edition, 1979.[RY91℄ Daniel Revuz and Mar
 Yor. Continuous Martingales and Brownian Mo-tion. Springer, New York, �rst edition, 1991.[WG75℄ Henry WilliamWatson and Fran
is Galton. On the probabilities of extin
-tion of families. Journal of the Anthropologi
al Institute of Great Britain,4:138 � 144, 1875.



DanksagungHiermit mö
hte i
h Herrn Prof. Dr. Andreas Greven für die Betreuung meiner Di-plomarbeit danken. In vielen Gesprä
hen stand er mir immer mit vielen wertvollenTipps beiseite.Zudem gilt mein besonderer Dank Dr. Anita Winter und Lea Popovi
 für hilfrei
heErläuterungen und unterstützende Worte. Au
h Maxim Drabkin, Patri
 Glöde, SvenPiotrowiak, Peter Seidel und Frank S
hirmeier gebührt viel Dank.Ganz besonders danken mö
hte i
h meinen Eltern, meinem Bruder Mi
hael undmeiner S
hwester Christine für fortwährende Unterstützung im Laufe des gesam-ten Studiums. Vor allem meiner Freundin Lu
ía mö
hte i
h für ihre Geduld undUnterstützung danken.Zuletzt gilt mein Dank no
h allen Freunden, die mir während der Diplomarbeitund während des gesamten Studiums mit Rat beiseite standen.



De
larationI hereby de
lare that this do
ument has been 
omposed by me and is based on myown work, unless otherwise a
knowledged in the text.Erlangen, May 4, 2009

SelbstständigkeitserklärungHiermit erkläre i
h, dass i
h diese Arbeit selbstständig und nur mit den im Litera-turverzei
hnis angegebenen Quellen angefertigt habe.Erlangen, 4. Mai 2009


	Introduction
	History of branching processes
	The Catalytic Branching Model with a modified catalyst
	Functionals of Branching Processes
	Main goals, methods and tools, quenched vs. annealed and context
	Main goals
	Organization of the diploma thesis, methods and tools

	Catalytic branching
	Quenched vs. annealed
	Context


	Definitions and Results
	The total mass process (tot, tot)
	The catalyst and the reactant total mass process
	The diffusion process (X,Y)
	Convergence of the total mass process to (X,Y)

	The real tree
	Definition of the real tree
	The graph-theoretical tree and definition of the real tree
	Extended definitions of real rooted trees and genealogical trees

	Operators and properties for rooted real trees
	Linearly ordered rooted real trees

	The tree valued process (fort, fort)
	The catalyst and the reactant forest
	Tightness and Convergence of the reactant forest
	Comparison result between the classical forest and the catalytic forest

	The contour process (B,C)
	Contour processes and branching populations
	The catalyst and the reactant contour
	Convergence of the truncated reactant contour
	On top of the limit reactant tree

	The point process (t,t)
	Point processes and genealogy
	The catalyst and reactant point process
	Convergence of the reactant point process


	Proofs
	Proofs of the main results from Chapter 2
	Remarks and techniques
	Properties of g
	The generator of the discrete total mass process

	Existence, Uniqueness and Feller-property of (tot,n, tot,n)
	Extinction and compact containment condition of (tot,n, tot,n)
	Existence and Uniqueness of (X,Y)
	The main result and the strategy of the proof
	The proof

	Simple properties of the diffusion process
	The Feller-property of the diffusion process
	The main result and the strategy of the proof
	The proof

	Convergence of the total mass process to (X,Y)

	Proofs of the main results from Chapters 4 and 5
	Preliminary considerations for the quenched analysis
	Regular conditional probabilities and quenched analysis
	Specification of the quenched catalysts

	The reactant limit forest exists: The proof strategy
	Tightness of the reactant tree-valued process
	The main result and the strategy of the proof
	The proof

	Convergence of the truncated reactant contour
	The main result and the strategy of the proof
	The proof

	Convergence of the reactant limit forest
	Convergence of the joint law for the reactant forest
	The main result and the strategy of the proof
	The proof


	Proofs of the main results from Chapter 6
	Law and convergence of the reactant point process
	The relationship between limit point process and limit contour
	Main result and strategy of the proof
	The proof

	Comparison result between classical forest and the catalytic forest


	Appendix
	Important theorems required in the proofs
	Theorems from the book of Ethier and Kurtz: Markov Processes
	Semigroup theory
	Convergence theorems for Markov processes
	Martingale problems

	Theorems from the book of Karatzas and Shreve: Brownian Motion and Stochastic Calculus 
	Theorems from the book of Rogers and Williams: Diffusions, Markov Processes and Martingales

	Additional concepts and proofs
	The Kingman coalescent
	Diffusions and scale functions
	Link between Birth-and-Death processes and Branching processes
	Additional proofs

	Notation
	Index
	Bibliography


