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Abstract: We study the asymptotic behavior of the Maximum Likeli-

hood and Least Squares estimators of a k-monotone density g0 at a fixed

point x0 when k > 2. In Balabdaoui and Wellner (2004a), it

was proved that both estimators exist and are splines of degree k−1 with

simple knots. These knots, which are also the jump points of the (k−1)-

st derivative of the estimators, cluster around a point x0 > 0 under the

assumption that g0 has a continuous k-th derivative in a neighborhood

of x0 and (−1)kg
(k)
0 (x0) > 0. If τ−

n and τ+
n are two successive knots,
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we prove that the random “gap” τ+
n − τ−

n is Op(n−1/(2k+1)) for any

k > 2 if a conjecture about the upper bound on the error in a particular

Hermite interpolation via odd-degree splines holds. Based on the or-

der of the gap, the asymptotic distribution of the Maximum Likelihood

and Least Squares estimators can be established. We find that the j-th

derivative of the estimators at x0 converges at the rate n−(k−j)/(2k+1)

for j = 0, . . . , k − 1. The limiting distribution depends on an almost

surely uniquely defined stochastic process Hk that stays above (below)

the k-fold integral of Brownian motion plus a deterministic drift, when

k is even (odd).

AMS 2000 subject classifications: Primary 62G05, 60G99; secondary

60G15, 62E20.
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1. Introduction

1.1. The estimation problem and motivation

A density function g on R
+ is monotone (or 1−monotone) if it is nonincreas-

ing. It is 2−monotone if it is nonincreasing and convex, and k−monotone

for k ≥ 3 if and only if (−1)jg(j) is non-negative, nonincreasing, and convex

for j = 0, . . . , k − 2.

We write Dk for the class of all k−monotone densities on R
+, and Mk

for the class of all k−monotone functions (without the density restriction).

Suppose that g0 ∈ Dk and that X1, . . . ,Xn are i.i.d. with density g0. We

write Gn for the empirical distribution function of X1, . . . ,Xn. Our main

interest is in the Maximum Likelihood Estimators (or MLE) ĝn of g0 ∈ Dk.

When k = 1, it is well known that the maximum likelihood estimator ĝn

of g0 ∈ D1 is the Grenander (1956) estimator; i.e. the left-derivative of the

least concave majorant Ĝn of Gn, and if g′0(x0) < 0 with g′0 continuous in a
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neighborhood of x0, then

n1/3 (ĝn(x0) − g0(x0)) →d

(
1
2
g0(x0)|g′0(x0)|

)1/3

2Z, (1.1)

where 2Z is the slope at zero of the greatest convex minorant of two-sided

Brownian motion +t2, t ∈ R; see Prakasa Rao (1969), Groeneboom (1985),

and Kim and Pollard (1990).

When k = 2, Groeneboom, Jongbloed, and Wellner (2001b) consid-

ered both the MLE and LSE and established that if the true convex and

nonincreasing density g0 satisfies g′′0 (x0) > 0 (and g′′0 is continuous in a

neighborhood of x0), then(
n2/5 (ḡn(x0) − g0(x0))

n1/5 (ḡ′n(x0) − g′(x0))

)
→d

( (
1
24g2

0(x0)g′′0 (x0)
)1/5

H(2)(0)(
1

243 g0(x0)g′′0 (x0)3
)1/5

H(3)(0)

)
,(1.2)

where ḡn is either the MLE or LSE and H is a random cubic spline function

such that H(2) is convex and H stays above integrated two-sided Brownian

motion +t4, t ∈ R, and touches exactly at those points where H(2) changes

its slope (see Groeneboom, Jongbloed, and Wellner (2001a)).

Our main interest in this paper is in establishing a generalization of the

pointwise limit theory given in (1.1) and (1.2) for general k ∈ N, k ≥ 1.

Beyond the obvious motivation of extending the known results for k = 1

and k = 2 as listed above, there are several further reasons for considering

such extensions:

(a) Pointwise limit distribution theory for natural nonparametric estima-

tors of the piecewise smooth regression models of smoothness k considered

by Mammen (1991) is only available for k ∈ {1, 2}. Similar models (with

just one element in the partition) have been proposed for software reli-

ability problems by Miller and Sofer (1986). Similarly, pointwise limit

distribution theory is still lacking for the locally adaptive regression spline

estimators considered by Mammen and van de Geer (1997).

(b) The classes of densities Dk have mixture representations as scale mix-

tures of Beta(1, k) densities: as is known from Williamson (1956) (see also
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Lévy (1962), Gneiting (1999), and Balabdaoui and Wellner (2004a)),

g ∈ Dk if and only if there is a distribution function F on (0,∞) such that

g(x) =
∫ ∞

0

k

yk
(y − x)k−1

+ dF (y) =
∫ ∞

0
w
(
1 − wx

k

)k−1

+
dF̃ (w) (1.3)

where z+ ≡ z1{z ≥ 0} and F̃ = F (k/·). The second form of the mixture

representation in the last display makes it clear that the limiting class of

densities as k → ∞, namely D∞, is the class of scale mixtures of exponential

distributions. In view of Feller (1971), pages 232-233, this is just the class

of completely monotone densities; see also Widder (1941) and Gneiting

(1998). To the best of our knowledge, there is no pointwise limit distribu-

tion theory available for the MLE in any class of mixed densities based on

a smooth mixing kernel, including this particular case in which the kernel

(or mixture density) is the exponential scale family as studied by Jewell

(1982). On the other hand, maximum likelihood estimators in various classes

of mixture models with smooth kernels have been proposed in a wide range

of applications including pharmacokinetics (Mallet (1986), Mallet, Men-

tre, Steimer, and Lokiec (1988), and Davidian and Gallant (1992)),

demography (Vaupel, Manton, and Stallard (1979)), and shock models

and variations in hazard rates (Harris and Singpurwalla (1968), Doyle,

Hansen, and McNolty (1980), Hill, Saunders, and Laud (1980)).

(c) The whole family of mixture models corresponding to k ∈ (0,∞) might

be of some interest eventually, especially since the family of distributions

corresponding to the classical Wicksell problem is contained in the class

D1/2; see e.g. Groeneboom and Jongbloed (1995).

(d) The sub-class of k−monotone densities with mixing distribution F sat-

isfying g(k−1)(0) = k!
∫∞
0 y−kdF (y) < ∞ can be regarded as the distribu-

tions arising in a generalization of Hampel’s bird watching problem (Hampel

(1987)) in which birds are captured k− times, but only one “inter-catch”

time is recorded. Based on those observed inter-catch times, the goal is to es-

timate the true distribution F of the resting times Y of the migrating birds,

which we assume to have a density f with k-th moment µk(f) < ∞. Fur-
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thermore, we assume that the time points of capture form the arrival time

points of a Poisson process with rate λ, and given Y = y, the number of cap-

tures by time y is Poisson(λy) with λ small enough so that exp(−λy) ≈ 1,

and the probability of catching a bird more than k times is negligible (see

also Hampel (1987) and Anevski (2003)). If Sk,1 denotes the elapsed time

between the first and second captures (the only observed inter-catch), then

it follows by a derivation analogous to Hampel’s that the density of the time

Sk,1 is given by

g(x) =
1

µk(f)

∫ ∞

0
k(y − x)k−1

+ f(y)dy

which is clearly k-monotone. We obtain F , the probability distribution of

Y , by inverting the previous mixture representation; that is

F (t) = 1 − g(k−1)(t)
g(k−1)(0+)

at any point of continuity t > 0 of F.

In connection with (a), it is interesting to note that the definition of the

family Dk is equivalent to g ∈ Dk if and only if (−1)k−1g(k−1) (where g(k−1)

is either the left- or right-derivative of g(k−2)) is nonincreasing. This follows

from Lemma 4.3 of Gneiting (1999) since Gneiting’s condition limx→∞ g(x) =

0 is automatic for densities. Thus the equivalent definition of Dk has a nat-

ural connection with the work of Mammen (1991) in the nonparametric

regression setting. In parallel to the treatment of convex regression estima-

tion given by Groeneboom, Jongbloed, and Wellner (2001b), it seems

clear that pointwise distribution theory for nonparametric least squares es-

timators for the regression problems in (a) could be developed if adequate

theory were available for the the Maximum Likelihood and Least Squares

estimators of densities in the class Dk, so we focus exclusively on the den-

sity case in this paper. In Section 5 we comment further on the difficulties in

obtaining corresponding limit theory for the smooth kernel cases discussed

in (b).
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1.2. Description of the key difficulty: the gap problem

The key result that Groeneboom, Jongbloed, and Wellner (2001b) used

to establish (1.2) is that τ+
n − τ−

n = Op(n−1/5) as n → ∞, where τ−
n and

τ+
n are two successive jump points of the first derivative of ḡn in the neigh-

borhood of x0. Such a result was already proved by Mammen (1991) (see

Lemma 8) in the context of nonparametric regression, where the true regres-

sion curve, m, is piecewise concave/convex or convex/concave such that m is

twice continuously differentiable in the neigborhood of x0, and m′′(x0) �= 0.

Furthermore, Mammen (1991) conjectured the right form of the asymptotic

distribution of his Least square estimator, which was later established by

Groeneboom, Jongbloed, and Wellner (2001b).

To obtain the stochastic order n−1/5 for the gap, Groeneboom, Jong-

bloed, and Wellner (2001b) used the characterizations of the estimators

together with the “mid-point property” which we review in Section 4. For

k = 1, the same property can be used to establish that n−1/3 is the order

of the gap. As a function of k, it is natural to conjecture that n−1/(2k+1) is

the general form of the order of the gap. In the problem of nonparametric

regression via splines, Mammen and van de Geer (1997) have conjectured

that n−1/(2k+1) is the order of the distance between the knot points of their

regression spline m̂ under the assumption that the true regression curve m0

satisfies our same working assumptions, but the question was left open (see

Mammen and van de Geer (1997), page 400). In this manuscript, we refer

to the problem of establishing the order of τ+
n − τ−

n as the gap problem.

In Section 4, we show that when k > 2, the gap problem is closely related

to a “non-classical” Hermite interpolation problem via odd-degree splines.

To put the interpolation problem encountered in the next section in context,

it is useful to review briefly the related complete interpolation problem for

odd-degree splines which is more “classical” and for which error bounds

uniform in the knots are now available. Given a function f ∈ C(k−1)[0, 1]

and an increasing sequence 0 = y0 < y1 < · · · < ym < ym+1 = 1 where
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m ≥ 1 is an integer, it is well-known that there exists a unique spline, called

the complete spline and denoted here by Cf , of degree 2k − 1 with interior

knots y1, . . . , ym that satisfies the 2k + m conditions{
(Cf)(yi) = f(yi), i = 1, . . . ,m

(Cf)(l)(y0) = f (l)(y0), (Cf)(l)(ym+1) = f (l)(ym+1), l = 0, . . . , k − 1;

see Schoenberg (1963), de Boor (1974), or Nürnberger (1989), page 116,

for further discussion. If j ∈ {0, . . . , k} and f ∈ C(k+j)[0, 1], then there exists

ck,j > 0 such that

sup
0<y1<···<ym<1

‖f − Cf‖∞ ≤ ck,j‖f (k+j)‖∞. (1.4)

For j = k, this “uniform in knots” bound in the complete interpolation

problem was first conjectured by de Boor (1973) for k > 4 as a general-

ization that goes beyond k = 2, 3 and 4 for which the result was already

established (see also de Boor (1974)). By a scaling argument, the bound

(1.4) implies that, if f ∈ C(2k)[a, b], a < b ∈ R, the interpolation error in

the complete interpolation problem is uniformly bounded in the knots, and

that the bound is of the order of (b−a)2k. One key property of the complete

spline interpolant Cf is that (Cf)(k) is the Least Squares approximation of

f (k) when f (k) ∈ L2([0, 1]); i.e., if Sk(y1, · · · , ym) denotes the space of splines

of order k (degree k − 1) and interior knots y1, . . . , ym, then∫ 1

0

(
(Cf)(k) − f (k)(x)

)2
dx = min

S∈Sk(y1,...,ym)

∫ 1

0

(
S(x) − f (k)(x)

)2
dx (1.5)

(see e.g. Schoenberg (1963), de Boor (1974), Nürnberger (1989)). Con-

sequently, if L∞ denotes the space of bounded functions on [0, 1], then the

properly defined map

C(k)[0, 1] → Sk(y)

f (k) → (Cf)(k)

where y = (y1, . . . , ym), is the restriction of the orthoprojector PSk(y) from

L∞ to Sk(y) with respect to the inner product 〈g, h〉 =
∫ 1
0 g(x)h(x)dx which
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assigns to a function g ∈ L∞ the k-derivative of the complete spline inter-

polant of any primitive of g of order k (note that the difference between two

primitives of g of order k is a polynomial of degree k − 1).

de Boor (1974) pointed out that, in order to prove the conjecture, it is

enough to prove that

sup
y

‖PSk(y)‖∞ = sup
y

sup
g∈L∞

‖PSk(y)(g)‖∞
‖g‖∞

is bounded, and this was successfully achieved by Shadrin (2001).

The Hermite interpolation problem which arises naturally in Section 4 ap-

pears to be another variant of interpolation problems via odd-degree splines

which has not yet been studied in the approximation theory or spline lit-

erature. More specifically, if f is some real-valued function in C(j)[0, 1] for

some j ≥ 1, 0 = y0 < y1 < · · · < y2k−4 < y2k−3 = 1 is a given increasing

sequence, then there exists a unique spline Hkf of degree 2k−1 and interior

knots y1, . . . , y2k−4 satisfying the 4k − 4 conditions

(Hkf)(yi) = f(yi), and (Hkf)′(yi) = f ′(yi), i = 0, . . . , 2k − 3.(1.6)

It turns out that deriving the stochastic order of the distance between two

successive knots of the MLE and LSE in the neighborhood of the point of

estimation is very closely linked to bounding the error in this new Hermite

interpolation independently of the locations of the knots of the spline inter-

polant. More precisely, if gt(x) = (x− t)k−1
+ /(k − 1)! is the power truncated

function of degree k − 1 with unique knot t, then we conjecture that there

is a constant dk > 0 such that

sup
t∈(0,1)

sup
0<y1<···<y2k−4<1

‖gt −Hkgt‖∞ ≤ dk. (1.7)

As shown in Balabdaoui and Wellner (2005), the preceding formulation

implies that boundedness of the error independently of the knots of the

spline interpolant holds true for any f ∈ C(k+j), that is

sup
0<y1<···<y2k−4<1

‖f −Hkf‖∞ ≤ dk,j‖f (k+j)‖∞.
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If j = k and ‖f (2k)‖∞ ≤ 1, it follows from Proposition 1 of Balabdaoui and

Wellner (2005) that the interpolation error must be bounded above by the

error for interpolating the perfect spline

S∗(t) =
1

(2k)!

(
t2k + 2

2k−4∑
i=1

(−1)i(t − τj)2k
+

)

For a definition of perfect splines, see e.g. Bojanov, Hakopian and Sahakian

(1993), Chapter 6. Based on large number of simulations, we found that

sup
0<y1<···<y2k−4<1

‖S∗ −HkS
∗‖∞ ≤ 2

(2k)!

for fairly large values of k (see the last column in Table 2 in Balabdaoui

and Wellner (2005)). The latter strongly suggests that for f ∈ C(2k)[0, 1]

we have

sup
0<y1<···<y2k−4<1

‖f −Hkf‖∞ ≤ 2
(2k)!

‖f (2k)‖∞. (1.8)

Based on Conjecture (1.7), we will prove that the distance between two

consecutive knots in a neighborhood of x0 is Op(n−1/(2k+1)).

After a brief introduction of the MLE and LSE and their respective char-

acterizations, we give in Section 3 a statement of our main result which

gives the joint asymptotic distribution of the successive derivatives of the

MLE and LSE. The obtained convergence rate n−(k−j)/(2k+1) for the j-th

derivative of any of the estimators was found by Balabdaoui and Well-

ner (2004a) to be the asymptotic minimax lower bound for estimating

g
(j)
0 (x0), j = 0, . . . , k − 1 under the same working assumptions. The lim-

iting distribution depends on the higher derivatives of Hk, an almost surely

uniquely defined process that stays above (below) the (k − 1)-fold integral

of Brownian motion plus the drift (k!/(2k)!) t2k, when k is even (odd), and

is (2k − 2)−convex; i.e. the 2k − 2 derivative of Hk is convex. The process

Hk is studied separately in Balabdaoui and Wellner (2004c). Proving the

existence of Hk relies also on our conjecture in (1.7) since the key problem,
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also referred to as the gap problem, depends on a very similar Hermite in-

terpolation problem, except that the knots of the estimators are replaced

by the points of touch between the (k− 1)-fold integral of Brownian motion

plus the drift (k!/(2k)!) t2k and Hk. For more discussion of the background

and related problems, see Balabdaoui and Wellner (2004a). For a discus-

sion of algorithms and computational issues, see Balabdaoui and Wellner

(2004b).

2. The estimators and their characterization

Let X1, · · · ,Xn be n independent observations from a common k-monotone

density g0. We consider nonpametric estimation of g0 via the Least Squares

and Maximum Likelihood methods, and that of its mixture distribution F0,

that is the distribution function on (0,∞) such that

g0(x) =
∫ ∞

0

k(t − x)k−1
+

tk
dF0(t), x > 0.

In other words, g0 is a scale mixture of Beta(1, k) densities. The mixing

distribution is furthermore given at any point of continuity t by the inversion

formula

F0(t) =
k∑

j=0

(−1)j
tj

j!
G

(j)
0 (t) (2.9)

where G0(t) =
∫ t
0 g0(x)dx. AAn estimator for F0 can be obtained by simply

plugging in estimators of G
(j)
0 = g

(j−1)
0 , j = 0, . . . , k, in the inversion formula

(2.9). We call estimation of the (mixed) k-monotone density g0 the direct

problem, and estimation of the mixing distribution function F0 the inverse

problem. For more technical details on the mixture representation and the

inversion formula, see Lemma 2.1 of Balabdaoui and Wellner (2004a).

Now, we give the definition of the Least Squares and Maximum Likelihood

estimators; these were already considered in the case k = 2 by Groeneboom,
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Jongbloed, and Wellner (2001b). The LSE, g̃n, is the minimizer of the

criterion function

Φn(g) =
1
2

∫ ∞

0
g2(t)dt −

∫ ∞

0
g(t)dGn(t)

over the class Mk, whereas the MLE, ĝn, maximizes the “adjusted” log-

likelihood function, i.e.

ln(g) =
∫ ∞

0
log g(t)dGn(t) −

∫ ∞

0
g(t)dt

over the same class. In Balabdaoui and Wellner (2004a), we find that

both estimators exist and are splines of degree k − 1, i.e., their (k − 1)-st

derivative is stepwise. Furthermore, as shown in Balabdaoui and Wellner

(2004a), the LSE’s and MLE’s are characterized as follows: Let H̃n and Yn

be the processes defined for all x ≥ 0 by

Yn(x) =
∫ x

0

∫ tk−1

0
· · ·
∫ t2

0
Gn(t1)dt1dt2 . . . dtk−1 (2.10)

=
∫ x

0

(x − t)k−1

(k − 1)!
dGn(t),

and

H̃n(x) =
∫ x

0

∫ tk

0
· · ·
∫ t2

0
g̃n(t1)dt1dt2 . . . dtk (2.11)

=
∫ x

0

(x − t)k−1

(k − 1)!
g̃n(t)dt.

Then the k-monotone function g̃n is the LSE if and only if

H̃n(x)

{
≥ Yn(x), for all x ≥ 0

= Yn(x), if (−1)k−1g̃
(k−1)
n (x−) < (−1)k−1g̃

(k−1)
n (x+).

(2.12)

For the MLE we define the process

Ĥn(x, g) =
∫ x

0

k(x − t)k−1

xkĝn(t)
dGn(t) (2.13)
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for all x ≥ 0 and g ∈ Dk. Then, a necessary and sufficient condition for the

k-monotone function ĝn to be the MLE is given by

Ĥn(x, ĝn)

{
≤ 1, for all x ≥ 0

= 1, if (−1)k−1ĝ
(k−1)
n (x−) < (−1)k−1ĝ

(k−1)
n (x+).

(2.14)

These characterizations are crucial for understanding the local asympto-

tique behavior of the LSE and MLE. They were exploited in Balabdaoui

and Wellner (2004a) to show uniform strong consistency of the estimators

on intervals of the form [c,∞), c > 0. Here, they prove to be once again

very useful for establishing their limit theory in both the direct and inverse

problems.

3. The asymptotic distribution

3.1. The main convergence theorem

To prepare for a statement of the main result, we first recall the following

theorem from Balabdaoui and Wellner (2004c) giving existence of the

processes Hk.

Theorem 3.1 For all k ≥ 1, let Yk denote the stochastic process defined by

Yk(t) =


∫ t
0

(t−s)k−1

(k−1)! dW (s) + (−1)kk!
(2k)! t2k, t ≥ 0∫ 0

t
(t−s)k−1

(k−1)! dW (s) + (−1)kk!
(2k)! t2k, t < 0.

If Conjecture (1.7) holds (also see the discussion in Balabdaoui and Well-

ner (2004c)), then there exists an almost surely uniquely defined stochastic

process Hk characterized by the following four conditions:

(i) The process Hk stays everywhere above the process Yk:

Hk(t) ≥ Yk(t), t ∈ R.

(ii) (−1)kHk is 2k-convex; i.e. (−1)kH
(2k−2)
k exists and is convex.
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(iii) The process Hk satisfies∫ ∞

−∞
(Hk(t) − Yk(t)) dH

(2k−1)
k (t) = 0.

(iv) If k is even, lim|t|→∞(H(2j)
k (t)−Y

(2j)
k (t)) = 0 for j = 0, . . . , (k−2)/2;

if k is odd, limt→∞(Hk(t) − Yk(t)) = 0 and lim|t|→∞(H(2j+1)
k (t) −

Y
(2j+1)
k (t)) = 0 for j = 0, . . . , (k − 3)/2.

Now we are able to state the main result of this paper which general-

izes Theorem 6.2 of Groeneboom, Jongbloed, and Wellner (2001b) for

estimating convex (2-monotone) densities:

Theorem 3.2 Let x0 > 0 and g0 be a k-monotone density such that g0 is

k-times differentiable at x0 with (−1)kg(k)
0 (x0) > 0 and assume that g

(k)
0 is

continuous in a neighborhood of x0. Let ḡn denote either the LSE, g̃n or the

MLE ĝn and let F̄n be the corresponding mixing measure. If Conjecture (1.7)

holds, then
n

k
2k+1 (ḡn(x0) − g0(x0))

n
k−1
2k+1 (ḡ(1)

n (x0) − g
(1)
0 (x0))

...

n
1

2k+1 (ḡ(k−1)
n (x0) − g

(k−1)
0 (x0))

→d


c0(x0)H

(k)
k (0)

c1(x0)H
(k+1)
k (0)
...

ck−1(x0)H
(2k−1)
k (0)



and

n
1

2k+1 (F̄n(x0) − F (x0)) →d
(−1)kxk

0

k!
ck−1(x0)H

(2k−1)
k (0)

where

cj(x0) =
{

(g0(x0))
k−j

(
(−1)kg

(k)
0 (x0)

k!

)2j+1} 1
2k+1

,

for j = 0, . . . , k − 1.
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3.2. The key results and outline of the proofs

Our proof of Theorem 3.2 proceeds by solving the key gap problem assuming

that our Conjecture (1.7) holds. This is carried out in Section 4 in which

the main result is:

Lemma 3.1 Let k ≥ 3 and ḡn denote either the LSE g̃n or the MLE ĝn. If

g0 ∈ Dk satisfies g
(k)
0 (x0) �= 0 and Conjecture (1.7) holds, then τ2k−3 − τ0 =

Op(n−1/(2k+1)) where τ0 < · · · < τ2k−3 are 2k − 2 successive jump points of

ḡ
(k−1)
n in a neighborhood of x0.

Using Lemma 3.1 we can establish the rate(s) of convergence of the esti-

mators g̃n and ĝn and their derivatives viewed as local processes in n−1/(2k+1)

neighborhoods of the fixed point x0. This is accomplished in Proposition 3.1

(which depends in turn on a preliminary “existence of points” result given

in Proposition 6.1). Once the rates have been established, we define for the

LSE localized versions Y
loc
n , H̃ loc

n of the processes Yn, H̃n given in (2.10) and

(2.11) respectively, and Ŷ
loc
n , Ĥ loc

n related to the process Ĥn given in (2.13)

in the case of the MLE. The proof then proceeds by showing that:

• The localized processes Y
loc
n and Ŷ

loc
n converge weakly to Ya,σ where

Ya,σ(t) =

 σ
∫ t
0

∫ sk−1

0 · · · ∫ s2

0 W (s1)ds1 . . . dsk−1 + a(−1)k k!
(2k)! t

2k, t ≥ 0

σ
∫ 0
t

∫ 0
sk−1

· · · ∫ 0
s2

W (s1)ds1 . . . dsk−1 + a(−1)k k!
(2k)! t

2k, t ≤ 0

with σ =
√

g(x0), a = (−1)kg
(k)
0 (x0)/k! and W a two-sided Brownian

motion process starting from 0.

• The localized processes H̃ loc
n and Ĥ loc

n satisfy Fenchel (inequality and

equality) relations relative to the localized processes Y
loc
n and Ŷ

loc
n

respectively.

• We then show via tightness that the localized processes H̃ loc
n and Ĥ loc

n

(and all their derivatives up to order 2k−1) converge to a limit process

satisfying the conditions (i) - (iv) of Theorem 3.1, and hence the limit
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process in both cases is just Hk (up to scaling by constants). When

specialized to t = 0 this gives the conclusion of Theorem 3.2.

Here is the key rates of convergence proposition.

Proposition 3.1 Fix x0 > 0 and let g0 be a k-monotone density such

that (−1)kg
(k)
0 (x0) > 0. Let ḡn denote either the MLE ĝn or the LSE g̃n. If

Conjecture (1.7) holds, then for each M > 0 we have,

sup
|t|≤M

∣∣∣ḡ(j)
n (x0 + n−1/(2k+1)t) −

k−1∑
i=j

n−(i−j)/(2k+1)g
(i)
0 (x0)

(i − j)!
ti−j
∣∣∣

= Op(n−(k−j)/(2k+1)) (3.1)

for j = 0, . . . , k − 1.

For the LSE, we define the local Yn and H̃n-processes respectively by

Y
loc
n (t) = n

2k
2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0{
Gn(v1) − Gn(x0) −

∫ v1

x0

k−1∑
j=0

(u − x0)j

j!
g
(j)
0 (x0)du

}
Πk−1

i=1 dvi,

and

H̃ loc
n (t) = n

2k
2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk

x0

· · ·
∫ v2

x0{
g̃n(v1) −

k−1∑
j=0

(v1 − x0)j

j!
g
(j)
0 (x0)

}
dv1 . . . dvk

+ Ãk−1,ntk−1 + Ãk−2,ntk−2 + · · · + Ã1,nt + Ã0,n,

where

Ãj,n =
n(2k−j)/(2k+1)

j!

(
H̃(j)

n (x0) − Y
(j)
n (x0)

)
, j = 0, . . . , k − 1.
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Let rk ≡ 1/(2k + 1). In the case of the MLE, the local processes Ŷ
loc
n and

Ĥ loc
n are defined as

Ŷ
loc
n (t)

g0(x0)
= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

g0(v) −∑k−1
j=0

(v−x0)j

j! g
(j)
0 (x0)

ĝn(v)
dvdv1 . . . dvk−1

+ n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1
ĝn(v)

d(Gn − G0)(v)

dv1 . . . dvk−1

and

Ĥ loc
n (t)

g0(x0)
= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

ĝn(v) −∑k−1
j=0

(v−x0)j

j! g
(j)
0 (x0)

ĝn(v)

dvdv1 . . . dvk−1 + Â(k−1)ntk−1 + · · · + Â0n

where

Âjn = − n(2k−j)rk

(k − 1)!j!
g0(x0)

(
Ĥ(j)

n (x0) − (k − 1)!
(k − j)!

xk−j
0

)
, j = 0, . . . , k − 1.

In the following lemma, we will give the asymptotic distribution of the

local process Y
loc
n and Ŷ

loc
n in terms of the (k − 1)-fold integral of two-sided

Brownian motion, g0(x0), and g
(k)
0 (x0) assuming that the true density g0 is

k-times continuously differentiable at x0. We denote by Ȳ
loc
n either Y

loc
n or

Ŷloc
n .

Lemma 3.2 Let x0 be a point where g0 is continuously k−times differen-

tiable in a neighborhood of x0 with (−1)kg(k)
0 (x0) > 0. Then Ȳ

loc
n ⇒ Ya,σ in

C[−K,K] for each K > 0 where

Ya,σ(t) =

{ √
g0(x0)

∫ t
0

∫ sk−1

0 · · · ∫ s2

0 W (s1)ds1 . . . dsk−1 + a(−1)k k!
2k!t

2k, t ≥ 0√
g0(x0)

∫ 0
t

∫ 0
sk−1

· · · ∫ 0
s2

W (s1)ds1 . . . dsk−1 + a(−1)k k!
2k! t

2k, t < 0

where W is standard two-sided Brownian motion starting at 0, σ =
√

g0(x0),

and a = (−1)kg
(k)
0 (x0)/k!.
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Now, let H̄ loc
n denote either H̃ loc

n or Ĥ loc
n .

Lemma 3.3 The localized processes Ȳ
loc
n and H̄ loc

n , satisfy

H̄ loc
n (t) − Ȳ

loc
n (t) ≥ 0 for all t ≥ 0,

with equality if x0 + tn−1/(2k+1) is a jump point of ḡ
(k−1)
n .

Lemma 3.4 The limit process Ya,σ in Lemma 3.2 satisfies

Ya,σ(t) d=
1
s1

Yk

(
t

s2

)
where Yk ≡ Y1,1 and

s1 =
1√

g0(x0)

(
(−1)kg(k)

0 (x0)
k!
√

g0(x0)

)(2k−1)/(2k+1)

(3.2)

s2 =
( √

g0(x0)
(−1)kg

(k)
0 (x0)

k!

)2/(2k+1)

. (3.3)

To show that the derivatives of H̄ loc
n are tight, we need the following

lemma.

Lemma 3.5 For all j ∈ {0, . . . , k − 1}, let Ājn denote either Ãjn or Âjn.

If Conjecture (1.7) holds, then

Ājn = Op(1). (3.4)

Now we rescale the processes Ȳ
loc
n and H̄ loc

n so that the rescaled Ȳ
loc
n

converges to the canonical limit process Yk defined in Lemma 3.4. Since the

scaling of Ȳ
loc
n will be exactly the same as the one we used for Yk, we define

H̄ l
n and Ȳ

l
n by

H̄ l
n(t) = s1H̄

loc
n (s2t), Ȳ

l
n(t) = s1Ȳ

loc
n (s2t)

where s1 and s2 are given by (3.2) and (3.3) respectively.
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Lemma 3.6 Let c > 0. Then

((H̄ l
n)(0), (H̄ l

n)(1), . . . , (H̄ l
n)(2k−1)) ⇒ (H(0)

k ,H
(1)
k , . . . ,H

(2k−1)
k )

in (D[−c, c])2k where Hk is the stochastic process defined in Theorem 3.1.

Proofs of Theorem 3.2 and the results given in Subsection 3.2 can be

found in Appendix 1.

4. The gap problem - Spline connection

Recall that it was assumed that g0 is k-times continuously differentiable at

x0 and that (−1)kg(k)
0 (x0) > 0. Under a weaker assumption, Balabdaoui

and Wellner (2004a) proved strong consistency of the (k − 1)-st deriva-

tive of the MLE and LSE. This consistency result together with the above

assumption imply that the number of jump points of this derivative, in a

small neighborhood of x0, diverges to infinity almost surely as the sample

size n → ∞. This “clustering” phenomenon is one of the most crucial ele-

ments in studying the local asymptotics of the estimators. The jump points

form then a sequence that converges to x0 almost surely and therefore the

distance between two successive jump points, for example located just before

and after x0, converges to 0 as n → ∞. But it is not enough to know that

the “gap” between these points converges to 0: an upper bound for this rate

of convergence is needed.

To prove Lemma 3.1, we will focus first on the LSE because it is some-

what easier to handle through the simple form of its characterization. The

arguments for the MLE could be built upon those used for the LSE, but in

this case, one has to deal with some extra difficulties due to the non-linear

nature of its characterization.

We start first by describing the difficulties of establishing this result for

the general case k > 2.
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4.1. Fundamental differences

Let τ−
n and τ+

n be the last and first jump points of the (k − 1)-st deriva-

tive of the LSE g̃n, located before and after x0 respectively. To obtain a

better understanding of the gap problem, we describe the reasoning used

by Groeneboom, Jongbloed, and Wellner (2001b) in order to prove that

τ+
n −τ−

n = Op(n−1/5) for the special case k = 2. The LSE g̃n is characterized

by

H̃n(x)

{
≥ Yn(x), x ≥ 0

= Yn(x), if x is a jump point of g̃′n
(4.1)

where H̃n(x) =
∫ x
0 (x − t)g̃n(t)dt and Yn(x) =

∫ x
0 Gn(t)dt. On the interval

[τ−
n , τ+

n ), the function g̃′n is constant since there are no more jump points

in this interval. This implies that H̃n is polynomial of degree 3 on [τ−
n , τ+

n ).

But, from the characterization in (4.1), it follows that

H̃n(τ±
n ) = Yn(τ±

n ), H̃ ′
n(τ±

n ) = Y
′
n(τ±

n ) .

These four boundary conditions allow us to fully determine the cubic poly-

nomial H̃n on [τ−
n , τ+

n ]. Using the explicit expression for H̃n and evaluating it

at the mid-point τ̄ = (τ−
n +τ+

n )/2, Groeneboom, Jongbloed, and Wellner

(2001b) established that

H̃n(τ̄n) =
Yn(τ−

n ) + Yn(τ+
n )

2
− Gn(τ+

n ) − Gn(τ−
n )

8
(τ+

n − τ−
n ).

Groeneboom, Jongbloed and Wellner refer to this as the “mid-point prop-

erty”. By applying the first condition (the inequality condition) in (4.1), it

follows that

Yn(τ−
n ) + Yn(τ+

n )
2

− Gn(τ+
n ) − Gn(τ−

n )
8

(τ+
n − τ−

n ) ≥ Yn(τ̄n).

The inequality in the last display can be rewritten as

Y0(τ−
n ) + Y0(τ+

n )
2

− G0(τ+
n ) − G0(τ−

n )
8

(τ+
n − τ−

n ) ≥ En
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where G0 and Y0 are the true counterparts of Gn and Yn respectively, and

En is a random error. Using empirical process theory, Groeneboom, Jong-

bloed, and Wellner (2001b) showed that

|En| = Op(n−4/5) + op((τ+
n − τ−

n )4). (4.2)

On the other hand, Groeneboom, Jongbloed, and Wellner (2001b) es-

tablished that there exists a universal constant C > 0 such that

Y0(τ−
n ) + Y0(τ+

n )
2

− G0(τ+
n ) − G0(τ−

n )
8

(τ+
n − τ−

n )

= −Cg′′0(x0)(τ+
n − τ−

n )4 + op((τ+
n − τ−

n )4). (4.3)

Combining the results in (4.2) and (4.3), it follows that

τ+
n − τ−

n = Op(n−1/5).

The problem has two main features that make the above arguments work.

First of all, the polynomial H̃n can be fully determined on [τ−
n , τ+

n ] and

therefore it can be evaluated at any point between τ−
n and τ+

n . Second of all,

it can be expressed via the empirical process Yn and that enables us to “get

rid of” terms depending on g̃n whose rate of convergence is still unknown at

this stage. We should also add that the problem is symmetric around τ̄n, a

property that helps establishing the formula derived in (4.3).

When k > 2, it follows from the characterization of the LSE given in

(2.12), that for any two successive jump points of g̃
(k−1)
n , τ−

n , τ+
n , the four

equalities

H̃n(τ±
n ) = Yn(τ±

n ), and H̃ ′
n(τ±

n ) = Y
′
n(τ±

n )

still hold. However, these equations are not enough to determine the poly-

nomial H̃n, now of degree 2k − 1, on the interval [τ−
n , τ+

n ]. One would need

2k conditions to be able to achieve this. [We would be in this situation if we

had equality of the higher derivatives of H̃n and Yn at τ−
n and τ+

n , that is

H̃(j)
n (τ−

n ) = Y
(j)
n (τ−

n ), H̃(j)
n (τ+

n ) = Y
(j)
n (τ+

n ) (4.4)
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for j = 0, . . . , k−1, but the characterization (2.12) does not give this much.]

Thus it becomes clear that two jump points are not sufficient to determine

the piecewise polynomial H̃n. However, if we consider p > 2 jump points

τn,0 < · · · < τn,p−1 (all located e.g. after x0), then H̃n is a spline of degree

2k−1 with interior knots τn,1, · · · , τn,p−2; that is, H̃n is a polynomial of degree

2k−1 on (τn,j, τn,j+1) for j = 0, . . . , p−2 and is (2k−2)-times differentiable

at its knot points τn,0, . . . , τn,p−1. In the next subsection, we prove that if

p = 2k − 2, the spline H̃n is completely determined on [τn,0, τn,2k−3] by the

conditions

H̃n(τn,i) = Yn(τn,i), and H̃ ′
n(τn,i) = Y

′
n(τn,i), i = 0, . . . , 2k − 3 .

(4.5)

This result proves to be very useful for determining the stochastic order of

the distance between two successive jump points in a small neighborhood

of x0 if our Conjecture (1.7) on the uniform boundedness of the error in

the “non-classical” Hermite interpolation problem via splines of odd-degree

defined in (1.6) holds.

4.2. The gap problem for the LSE - Hermite interpolation

In the next lemma, we prove that given 2k−2 successive jump points τn,0 <

· · · < τn,2k−3 of g̃
(k−1)
n , H̃n is the unique solution of the Hermite problem

given by (4.5). In the following, we will omit writing the subscript n explictly

in the knots, but their dependence on the sample size should be kept in mind.

Lemma 4.1 The function H̃n characterized by (2.12) is a spline of degree

2k − 1. Moreover, given any 2k − 2 successive jump points of H̃
(2k−1)
n , τ0 <

. . . < τ2k−3, the (2k − 1)-th spline H̃n is uniquely determined on [τ0, τ2k−3]

by the values of the process Yn and of its derivative Y
′
n at τ0, . . . , τ2k−3.

Proof. We know that for any jump point τ of H̃
(2k−1)
n , we have

H̃n(τ) = Yn(τ) and H̃ ′
n(τ) = Y

′
n(τ).
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This can be viewed as a Hermite interpolation problem if we consider that

the interpolated function is the process Yn and that the interpolating spline

is H̃n (see e.g. Nürnberger (1989), Definition 3.6, pages 108 and 109).

Existence and uniqueness of the spline interpolant follows easily from the

Schoenberg-Whitney-Karlin-Ziegler Theorem (Schoenberg and Whitney

(1953); Theorem 3, page 529, Karlin and Ziegler (1966); or see Theorem

3.7, page 109, Nürnberger (1989); or Theorem 9.2, page 162, DeVore and

Lorentz (1993)).

In the following lemma, we prove a preparatory result that will be used

later for deriving the stochastic order of the distance between successive

knots of g̃n in a neighborhood of x0. Given a fixed set of points τ0, · · · , τ2k−3,

let Hk denote again the spline interpolation operator which assigns to each

differentiable function f the unique spline Hk[f ] with interior knots τ1, · · · ,
τ2k−4 and degree 2k − 1, and satisfying the boundary conditions given in

(1.6).

Lemma 4.2 Let τ̄ ∈ ∪2k−4
i=0 (τi, τi+1). If ek(t) denotes the error at t of the

Hermite interpolation of the function x2k/(2k)!; i.e.,

ek(t) =
t2k

(2k)!
−Hk

[
x2k

(2k)!

]
(t)

then

g
(k)
0 (τ̄)ek(τ̄ ) ≤ En + Rn (4.6)

where En defined in (4.8) is a random error and Rn defined in (4.9) is a

remainder that both depend on the knots τ0, . . . , τ2k−3 and the point τ̄ .

Proof. Let τ̄ ∈ ∪2k−4
i=0 (τi, τi+1). From the characterization in (2.12) and the

fact that H̃n = Hk[Yn] on [τ0, τ2k−3], it follows that

Hk[Yn](τ̄) ≥ Yn(τ̄).
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Let Y0 the true counterpart of Yn; i.e., Y0(x) =
∫ x
0 (x−t)k−1/(k−1)! g0(t)dt.

Then, we can rewrite the previous inequality as

Hk[Y0](τ̄ ) − Y0(τ̄ ) ≥ −En(τ̄) (4.7)

where

En = Hk[Yn − Y0](τ̄) − [Yn − Y0](τ̄ ). (4.8)

Based on the working assumptions, the function Y0 is (2k)-times continu-

ously differentiable in a small neighborhood of x0. Now, Taylor expansion

of Y0(t), with integral remainder, around τ̄ up to the order 2k yields

Y0(t) =
2k−1∑
j=0

(t − τ̄)j

j!
Y

(j)
0 (τ̄) +

∫ τ2k−3

τ̄

(t − u)2k−1
+

(2k − 1)!
g
(k)
0 (u)du

for all t ∈ [τ0, τ2k−3]. Using this expansion along with the fact that the

operator Hk is linear and does preserve polynomials of degree 2k − 1, we

can rewrite the inequality in (4.7) as

1
(2k − 1)!

∫ τ2k−3

τ̄
Hk[(t − u)2k−1

+ ](τ̄) g
(k)
0 (u)du ≥ −En.

In the previous display, Hk[(t− u)2k−1
+ ](τ̄ ) is the Hermite spline interpolant

of the truncated power function t �→ (t − u)2k−1
+ (u is fixed), evaluated at

the point τ̄ . Now, we can rewrite the left side of the previous inequality as∫ τ2k−3

τ̄

1
(2k − 1)!

Hk[(t − u)2k−1
+ ](τ̄ ) g

(k)
0 (u)du

= g
(k)
0 (τ̄ )

1
(2k − 1)!

∫ τ2k−3

τ̄
Hk[(t − u)2k−1

+ ](τ̄ )du

+
1

(2k − 1)!

∫ τ2k−3

τ̄
Hk[(t − u)2k−1

+ ](τ̄ )
(
g
(k)
0 (u) − g

(k)
0 (τ̄)

)
du

= g
(k)
0 (τ̄ )

1
(2k − 1)!

Hk

[∫ τ2k−3

τ̄
[(t − u)2k−1

+ ]du

]
(τ̄) + Rn, (4.9)

using once again linearity of the operator Hk. The remainder Rn is equal to

the Hermite interpolant of the function

t �→ 1
(2k − 1)!

∫ t

τ̄

(t − u)2k−1

(2k − 1)!
(g(k)

0 (u) − g
(k)
0 (τ̄))du
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at the point τ̄ . On the other hand, we can further rewrite the integral term

in (4.9) as

1
(2k − 1)!

Hk

[∫ τ2k−3

τ̄
(t − u)2k−1

+ du

]
(τ̄ )

=
1

(2k − 1)!
Hk

[∫ t

τ̄
(t − u)2k−1du

]
(τ̄ ) =

1
(2k)!

Hk

[
(t − τ̄)2k

]
(τ̄ ).

In other words, the integral term in (4.9) is nothing but the value of the

Hermite spline interpolant of the function t �→ (t − τ̄)2k/(2k)! at the point

τ̄ . As claimed in the lemma, this value is also equal to −ek(τ̄ ),where ek

the error of the Hermite interpolation of the function x2k/(2k)!. Indeed, let

P2k−1(t) = (t− τ̄)2k/(2k)!− t2k/(2k)!. Since P2k−1 is a polynomial of degree

2k − 1, we have

Hk

[
(x − τ̄)2k

(2k)!

]
(t) = Hk

[
x2k

(2k)!

]
(t) + P2k−1(t).

If t = τ̄ , P2k−1(τ̄) = 0 − τ̄2k/(2k)! = −τ̄2k/(2k)!, which implies that

Hk

[
(x − τ̄)2k

(2k)!

]
(τ̄) = Hk

[
x2k

(2k)!

]
(τ̄ ) − τ̄2k

(2k)!
= −ek(τ̄ ).

�
The error ek defined in Lemma 4.2 can be recognized as a monospline of

degree 2k with 2k − 2 simple knots τ0, · · · , τ2k−3. For a definition of monos-

plines, see e.g. Michelli (1972), Bojanov, Hakopian and Sahakian (1993),

Nürnberger (1989), page 194 or DeVore and Lorentz (1993), page 136.

In the next lemma, we state an important property of ek.

Lemma 4.3 The function x �→ ek(x) has no other zeros than τ0, . . . , τ2k−3

in [τ0, τ2k−3]. Furthermore, (−1)kek ≥ 0 on [τ0, τ2k−3].

Proof. See Appendix 3. �
In Lemma 4.2, the key inequality in (4.6) can be rewritten as

(−1)kg
(k)
0 (τ̄ ) · (−1)kek(τ̄) ≤ En + Rn, (4.10)
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where the first factor on the right side is already known to be positive by

k-monotonicity of g0. Lemma 4.4 and Lemma 4.5 are the final steps toward

establishing the order of the gap for the LSE based on the Conjecture (1.7).

Lemma 4.4 If Conjecture (1.7) holds, then En in (4.6) of Lemma 4.2 sat-

isfies

|En| = Op(n−k/(2k+1)) + op((τ2k−3 − τ0)2k).

Proof. We have

En = Hk[Yn − Y0](τ̄) − [Yn − Y0](τ̄ ).

Using the (generalized) Taylor expansion of Yn(t) and Y0(t) around the point

τ̄ up to the order k − 1 yields

Yn(t) − Y0(t) =
k−1∑
j=0

(t − τ̄)j

j!
[Y(j)

n (τ̄) − Y
(j)
0 (τ̄)]

+
∫ t

τ̄

(x − u)k−1

(k − 1)!
d(Gn − G0)(x),

and therefore,

En = Hk

[∫ t

τ̄

1
(k − 1)!

(t − x)k−1d(Gn − G0)(x)
]

(τ̄ )

= Hk

[∫ τ2k−3

τ̄
gt(x)d(Gn − G0)(x)

]
(τ̄), where gt(x) =

(t−x)k−1
+

(k−1)!

=
∫ τ2k−3

τ̄
Hk[gt(x)](τ̄ )d(Gn − G0)(x), by linearity of Hk

=
∫ τ2k−3

τ0

fτ̄ (x)d(Gn − G0)(x).

Given x ∈ [τ̄ , τ2k−3], fτ̄ (x) = Hk[gt(x)](τ̄ )1[τ̄ ,τ2k−3](x), where Hk[gt(x)](τ̄ ) is

the value at τ̄ of the Hermite spline interpolant of the function t �→ gt(x) =

(t− x)k−1
+ /(k − 1)!. Thus, fτ̄ (x) depends on the knots τ0, · · · , τ2k−3, and the
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point s = τ̄ ∈ [τ0, τ2k−3], and can be viewed as an element of the class of

functions

F (1)
y0,R = {fs(x) = fs,y0,...,y2k−3

(x) : x ∈ [y0, y2k−3], s ∈ [y0, y2k−3],

x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R}. (4.11)

In view of Conjecture (1.7) together with the triangle inequality, there exists

a constant C > 0 depending only on k such that

|fs(x)| ≤ C(y2k−3 − y0)k−11[y0,y2k−3](x)

and hence the collection F (1)
y0,R has envelope function Fy0,R given by

Fy0,R(x) = CRk−11[y0,y0+R](x).

Furthermore, F (1)
y0,R is a VC-subgraph collection of functions (see Lemma 7.1

in Appendix 2, for a detailed argument), and hence by van der Vaart and

Wellner (1996), Theorem 2.6.7, page 141

sup
Q

N(ε‖F‖Q,2,F (1)
y0,R, L2(Q)) ≤

(
K

ε

)Vk

for 0 < ε < 1 where Vk = 2(V (Fy0,R) − 1) with V (Fy0,R) the VC-dimension

of the collection of subgraphs and the constant K depends only on V (Fy0,R).

It follows that

sup
Q

∫ 1

0

√
1 + log N(ε‖Fy0,R‖Q,2,F (1)

y0,R, L2(Q))dε < ∞.

On the other hand, if y0 ∈ [x0 − δ, x0 + δ] (an event which occurs with

increasing probability) for some small δ > 0, then we can find a constant

M > 0 depending only on δ, and g0 such that 0 < supt∈[y0,y0+R] g0(t) < M .

Therefore,

EF 2
y0,R(X1) = C2R2(k−1)

∫ y0+R

y0

g0(x)dx ≤ C2MR2k−1.
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Application of Lemma 7.1 with d = k and α = k yields

|En| = op((τ2k−3 − τ0)2k) + Op(n−2k/(2k+1)).

�

Lemma 4.5 If the bound in (1.8) holds, then Rn of Lemma 4.2 satisfies

|Rn| = op((τ2k−3 − τ0)2k).

Proof. By definition, Rn is the value at τ̄ of the Hermite spline interpolant

of the function

t �→
∫ t

τ̄

(t − u)2k−1

(2k − 1)!
(g(k)

0 (u) − g
(k)
0 (τ̄))du (4.12)

By (1.8), there exists a constant D > 0 depending only on k such that

|Rn| ≤ D sup
t∈[τ0,τ2k−3]

|g(k)
0 (t) − g

(k)
0 (τ̄)| (τ2k−3 − τ0)2k.

In the previous bound, we used the fact that the (2k)-times derivative of

the function in (4.12) is g
(k)
0 (t) − g

(k)
0 (τ̄ ). But, note that this derivative is

op(1), which follows from uniform continuity of g
(k)
0 on compacts. This in

turn implies the claimed bound. �

Proof of Lemma 3.1 for the LSE. Let j0 ∈ {0, . . . , 2k − 4} be such that

[τj0 , τj0+1] is the largest knot interval; i.e., τj0+1−τj0 = max0≤j≤2k−4(τj+1−
τj). Let a = τ0, b = τ2k−3. Using the inequality in (4.10) and since the

bounds on Rn and En are independent of the choice of τ̄ in ∪2k−4
j=0 (τj , τj+1),

it follows that

sup
τ̄∈(τj0

,τj0+1)
(−1)kek(τ̄) ≤ Op(n−2k/(2k+1)) + op((τ2k−3 − τ0)2k).

Now, on the interval [τj0, τj0+1], the Hermite spline interpolant of the func-

tion x2k/(2k)! reduces to a polynomial of degree 2k− 1. On the other hand,
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the best uniform approximation of the function x2k on [τj0, τj0+1] from the

space of polynomials of degree ≤ 2k − 1 is given by the polynomial

x �→ x2k −
(

τj0+1 − τj0

2

)2k 1
22k−1

T2k

(
2x − (τj0 + τj0+1)

τj0+1 − τj0

)
, (4.13)

where T2k is the Chebyshev polynomial of degree 2k (defined on [−1, 1]), see,

e.g., Nürnberger (1989), Theorem 3.23, page 46 or DeVore and Lorentz

(1993), Theorem 6.1, page 75. It follows that

sup
τ̄∈(τj0

,τj0+1)
(−1)kek(τ̄) ≥

∥∥∥∥ T2k

24k−1(2k)!

∥∥∥∥
∞

(τj0+1 − τj0)
2k (4.14)

=
1

24k−1(2k)!
(τj0+1 − τj0)

2k

since ‖T2k‖∞ = 1. But,

τ2k−3 − τ0 =
2k−4∑
j=0

(τj+1 − τj) ≤ (2k − 3)(τj0+1 − τj0).

Hence,

sup
τ̄∈(τj0

,τj0+1)
(−1)kek(τ̄) ≥ 1

(2k − 3)2k24k−1(2k)!
(τ2k−3 − τ0)2k.

Combining the results obtained above, we conclude that

(−1)kg(k)
0 (x0)

(2k − 3)2k24k−1(2k)!
(τ2k−3 − τ0)2k ≤ Op(n−2k/(2k+1)) + op((τ2k−3 − τ0)2k)

which implies that τ2k−3 − τ0 = Op(n−1/(2k+1)). �

4.3. The gap problem for the MLE

To show Lemma 3.1 for the MLE, one needs to deal with an extra diffucutly

posed by the nonlinear form of the characterization of this estimator, given in

(2.14). In the following, we show how one can get around this difficulty. The

main idea is to “linearize” the characterization of the MLE, and hence be

able to re-use the arguments developed for the LSE in the previous subsetion.
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Lemma 4.6 Let τ0, · · · , τ2k−3 be 2k − 2 sucessive jump points of ĝ
(k−1)
n .

Then,

Hk[Yn] − Yn ≥ g0(τ0)
(
f̌n −Hk[f̌n] + ∆n −Hk [∆n]

)
on [τ0, τ2k−3], where Yn is the same empirical process introduced in (2.10),

f̌n(x) ≡ −
∫ t

τ0

(x − t)k−1

(k − 1)!

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Ĝn(t) − G0(t))

and

∆n(x) ≡
∫ x

τ0

(x − t)k−1

(k − 1)!

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Gn(t) − G0(t)).

Proof. Let Ĝn(x) =
∫ x
0 ĝn(s)ds. The characterization in (2.14) can be

rewritten as∫ x

0

(x − t)k−1

ĝn(t)
d(Ĝn(t) − Gn(t))

{
≥ 0, for x > 0

= 0, if x is a jump point of ĝ
(k−1)
n .

(4.15)

Note that when x is a jump point of ĝ
(k−1)
n , the two parts of (4.15) imply

that the first derivative of the function on the right side is equal to 0 at the

jump point x; i.e.,∫ x

0

(x − t)k−2

ĝn(t)
d(Ĝn(t) − Gn(t)) = 0. (4.16)

For x > 0, let

Ĥn(x) =
∫ x

0

(x − t)k−1

(k − 1)!
dĜn(t).

Note that Ĥn �= Ĥn defined in (2.13), and on [τ0, τ2k−3], Ĥn is a spline of

degree 2k − 1 with knots τ0, · · · , τ2k−3. For x ∈ [τ0, τ2k−3], we can write∫ x

0

(x − t)k−1

ĝn(t)
d(Ĝn(t) − Gn(t))
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=
1

g0(τ0)

∫ x

0
(x − t)k−1 d(Ĝn(t) − Gn(t))

+
∫ x

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Ĝn(t) − Gn(t))

=
(Ĥn(x) − Yn(x))

g0(τ0)
+
∫ τ0

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Ĝn(t) − Gn(t))

+
∫ x

τ0

(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Ĝn(t) − G0(t))

+
∫ x

τ0

(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d(G0(t) − Gn(t))

=
1

g0(τ0)
(Ĥn(x) − Yn(x)) + pn(x) − f̌n(x) − ∆n(x).

Note that

pn(x) ≡
∫ τ0

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d(Ĝn(t) − Gn(t))

is a polynomial of degree k − 1. From (4.15) and (4.16), it follows that Ĥn

is the Hermite spline interpolant of the function

Yn + g0(τ0)
{−pn + f̌n + ∆n

}
such that

Ĥn ≥ Yn + g0(τ0)(−pn + f̌n + ∆n).

Hence,

Hk

[
Yn + g0(τ0)

{−pn + f̌n + ∆n

}] ≥ Yn + g0(τ0)
{−pn + f̌n + ∆n

}
on [τ0, τ2k−3], or equivalently

Hk[Yn] − Yn ≥ g0(τ0)
(
f̌n −Hk[f̌n] + ∆n −Hk [∆n]

)
.

�

As Hk[Yn]−Yn has been already studied for proving the order of the gap

in the case of the LSE, the final step is to evaluate each of the interpolation

errors

E1 = f̌n −Hk[f̌n] and E2 = ∆n −Hk[∆n]. (4.17)

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaoui and Wellner/k−monotone: limit distribution and spline connection 31

Lemma 4.7 Let E1 and E2 be the interpolation errors defined in (4.17).

Then,

‖E1‖∞ = op((τ2k−3 − τ0)2k) and ‖E2‖∞ = op((τ2k−3 − τ0)2k) + Op

(
n− 2k

2k+1

)
.

Proof. See Appendix 3.

Proof of Lemma 3.1 for the MLE. From our study of the distance

between the knots of the LSE, and using very similar caluculations we can

show that for all τ̄ ∈ ∪2k−4
j=0 (τj, τj+1)

(−1)kg
(k)
0 (τ̄)(−1)kek(τ̄) ≤ En + Rn − g0(τ0)(E1(τ̄) + E2(τ̄)),

which implies that by the results obtained for the LSE

D(τ2k−3 − τ0)2k(1 + op(1)) ≤ Op

(
n− 2k

2k+1

)
+ g0(τ0) (‖E1‖∞ + ‖E2‖∞)

for some constant D > 0 depending on k and x0. Hence, it follows from

Lemma 4.7 that

D(τ2k−3 − τ0)2k(1 + op(1)) ≤ Op

(
n− 2k

2k+1

)
which yields the order n−1/(2k+1) for the distance between the knots of the

MLE in the neighborhood of x0. �

5. Conclusions and discussion

As noted in Section 1, one of the motivations for this work was to try to

approach the problem of pointwise limit theory for the MLE’s in both the

forward and inverse problems for the family of completely monotone densi-

ties on R
+. This is one very important special case of the family of nonpara-

metric mixture models with a smooth kernel as was mentioned in part (b)

of our discussion in Section 1. Jewell (1982) established consistency of the

MLE’s of g ∈ D∞ and the corresponding mixing distribution function F in
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this setting, but local rates of convergence and limiting distribution theory

remain unknown. Our initial hope was that we might be able to learn about

the problem with k = ∞ by studying the problem for fixed k, and then

taking limits as k → ∞. Unfortunately, we now believe that new tools and

methods will be needed. Here is the state of affairs as we understand it now.

In terms of the rates of convergence, and localization properties, our de-

velopment here shows that the local behavior of the estimators near a fixed

point x0 > 0 becomes dependent on an increasing number of jump points or

knots in the spline problem. In other words, one needs to consider 2k−2 con-

secutive jump points (knots) τ0,n < · · · < τn,2k−3 of the (k − 1)-st derivative

of the estimators in a neighborhood of x0 in order to be able to find a bound

on τn,j+1 − τn,j, j = 0, . . . , 2k − 4 as n → ∞. Thus the problem becomes

increasingly “less local” with increasing k, and this leads us to suspect that

the situation in the k = ∞ (or completely monotone) problem might be only

“weakly local” or perhaps even “completely non-local” in senses yet to be

precisely defined.

Another aspect of this problem is that although the MLE is asymptot-

ically equivalent to the (mass unconstrained) LSE for each fixed k if our

conjecture (1.7) holds, they seem to differ increasingly as k increases. For

k = 1, the MLE and the LSE are identical; for k = 2, the MLE differs from

the (mass unconstrained), but the LSE always has total mass 1. For k ≥ 3,

the MLE and LSE differ, and, moreover, the total amount of mass in the

unconstrained LSE for n = 1 is Mk = ((2k − 1)/k)(1 − 1/(2k − 1))k−1 ↗
2e−1/2 ≈ 1.21306 . . . �= 1 as k → ∞. We do know know how the mass of the

unconstrained LSE behaves jointly in n and k, even though (by consistency)

the mass of the LSE converges to 1 as n → ∞ for fixed k. We also do not

even know if the unconstrained LSE exists for the scale mixture of exponen-

tials, even though it is clear that the constrained estimator (defined by the

least squares criterion minimized over Dk rather than Mk) with mass 1 does

exist. Since our current proof techniques rely so heavily on showing equiv-
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alence between the MLE and the (unconstrained) LSE, it seems likely that

new methods will be required. We do not know if the (mass) constrained

LSE’s and the MLE’s are asymptotically equivalent either for finite k or

for k = ∞. Our current plan is to study the constrained LSE’s with total

mass constrained to be 1 for finite sample sizes, to investigate the asymp-

totic equivalence of these mass-constrained LSE’s and the MLE’s, and to

(perhaps) extend this study to k = ∞ via limits on k. We do not yet know

the “right” Gaussian version of the estimation problem in the completely

monotone case.

Another way to view these difficulties might be to take the following

perspective: since more knowledge is available concerning the MLE’s for

the families Dk with k finite, and since D∞ is the intersection of all the

Dk’s (and hence well-approximated by Dk with k large), we can fruitfully

consider estimation via model selection, choosing k based on the data, over

the collection ∪∞
k=1Dk.

In summary, we have tried to shed some more light on the local behav-

ior of two nonparametric estimators of a k-monotone density, the Maxi-

mum Likelihood and Least Squares estimators. We have shown that they

are both adaptive splines of degree k − 1, with knots determined by the

data and their corresponding criterion functions. When (−1)kg
(k)
0 (x0) > 0,

the distance between their knots in a neighborhood of a point x0 > 0 was

shown to be n−1/(2k+1) if a conjecture concerning the uniform boundedness

of the interpolation error in a new Hermite interpolation problem holds, and

once this control of the distance between the knots is available, pointwise

limit distribution theory follows via a route paralleling previous results for

k = 1, 2. Although we do not exclude the possibility that this order could

be established via other different approaches, we hope that the techniques

developed here demonstrate that there could still be many interesting and

powerful connections between statistics and approximation theory.
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6. Appendix 1 - Proofs for Subsection 3.2, and proof of Theorem

3.2

The proof of Proposition 3.1 will rely crucially on Proposition 6.1. Con-

sider the event Jn = J
(1)
n ∩ J

(2)
n where J

(i)
n , i = 1, 2, are defined by

J (1)
n ≡ J (1)

n (x0, k,M)

= {there exist (k + 1) jump points τn,1, . . . , τn,k+1

(not necessarily successive) satisfying

x0 − n−1/(2k+1) ≤ τn,1 < · · · < τn,k+1 ≤ x0 + Mn−1/(2k+1)

kn−1/(2k+1) ≤ τn,k+1 − τn,1 ≤ Mn−1/(2k+1)
}

,

and

J (2)
n ≡ J (2)

n (j, k, cj) =
{

inf
t∈[τn,1,τn,k+1]

∣∣∣ḡ(j)
n (t) − g

(j)
0 (t)

∣∣∣ ≤ cjn
−(k−j)/(2k+1)

}
.

Proposition 6.1 Suppose that (−1)kg
(k)
0 (x0) > 0 and g

(k)
0 is continuous in

a neighborhood of x0. Let ḡn be either the MLE ĝn or the LSE g̃n and

let 0 ≤ j ≤ k − 1. Suppose also that
∫∞
0 y−1/2dG0(y) < ∞ holds. Then, if

Conjecture (1.7) holds, for any ε > 0, there exists M > 0 and cj > 0 such

that P (Jn) > 1 − ε for all sufficiently large n.

Proof. Fix ε > 0. In what follows, we consider only the LSE since the

result in the case of the MLE can be proved similarly by using the same

perturbation functions and uniform consistency of the estimator. We will

start with j = 0. For ease of notation, we will write the jump points of

g̃
(k−1)
n without the subscript n. Let τ1 be the first jump point of g̃

(k−1)
n after

x0 − n−1/(2k+1), τ2 the first jump point after τ1 + n−1/(2k+1), . . . , τk+1 the

first jump point after τk + n−1/(2k+1). By Lemma 3.1, there exists M > 0

such that

0 ≤ τk+1 − τ1 ≤ Mn−1/(2k+1)
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with probability > 1− ε. Note that by construction τk+1− τ1 ≥ kn−1/(2k+1).

Fix c > 0 and consider the event

inf
t∈[τ1,τk+1]

|g̃n(t) − g0(t)| > cn−k/(2k+1). (6.18)

On this set and for any nonnegative function g on [τ1, τk+1], we have∣∣∣∣∫ τk+1

τ1

(g̃n(t) − g0(t)) g(t)dt

∣∣∣∣ ≥ cn−k/(2k+1)

∫ τk+1

τ1

g(t)dt. (6.19)

Now, let B be the B-spline of degree k − 1 and with support [x1, xk+1] (for

definitions and basic material on B-splines, see e.g. Nürnberger (1989),

Theorems 2.6 - 29.9, pages 98 - 99). The B-spline is given by

B(t) = [x1, · · · , xk+1](−1)kk(t − ·)k−1
+

where [t0, · · · , tm]g is the divided difference of degree m at the points t0, · · · , tm;

i.e.,

[t0]g = g(t0) and [t0, · · · , tm+1]g =
[t1, · · · , tm+1]g − [t0, · · · , tm]g

tm+1 − t0
,

(see e.g. DeVore and Lorentz (1993), pages 120 - 123, or de Boor (2001),

pages 3-12)). After some algebra, we find that B can be given more explictly

by

B(t) = (−1)kk

(
(t − τ1)

k−1
+∏

j �=1(τj − τ1)
+ · · · + (t − τk)

k−1
+∏

j �=k(τj − τk)

)
.

for all t ∈ [τ1, τk+1]. Let |η| > 0 and consider the perturbation function

p(t) =
∏

1≤i<j≤k+1

(τj − τi) × B(t).

It is easy to check that for |η| small enough, the perturbed function

g̃η,n(t) = g̃n(t) + ηp(t)

is k-monotone on (0,∞). Indeed, p was chosen so that it satisfies p(j)(τ1) =

p(j)(τk+1) = 0 for 0 ≤ j ≤ k − 2, which guarantees that the perturbed
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function g̃η,n belongs to Ck−2(0,∞). For 0 ≤ j ≤ k − 3, the properties of

strict convexity and monotonicity of (−1)j g̃(j)
n on (0,∞) are preserved by

g̃
(j)
η,n as long as |η| is small enough. For k − 2, (−1)k−2g̃

(k−2)
n is a convex

and nonincreasing on (0,∞) piecewise linear function. Now note that p is

a spline of degree k − 1 whose knots are included in the set of knots of g̃n.

Moreover, for small values of |η| it can be easily checked that (−1)k−2g̃
(k−2)
η,n

is nonincreasing and convex on (0,∞).

It follows that

lim
η→0

Qn(g̃η,n) − Qn(g̃n)
η

= 0 .

This implies that ∫ τk+1

τ1

p(t)d(G̃n − Gn)(t) = 0.

The previous equality can be rewritten as∫ τk+1

τ1

p(t) (g̃n(t) − g0(t)) dt =
∫ τk+1

τ1

p(t)d(Gn(t) − G0(t)).

Taking g ≡ p in (6.19), we obtain∣∣∣∣∫ τk+1

τ1

p(t)d(Gn(t) − G0(t))
∣∣∣∣ ≥ cn−k/(2k+1)

∫ τk+1

τ1

p(t)dt

= cn−k/(2k+1)
∏

1≤i<j≤k+1

(τj − τi) (6.20)

≥ cn−k/(2k+1)
(
n−1/(2k+1)

)k(k+1)/2
(6.21)

= cn−(3+k)k/(2(2k+1))

where in (6.20), we used the fact that B-splines integrate to 1, whereas in

(6.21) we used the facts that there are k(k + 1)/2 terms in the product∏
1≤i<j≤k+1(τj − τi) and that τj − τi ≥ n−1/(2k+1), 1 ≤ i < j ≤ k + 1. Let

0 < y0 < y1 < · · · < yk−1 < yk be (k + 1) points in (0,∞) and consider the

function fy0,y1,...,yk−1,yk
defined by

fy0,...,yk
(t) = (−1)kk

∏
0≤i<j≤k

(yj − yi)
k−1∑
l=0

(yl − t)k−1
+∏

j �=l(yj − yl)
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=
k−1∑
j=0

αj(yj − t)k−1
+ (6.22)

where

αj = (−1)kk

∏
0≤l<l′≤k(yl′ − yl)∏

j′ �=j(yj − yj′)
.

Let R > 0 and consider the collection of functions

F (2)
y0,R = {fy0,...,yk

(t) : y0 < y1 < · · · < yk−1 ≤ y0 + R} (6.23)

where fy0,...,yk−1
is as defined in (6.22). Here the components of y = (y0, . . . , y2k−3)

play the role of the τ ’s. We first find an envelope function for the class F (2)
y0,R.

Note that for j = 0, . . . , k, the product
∏

j′ �=j(yj′ −yj) contains k terms and

hence αj is a product of k(k + 1)/2− k = k(k− 1)/2 terms that are at most

R distant from one another. It follows that

αj ≤ kRk(k−1)/2, for j = 0, . . . , k.

Thus the functions being summed in (6.22) have common envelope kRk(k−1)/2(y0+

R − t)k−1
+ 1[y0,y0+R](t), and this yields the envelope

Fy0,R(t) = k2Rk(k−1)/2(y0 + R − t)k−1
+ 1[y0,y0+R](t)

for the class F (2)
y0,R. Furthermore, F (2)

y0,R is a VC-subgraph collection of func-

tions (see Lemma 7.1 in Appendix 2 for details of the argument), and hence

by van der Vaart and Wellner (1996), Theorem 2.6.7, page 141,

sup
Q

N
(
ε‖Fy0,R‖Q,2,F (2)

y0,R, L2(Q)
)
≤
(

K

ε

)Vk

.

for 0 < ε < 1 where Vk = 2(V (F) − 1) with V (F) = V (Fy0,R) the VC -

dimension of the collection of subgraphs. Therefore

sup
Q

∫ 1

0

√
1 + log(N

(
ε‖Fy0,R‖Q,2,F (2)

y0,R, L2(Q)
)
dε < ∞.
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On the other hand, if y0 is in a small neighborhood [x0 − δ, x0 + δ] for some

small δ > 0, there exists some constant C > 0 depending only on δ, R and

g0(x0) such that 0 < g0 < C on [y0, y0 + R] for all y0 ∈ [x0 − δ, x0 + δ]. It

follows that

EF 2
y0,R(X1) ≤ k4Rk(k−1)

∫ y0+R

y0

(y0 + R − x)2k−2g0(x)dx

≤ k4C

2k − 1
Rk(k−1)R2k−1 =

k4C

2k − 1
Rk(k+1)−1.

Therefore, by van der Vaart and Wellner (1996), Theorem 2.14.1, we

have

E

{(
sup

fy0,y1,...,yk
∈F(2)

y0,R

∣∣∣∣(Gn − G0)(fy0,y1,...,yk
)
∣∣∣∣
)2}

≤ K ′

n
EF 2

y0,R(X1) = O(n−1Rk(k+1)−1), (6.24)

for some constant K ′ depending only on k, x0, and δ. Application of Lemma 7.1

in Appendix 1 with d = k(k + 1)/2 and α = k yields∣∣∣∣(Pn − P0)(fy0,y1,...,yk
)
∣∣∣∣ ≤ ε(yk − y0)(3+k)k/2 + Op

(
n−(3+k)k/(2(2k+1))

)
uniformly in y0, . . . , yk. It follows that∣∣∣∣ ∫ τk+1

τ1

p(t)d(Gn − G0)(t)
∣∣∣∣ = Op

(
n−(3+k)k/(2(2k+1))

)
and we can choose c0 = c to be large enough so that the probability of the

event (6.18) is arbitrarily small. This proves the result for j = 0.

Now let 1 ≤ j ≤ k − 1. This time we will need (k + 1 + j) jump points

τ1 < · · · < τk+1+j. As for j = 0, τ1 is taken to be the first jump point of

g̃
(k−1)
n after x0 − n−1/(2k+1), τ2 the first jump point after τ1 + n−1/(2k+1)

and so on. Notice that the existence of at least k + 1 + j jump points is

guaranteed by the fact that g
(k)
0 (x0) �= 0 which implies that with probability

1, the number of jump points tends to infinity with increasing sample size
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n. Consider the function

qj(t) =
∏

1≤i<j≤k+j+1

(τj − τi) × Bj(t)

where Bj is the B-spline of degree k + j − 1 with support [τ1, τk+1+j ]; i.e.,

Bj(t) = (−1)k+j(k + j)

(
(τ1 − t)k+j−1

+∏
j �=1(τj − τ1)

+ · · · + (τk+j − t)k+j−1
+∏

j �=k+j(τj − τk+j)

)
.

It is easy to check that pj = q
(j)
j is a valid perturbation function (it is a

spline of degree k − 1) since for |η| small enough, the function

g̃η,n,j = g̃n + ηpj

is k-monotone. It follows that

lim
η→0

Qn(g̃η,n,j) − Qn(g̃n)
η

= 0

which implies that∫ τk+1+j

τ1

pj(t)(g̃n(t) − g0(t))dt =
∫ τk+1+j

τ1

pj(t)d(Gn(t) − G0(t))dt.

By successive integrations by parts and using the fact that q
(i)
j (τ1) = q

(i)
j (τk+1+j) =

0 for i = 0, . . . , k + j − 2, we obtain∫ τk+1+j

τ1

(−1)jqj(t)(g̃(j)
n (t) − g

(j)
0 (t))dt =

∫ τk+1+j

τ1

pj(t)d(Gn(t) − G0(t))dt.

Therefore, if we assume that there exists c > 0 such that

inf
t∈[τ1,τk+1+j ]

∣∣∣g̃(j)
n (t) − g

(j)
0 (t)

∣∣∣ > c n−(k−j)/(2k+1) (6.25)

then ∣∣∣∣ ∫ τk+1+j

τ1

pj(t)d(Gn(t) − G0(t))dt

∣∣∣∣
≥ c n−(k−j)/(2k+1)

∫ τk+1+j

τ1

qj(t)dt

≥ c (k + j) n−(k−j)/(2k+1)
(
n−1/(2k+1)

)(k+1+j)(k+2+j)/2

= c (k + j) n−((2(k−j)+(k+j)(k+j+1))/(2(2k+1))

= c (k + j) n−(3k−j+(k+j)2)/(2(2k+1)).
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Using similar empirical process arguments as in the proof for j = 0 together

with an application of Lemma 7.1 with 2d = 3k − j + (k + j)2 and α = k, it

follows that∣∣∣∣ ∫ τk+1+j

τ1

pj(t)d(Gn(t) − G0(t))dt

∣∣∣∣ = Op

(
n−(3k−j+(k+j)2)/(2(2k+1))

)
and the result for 1 ≤ j ≤ k − 1 follows. �

With Proposition 6.1 in hand we are prepared for the proof of the rates

Proposition 3.1.

Proof of Proposition 3.1. We will use induction starting from the highest

order of differentiation k − 1. The techniques used here are very much anal-

ogous to the ones used in the case k = 2 in Groeneboom, Jongbloed, and

Wellner (2001b). But this was possible mainly because of the result estab-

lished in the previous lemma. We begin by establishing the rate for j = k−1.

Let M > 0 and 0 < ε < 1. We consider two sequences of (k +1) jump points

τ1,1, . . . , τk+1,1 and τ1,2, . . . , τk+1,2 as described in the previous proposition,

where τ1,1 is the first jump point of ḡ
(k−1)
n after x0 + Mn−1/(2k+1) and τ1,2

is the first jump after τk+1,1 + n−1/(2k+1). Similarly, we define two other

sequences τ1,−1 . . . , τk+1,−1 and τ1,−2, . . . , τk+1,−2 to the left of x0. By the

previous theorem, we can find c > 0 so that,

inf
t∈[τ1,i,τk+1,i]

|ḡ(k−2)
n (t) − g

(k−2)
0 (t)| < cn−2/(2k+1)

for i = −2,−1, 1, 2 with probability greater than 1 − ε. Let ξ1 and ξ2 be

the minimizer of |ḡ(k−2)
n − g

(k−2)
0 | on [τ1,1, τk+1,1] and [τ1,2, τk+1,2] respec-

tively. Define ξ−1 and ξ−2 similarly to the left of x0. For all t ∈ [x0 −
Mn−1/(2k+1), x0 +Mn−1/(2k+1)], we have with probability greater than 1− ε

(−1)k−2ḡ(k−1)
n (t−) ≤ (−1)k−2ḡ(k−1)

n (t+)

≤ (−1)k−2ḡ
(k−2)
n (ξ2) − (−1)k−2ḡ

(k−2)
n (ξ1)

ξ2 − ξ1
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≤ (−1)k−2g
(k−2)
0 (ξ2) − (−1)k−2g

(k−2)
0 (ξ1) + 2cn−2/(2k+1)

ξ2 − ξ1

≤ (−1)k−2g
(k−1)
0 (ξ2) + 2cn−1/(2k+1)

since ξ2 − ξ1 ≥ n−1/(2k+1). Similarly, with probability greater than 1− ε, we

have that

(−1)k−2ḡ(k−1)
n (t+) ≥ (−1)k−2ḡ(k−1)

n (t−) ≥ (−1)k−2g
(k−1)
0 (ξ−2) − 2cn−1/(2k+1).

Now, using the fact that ξ±2 = x0 + Op(n−1/(2k+1)) and differentiability of

g
(k−1)
0 at the point x0, we obtain (3.1) for j = 0. Using similar arguments

as in the proof of Lemma 4.4 in Groeneboom, Jongbloed, and Wellner

(2001b), we can show (3.1) for j = k − 2 which specializes to

sup
|t|≤M

∣∣∣ḡ(k−2)
n (x0 + n−1/(2k+1)t) − g

(k−2)
0 (x0) − n−1/(2k+1)tg

(k−1)
0 (x0)

∣∣∣
= Op(n−2/(2k+1))

for all M > 0. Indeed, since the jump points τj,i, j = 1, . . . , k + 1, i =

−2,−1, 1, 2 are at distance from x0 that is Op(n−1/(2k+1)), we can find

with probability exceeding 1 − ε, K > M such that ξ1 and ξ2 are in

[x0−Mn−1/(2k+1), x0 +Kn−1/(2k+1)], ξ−2 and ξ−1 in [x0−Kn−1/(2k+1), x0 +

Mn−1/(2k+1)]. But we know that, with probability greater than 1−ε, we can

find c > 0 such that

|ḡ(k−2)
n (ξ±1) − g

(k−2)
0 (ξ±1)| ≤ cn−2/(2k+1).

Also, with probability greater than 1 − ε, we can find c′ > 0 such that

sup
t∈[x0−Kn−1/(2k+1),x0+Kn−1/(2k+1)]

∣∣∣ḡ(k−1)
n (t) − g

(k−1)
0 (x0)

∣∣∣ ≤ c′n−1/(2k+1).

Hence, with probability greater than 1 − 3ε, we have for any t ∈ [x0 −
Mn−1/(2k+1), x0 + Mn−1/(2k+1)]

(−1)k−2ḡ(k−2)
n (t)
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≥ (−1)k−2ḡ(k−2)
n (ξ1) + (−1)k−2ḡ(k−1)

n (ξ1)(t − ξ1)

≥ (−1)k−2g
(k−2)
0 (ξ1) − cn−2/(2k+1) + ((−1)k−2g

(k−1)
0 (x0)

+c′n−1/(2k+1))(t − ξ1)

≥ (−1)k−2g
(k−2)
0 (x0) + (ξ1 − x0)(−1)k−2g

(k−1)
0 (x0)

+ (t − ξ1)(−1)k−2g
(k−1)
0 (x0)

− cn−2/(2k+1) − c′n−1/(2k+1)(ξ1 − t) (6.26)

≥ (−1)k−2g
(k−2)
0 (x0) + (t − x0)(−1)k−2g

(k−1)
0 (x0) − (c + 2Kc′)n−2/(2k+1).

where in (6.26), we used convexity of (−1)k−2g
(k−2)
0 “from below”. On the

other hand, using convexity of (−1)k−2g
(k−2)
0 but this time “from above”,

we have

(−1)k−2ḡ(k−2)
n (t)

≤ (−1)k−2ḡ(k−2)
n (ξ−1) +

(−1)k−2ḡ
(k−2)
n (ξ1) − (−1)k−2ḡ

(k−2)
n (ξ−1)

ξ1 − ξ−1
(t − ξ−1)

≤ (−1)k−2ḡ
(k−2)
0 (ξ−1) + cn−2/(2k+1)

+
(−1)k−2g

(k−2)
0 (ξ1) − (−1)k−2g

(k−2)
0 (ξ−1) + 2cn−2/(2k+1)

ξ1 − ξ−1
(t − ξ−1)

≤ (−1)k−2g
(k−2)
0 (x0) + (ξ−1 − x0)(−1)k−2g

(k−2)
0 (x0)

+
1
2
(ξ−1 − x0)2(−1)k−2g

(k)
0 (ν)

+ (−1)k−2g
(k−1)
0 (ξ1)(t − ξ−1) + 2cn−2/(2k+1) (t − ξ−1)

ξ1 − ξ−1

≤ (−1)k−2g
(k−2)
0 (x0) + (ξ−1 − x0)(−1)k−2g

(k−2)
0 (x0)

+
1
2
(ξ−1 − x0)2(−1)k−2g

(k)
0 (ν)

+
(
(−1)k−2g

(k−1)
0 (x0) + c′n−1/(2k+1)

)
(t − ξ−1) + 2cn−2/(2k+1) (t − ξ−1)

ξ1 − ξ−1

≤ (−1)k−2g
(k−2)
0 (x0) + (t − x0)(−1)k−2g

(k−1)
0 (x0)

+
(

D1

2
+ 2c + 2Kc′

)
n−2/(2k+1)

where ν ∈ (ξ−1, x0), D1 = supx∈[x0−δ,x0+δ] |g(k)
0 (x)| and [x0 − δ, x0 + δ] can

be taken to be the largest neighborhood where g
(k)
0 exists and is continuous.
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In all the previous calculations, n is taken sufficiently large so that [x0 −
Kn−1/(2k+1), x0 + Kn−1/(2k+1)] ⊆ [x0 − δ, x0 + δ]. We conclude that (3.1)

holds for j = k − 2. Now, suppose that (3.1) is true for all j′ > j − 1; i.e.,

for all M > 0

sup
|t|<M

∣∣∣ḡ(j′)
n (x0 + n−1/(2k+1)t) −

k−1∑
i=j′

n−(i−j′)/(2k+1)g
(i)
0 (x0)

(i − j′)!
ti−j′
∣∣∣

= Op(n−(k−j′)/(2k+1)).

We are going to prove (3.1) for j − 1. We assume without loss of generality

that k and j − 1 are even. In what follows, ξ±1 denotes the same numbers

introduced before but this time they are associated with ḡ
(j−1)
n ; i.e., for any

0 < ε < 1, there exist c > 0 and K > M such that

|ḡ(j−1)
n (ξ±1) − g

(j−1)
0 (ξ±1)| ≤ cn−(k−j+1)/(2k+1)

with probability greater than 1− ε and where ξ1 ∈ [x0 + Mn−1/(2k+1), x0 +

Kn−1/(2k+1)] and ξ−1 ∈ [x0 − Kn−1/(2k+1), x0 − Mn−1/(2k+1)]. Now, using

the induction assumption, we know that we can find c′ > 0 such that, with

probability greater than 1 − ε,

−c′n−(k−j′)/(2k+1)

≤ ḡ(j′)
n (x0 + n−1/(2k+1)t) −

k−1∑
i=j′

n−(i−j′)/(2k+1)g
(i)
0 (x0)

(i − j′)!
ti−j′

≤ c′n−(k−j′)/(2k+1) (6.27)

for all |t| ≤ M and j′ > j − 1. Using convexity of ḡ
(j−1)
n “from below”, we

have for all |t − x0| ≤ Mn−1/(2k+1) with probability greater than 1 − 2ε,

ḡ(j−1)
n (t)

≥ ḡ(j−1)
n (ξ1) + ḡ(j)

n (ξ1)(t − ξ1) + · · · + 1
(k − j)!

ḡ(k−1)
n (ξ1)(t − ξ1)k−j

≥ g
(j−1)
0 (ξ1) − cn−(k−j+1)/(2k+1) +

k−1∑
i=j

g
(i)
0 (x0)

(i − j)!
(ξ1 − x0)i−j(t − ξ1)
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+

 k−1∑
i=j+1

g
(i)
0 (x0)

(i − j − 1)!
(ξ1 − x0)i−j−1

 (t − ξ1)2

2!

+ · · · + g
(k−1)
0 (x0)

(t − ξ1)k−j

(k − j)!

+ c′n−(k−j)/(2k+1)(t − ξ1) − c′n−(k−j−1)/(2k+1) (t − ξ1)2

2!

+ · · · − c′n−1/(2k+1) (t − ξ1)k−j

(k − j)!
. (6.28)

Using Taylor expansion of g
(j−1)
0 (ξ1) around g

(j−1)
0 (x0), we can write

g
(j−1)
0 (ξ1) = g

(j−1)
0 (x0) + g

(j)
0 (x0)(ξ1 − x0) + · · · + g

(k−1)
0 (x0)
(k − j)!

(ξ1 − x0)k−j

+
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)k−j+1

where ν ∈ (x0, ξ1). Using this expansion and the fact that |t − ξ1| ≤ Kn−1/(2k+1),

the right side of (6.28) can be bounded below by

k−1∑
i=j−1

g
(i)
0 (x0)

(i − j + 1)!
(ξ1 − x0)i−j+1 +

k−1∑
i=j

g
(i)
0 (x0)

(i − j)!
(ξ1 − x0)i−j(t − ξ1)

+
k−1∑

i=j+1

g
(i)
0 (x0)

(i − j − 1)!
(ξ1 − x0)i−j−1 (t − ξ1)2

2!
+ · · · + g

(k−1)
0 (x0)

(t − ξ1)k−j

(k − j)!

−
c + c′

k−j∑
p=1

Kp

p!

n−(k−j+1)/(2k+1) +
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)k−j+1

= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t − x0)

+
g
(j+1)
0 (x0)

2!
(
(ξ1 − x0)2 + 2(ξ1 − x0)(t − ξ1) + (t − ξ1)2

)
+ · · · + g

(k−1)
0 (x0)
(k − j)!

k−j∑
p=0

(k − j)!
(k − j − p)!p!

(ξ1 − x0)k−j−p(t − ξ1)p

−
c + c′

k−j∑
p=1

Kp

p!

n−(k−j+1)/(2k+1) +
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)k−j+1
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= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t − x0) + · · · + g(k−1)(x0)

(k − j)!
(t − x0)k−j

−
c + c′

k−j∑
p=1

Kp

p!

n−(k−j+1)/(2k+1) − D1K
k−j+1

(k − j + 1)!
n−(k−j+1)/(2k+1)

since 0 ≤ ξ1 − x0 ≤ Kn−1/(2k+1). Now, we use convexity of ḡ
(j−1)
n “from

above”. We first need to establish a useful inequality. Since ḡ
(k−2)
n is convex,

we have for all t′ ∈ [x0 − Mn−1/(2k+1), x0 + Mn−1/(2k+1)] and

ḡ(k−2)
n (t′) ≤ ḡ(k−2)

n (ξ−1) +
ḡ
(k−2)
n (ξ1) − ḡ

(k−2)
n (ξ−1)

ξn,1 − ξ−1
(t′ − ξ−1).

By successive integrations of the last inequality between ξ−1 and t, we obtain

ḡ(j−1)
n (t) − ḡ(j−1)

n (ξ−1) ≤ ḡ(j)
n (ξ−1)(t − ξ1) + ḡ(j+1)

n (ξ−1)
(t − ξ−1)2

2!

+ · · · + ḡ
(k−2)
n (ξ1) − ḡ

(k−2)
n (ξ−1)

ξ1 − ξ−1

(t − ξ−1)k−j

(k − j)!
.

It follows that with probability greater than 1 − 2ε, we have

ḡ(j−1)
n (t)

≤ ḡ(j−1)
n (ξ−1) + ḡ(j)

n (ξ−1)(t − ξ−1) + ḡ(j+1)
n (ξ−1)

(t − ξ−1)2

2!

+ · · · + g
(k−2)
0 (ξ1) − g

(k−2)
0 (ξ−1) + 2cn−2/(2k+1)

ξ1 − ξ−1

(t − ξ−1)k−j

(k − j)!

≤ g
(j−1)
0 (ξ−1) + cn−(k−j+1)/(2k+1)

+

k−1∑
i=j

g
(i)
0 (x0)

(i − j)!
(ξ−1 − x0)i−j + c′n−(k−j)/(2k+1)

 (t − ξ−1)

+

 k−1∑
i=j+1

g
(i)
0 (x0)

(i − j − 1)!
(ξ−1 − x0)i−j−1 + c′n−(k−j−1)/(2k+1)

 (t − ξ−1)2

2!

+ · · · +
(
g
(k−1)
0 (ξ1) +

c

K
n−1/(2k+1)

) (t − ξ−1)k−j

(k − j)!

≤
k−1∑

i=j−1

g
(i)
0 (x0)

(i − j + 1)!
(ξ−1 − x0)i−j+1 +

g(k)(ν)
k!

(ξ−1 − x0)k−j+1
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+

k−1∑
i=j

g
(i)
0 (x0)

(i − j)!
(ξ−1 − x0)i−j

 (t − ξ−1)

+ · · · +

 k−1∑
i=j+1

g
(i)
0 (x0)

(i − j − 1)!
(ξ−1 − x0)i−j−1

 (t − ξ−1)2

2!

+
(
g
(k−1)
0 (x0) + cn−1/(2k+1)

) (t − ξ−1)k−j

(k − j)!

+

c(1 + Kk−j) + c′
k−j∑
p=1

Kp

p!
+

D1K
k−j+1

k!

n−(k−j+1)/(2k+1)

= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t − x0) + · · · + g

(k−j)
0 (x0)

(t − x0)k−j

(k − j)!

+ K ′n−(k−j+1)/(2k+1)

with K ′ = c(1 + Kk−j) + c′
∑k−j

p=1
Kp

p! + D1Kk−j+1

k! . It follows that (3.1) holds

for j − 1. �

Proof of Lemma 3.2. Fix K > 0. Recall that rk ≡ 1/(2k + 1). We will

prove the lemma for t ≥ 0; similar arguments can be used for t ∈ [−K, 0).

In the Least Squares case, we have

Y
loc
n (t) = n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

{
Gn(v1) − Gn(x0)

−
∫ v1

x0

(
g0(x0) + (u − x0)g′0(x0)

+ · · · + 1
(k − 1)!

(u − x0)k−1g
(k−1)
0 (x0)

)
du

}
dv1dv2 . . . dvk−1

= An + Bn,

where

An = n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0{
Gn(v1) − Gn(x0) − (G0(v1) − G0(x0))

}
dv1dv2 . . . dvk−1,
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and

Bn = n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0{
G0(v1) − G0(x0) −

∫ v1

x0

(
g0(x0) + (u − x0)g′0(x0)

+ · · · + 1
(k − 1)!

(u − x0)k−1g
(k−1)
0 (x0)

)
du

}
dv1dv2 . . . dvk−1.

But, with Un denoting
√

n(Γn−I), Γn(t) = n−1
∑n

i=1 1[ξi≤t] where ξ1, . . . , ξn

are i.i.d. U(0, 1) random variables, we have

An
d= n2krk−1/2

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
Un(G0(v1)) − Un(G0(x0)

)) k−1∏
j=1

dvj

= n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
Un(G0(v1)) − Un(G0(x0)

) k−1∏
j=1

dvj ,

and using Taylor expansion of G0(v1) in the neighborhood of x0,

Bn = n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)k+1

(k + 1)!

(
g
(k)
0 (v∗1) − g

(k)
0 (x0)

)

·
k−1∏
i=1

dvi

+ n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)k+1

(k + 1)!
g
(k)
0 (x0)

k−1∏
i=1

dvi

= Bn1 + Bn2,

where |v∗1 − x0| ≤ |v1 − x0|. Now,

Bn2

g
(k)
0 (x0)

=
n2krk

(k + 2)!

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v3

x0

(v2 − x0)k+2dv2 · · · dvk−1
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=
n2krk

(k + 3)!

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v4

x0

(v3 − x0)k+3dv3 · · · dvk−1

...

=
n2krk

(2k − 1)!

∫ x0+tn−rk

x0

(vk−1 − x0)2k−1dvk−1

= n2krk
1

(2k)!

(
t

nrk

)2k

=
1

(2k)!
g
(k)
0 (x0)t2k.

Furthermore, by continuity of g
(k)
0 at x0, we deduce that Bn1(t) = o(1)

uniformly in 0 ≤ t ≤ K and hence

Bn → 1
(2k)!

g
(k)
0 (x0)t2k, (6.29)

as n → ∞ uniformly in 0 ≤ t ≤ K. Using the identity

U(G0(v)) − U(G0(x0))
d= W (G0(v)) − W (G0(x0)) − (G0(v) − G0(x0))W (1),

where W is two-sided Brownian motion process, we have

An
d= n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0(
Un(v1) − U(v1) − (Un(x0) − U(x0))

)
dv1 . . . dvk−1

+ n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
W (G0(v)) − W (G0(x0))

)
− W (1)n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(G0(v1) − G0(x0))dv1 . . . dvk−1

= An1 + An2 + An3.

But,

An1 ≤ 2n(k−1/2)rk‖Un − U‖∞
∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

dv1 . . . dvk−1

= 2n(k−1/2)rk‖Un − U‖∞
∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v3

x0

(v2 − x0)dv2 . . . dvk−1
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= 2n(k−1/2)rk‖Un − U‖∞
∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v4

x0

1
2
(v3 − x0)2dv3

...

= 2n(k−1/2)rk‖Un − U‖∞ 1
(k − 2)!

∫ x0+tn−rk

x0

(vk−1 − x0)k−2dvk−1

= 2n(k−1/2)rk‖Un − U‖∞ 1
(k − 1)!

(
t

nrk

)k−1

= 2tk−1nrk/2O

(
log(n)2

n1/2

)

= 2tk−1O

(
log(n)2

nkrk

)
(6.30)

since ‖Un − U‖∞ = O
(
n−1/2 (log(n))2

)
via Komlós, Major and Tusnády

(1975); see e.g. Shorack and Wellner (1986), page 494. On the other hand,

using the fact that g0 is nonincreasing, we have

An3 ≤ |W (1)|g0(x0)n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)dv1 . . . dvk−1

= |W (1)|g0(x0)n(k−1/2)rk
1
k!

(
t

nrk

)k

= |W (1)|g0(x0)tkn−rk/2 →p 0,

(6.31)

as n → ∞ uniformly in 0 ≤ t ≤ K. Finally, using the change of variables

sj = n1/(2k+1)(vj − x0) = nrk(vj − x0) for j = 1, . . . , k − 1, we have

An2 = n(k−1/2)rk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
W (G0(v1)) − W (G0(x0))

)
dv1 . . . dvk−1

= n(k−1/2)rkn−(k−1)rk

∫ t

0

∫ sk−1

0

· · ·
∫ s2

0

(
W (G0(n−rks1 + x0)) − W (G0(x0))

)
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ds1 . . . dsk−1

d= nrk/2

∫ t

0

∫ sk−1

0
· · ·
∫ v2

0
W

(
G0(n−rks1 + x0) − G0(x0)

)
ds1 . . . dsk−1

d=
∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W

(
nrk(G0(n−rks1 + x0) − G0(x0))

)
ds1 . . . dsk−1

→
∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1g0(x0))ds1 . . . dsk−1 as n → ∞

d=
√

g0(x0)
∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 . . . dsk−1.

(6.32)

Therefore, combining (6.29), (6.30), (6.31) and (6.32) yields

Y
loc
n (t) ⇒

√
g0(x0)

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 . . . dsk−1 +

1
(2k)!

t2kg
(k)
0 (x0)

≡ Ya,σ(t)

for 0 ≤ t ≤ K. A similar argument for −K ≤ t < 0 yields the conclusion.

In the Maximum Likelihood case, we apply very similar argumuments along

with uniform consistency of ĝn . �

Proof of Lemma 3.3. We now consider the difference of the two local

processes Y
loc
n and H̃ loc

n . We have

H̃ loc
n (t) − Y

loc
n (t)

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

. . .

∫ v2

x0

{(
(G̃n(v1) − G̃n(x0))

− (Gn(v1) − Gn(x0))
)

dv1 · · · dvk−1

}
+ Ã(k−1)ntk−1 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− n(k+1)rk

(k − 1)!

(
G̃n(x0) − Gn(x0)

)
tk−1

+ Ã(k−1)ntk−1 + · · · + Ã1nt + Ã0n

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaoui and Wellner/k−monotone: limit distribution and spline connection 51

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

− Ã(k−1)ntk−1 + Ã(k−1)ntk−1 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

+ Ã(k−2)ntk−2 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

− n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v3

x0

dv2 . . . dvk−1

·
∫ x0

0

(
G̃n(v1) − Gn(v1)

)
dv1

+ Ã(k−2)ntk−2 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

− n(k+2)rk
tk−2

(k − 2)!
×
∫ x0

0

(
G̃n(v1) − Gn(v1)

)
dv1 + Ã(k−2)ntk−2

+ Ã(k−3)ntk−3 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

− Ã(k−2)ntk−2 + Ã(k−2)ntk−2 + · · · + Ã1nt + Ã0n

= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 . . . dvk−1

+ Ã(k−3)ntk−2 + · · · + Ã1nt + Ã0n

...

= n2krk

(
H̃n(x0 + tn−rk) − Yn(x0 + tn−rk)

)
≥ 0,

by the first Fenchel condition satisfied by the LSE. Very similar calculations

yield the second Fenchel condition satsified by Ĥ loc
n in the case of the MLE.

Similarly, for the localized processes Ŷ
loc
n and Ĥ loc

n , by the particular choice

of Âjn, 0 ≤ j ≤ k − 1, we have

(Ĥ loc
n (t) − Ŷ

loc
n (t))/g0(x0)
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= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

ĝn(v) − g0(v)
ĝn(v)

dvdv1 . . . dvk−1

− n2krk

∫ vk−1

x0

· · ·
∫ v1

x0

1
ĝn(v)

d(Gn − G0)(v)dv1 . . . dvk−1

+ Â(k−1)ntk−1 + · · · + Â0n

= n2krk

(
tk

k!
n−krk −

∫ x0+n−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1
ĝn(v)

dGn(v)Πk−1
i=1 dvi

)
+ Â(k−1)ntk−1 + · · · + Â0n.

But notice that for any t ≥ 0∫ t

0

1
ĝn(u)

dGn(u) =
1

(k − 1)!
Ĥ(k−1)

n (t).

It follows that∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1
ĝn(v)

dGn(v)dv1 . . . dvk−1

=
1

(k − 1)!

∫ x0+n−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

(
Ĥ(k−1)

n (v1) − Ĥ(k−1)
n (x0)

)
dv1 . . . dvk−1

=
1

(k − 1)!

Ĥn(x0 + tn−rk) −
k−1∑
j=0

tjn−jrk

j!
Ĥ(j)

n (x0)

 .

Therefore,

Ĥ loc
n (t) − Ŷ

loc
n (t)

= n2k/(2k+1)g0(x0)
{
− Ĥn(x0 + tn−1/(2k+1))

(k − 1)!
+

tk

k!
n−k/(2k+1)

+
k−1∑
j=0

tjn−j/(2k+1)

(k − 1)!j!
Ĥ(j)

n (x0)
}

+ Â(k−1)ntk−1 + · · · + Â0n

= n2k/(2k+1) g0(x0)
k!

{
− kĤn(x0 + tn−1/(2k+1)) + tkn−k/(2k+1)

+
k−1∑
j=0

tjn−j/(2k+1)

j!
k

(
Ĥ(j)

n (x0) − 1
k

k!
(k − j)!

xk−j
0

)
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+
k−1∑
j=0

k!
j!(k − j)!

tjn−j/(2k+1)xk−j
0

}
+ Â(k−1)ntk−1 + · · · + Â0n

= n2k/(2k+1) g0(x0)
k!

{
− kĤn(x0 + tn−1/(2k+1)) + (x0 + tn−1/(2k+1))k

}
by replacing the coefficients Âjn, 0 ≤ j ≤ k−1 by their definitions. It follows

that

Ĥ loc
n (t) − Ŷ

loc
n (t)

= n2k/(2k+1) g0(x0)
(k − 1)!

(
1
k

(x0 + tn−1/(2k+1))k − Ĥn(x0 + tn−1/(2k+1))
)

≥ 0.

�

Proof of Lemma 3.4. Groeneboom, Jongbloed, and Wellner (2001b)

chose the “canonical process” to be

Y (t) =
∫ t

0
W (y)dy + t4,

so that with X(t) = Y ′(t) = W (t) + 4t3 we have

dX(t) = 12t2dt + dW (t) ≡ f0(t)dt + dW (t) (6.33)

where f0(t) = 12t2 is convex. Here we make a different choice, namely f0(t) =

(−1)ktk (so that f0(t) = t2 in the case k = 2). Thus we will rescale the

limiting process Ya,σ so that we obtain the “canonical process”

Yk(t) =
∫ t

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)du1du2 . . . duk−1 + (−1)k

k!
(2k)!

t2k,

(6.34)

for t ≥ 0. Let σ =
√

g0(x0) and a = (−1)kg(k)
0 (x0)/k!. Then

Ya,σ(t) =
√

g0(x0)
∫ t

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)du1 · · · duk−1

+
(−1)k

k!
g
(k)
0 (x0)(−1)k

k!
(2k)!

t2k .
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Furthermore,

Ya,σ(t) = a(−1)k
k!

(2k)!
t2k + σ

∫ t

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)du1 · · · duk−1

d= a(−1)k
k!

(2k)!
t2k + α−1/2σ

∫ t

0

∫ uk−1

0
· · ·
∫ u2

0
W (αu1)du1 · · · duk−1

d= a(−1)k
k!

(2k)!
t2k + α−1/2σ

∫ t

0

∫ uk−1

0
· · ·
∫ αu2

0

1
α

W (u1)du1 · · · duk−1

...
d=

a(−1)kk!
(2k)!

t2k +
σ√
α

∫ αt

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)

1
αk−1

du1 · · · duk−1

d=
a(−1)kk!

(2k)!
t2k + α1/2−kσ

∫ αt

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)du1 · · · duk−1.

Therefore,

s1Ya,σ(s2t)
d= a(−1)k

k!
(2k)!

s1(s2t)2k

+ s1α
1/2−kσ

∫ s2αt

0

∫ uk−1

0
· · ·
∫ u2

0
W (u1)du1 . . . duk−1,

and the process on the right side of the last display equals Yk as defined

in (6.34) if as1s
2k
2 = 1, s1α

1/2−kσ = 1, and s2α = 1. Solving this system

of equations yields α = (a/σ)2/(2k+1), and therefore s1 and s2 are given by

(3.2) and (3.3) respectively. Thus, Ya,σ(t) d= Yk(t/s2)/s1 �

Proof of Lemma 3.5. We will give the proof only for the LSE as the

arguments are very similar for the MLE. Also, Let j ∈ {0, . . . , k − 1} and

denote ∆̃n(x) = H̃n(x) − Yn(x) for all x ≥ 0. Here, we show first Lemma

3.5 for j = k − 1 and use and an induction argument for j < k − 1.

Consider k successive jump points, τ1, . . . , τk, of g̃
(k−1)
n where τ1 is the first

jump after x0. By the mean value theorem, there exist τ
(1)
1 ∈ (τ1, τ2), τ

(1)
2 ∈

(τ2, τ3), . . . , τ
(1)
k−1 ∈ (τk−1, τk) such that ∆̃′

n(τ (1)
i ) = 0 for 1 ≤ i ≤ k−1. Also,

by the same theorem there exist τ
(2)
1 ∈ (τ (1)

1 , τ
(1)
2 ), . . . , τ (2)

k−2 ∈ (τ (1)
k−2, τ

(1)
k−1)

such that ∆̃′′
n(τ (2)

i ) = 0 for 1 ≤ i ≤ k − 2. It is easy to see that we can carry
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on this reasoning up to the (k − 1)-st level of differentiation and so there

exists τ (k−1) such that

∆̃(k−1)
n (τ (k−1)) = 0.

Denote τ = τ (k−1). We can write

∆̃(k−1)
n (x0) = ∆̃(k−1)

n (x0) − ∆̃(k−1)
n (τ).

But

∆̃(k−1)
n (x) =

∫ x

0
d(G̃n(t) − Gn(t)), for x ≥ 0,

implies that

|∆̃(k−1)
n (x0)| =

∣∣∣∣∫ τ

x0

d(G̃n(t) − Gn(t))
∣∣∣∣

≤
∣∣∣∣∫ τ

x0

d(G̃n(t) − G0(t))
∣∣∣∣ + ∣∣∣∣∫ τ

x0

d(Gn(t) − G0(t))
∣∣∣∣

=
∣∣∣∣∫ τ

x0

(g̃n(t) − g0(t))dt

∣∣∣∣ + ∣∣∣∣∫ τ

x0

d(Gn(t) − G0(t))
∣∣∣∣

≤
∫ τ

x0

|g̃n(t) − g0(t)| dt +
∣∣∣∣∫ τ

x0

d(Gn(t) − G0(t))
∣∣∣∣ .

Fix 0 < ε < 1. By Lemma 3.1 and Proposition 3.1, we can find M > 0 and

c > 0 such that with probability greater than 1 − ε

x0 ≤ τ ≤ x0 + Mn−1/(2k+1)

and∣∣∣∣∣g̃n(t) − g0(x0) − g′0(x0)(t − x0) − · · · − g
(k−1)
0 (x0)
(k − 1)!

(t − x0)k−1

∣∣∣∣∣ ≤ cn−k/(2k+1)

for x0 − Mn−1/(2k+1) ≤ t ≤ x0 + Mn−1/(2k+1). On the other hand, using

Taylor expansion, we can find d > 0 that∣∣∣∣∣g0(t) − g0(x) + g′0(x0)(t − x0) − · · · − g
(k−1)
0 (x0)
(k − 1)!

(t − x0)k−1

∣∣∣∣∣ ≤ d (t − x0)k

≤ c′n−k/(2k+1)
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for x0−Mn−1/(2k+1) ≤ t ≤ x0+Mn−1/(2k+1) and where c′ = dMk. It follows

that ∫ τ

x0

|g̃n(t) − g0(t)| dt ≤ (c + c′)n−k/(2k+1)

∫ τ

x0

dt

= (c + c′)n−k/(2k+1) × (τ − x0)

≤ (c + c′)Mn−(k+1)/(2k+1).

Now, ∫ τ

x0

d(Gn(t) − G0(t)) =
∫ ∞

0
1[x0,τ ](t)d(Gn(t) − G0(t)).

Consider the empirical process

Un(y, z) =
∫ ∞

0
1[y,z](t)d(Gn(t) − G0(t))

for 0 < y ≤ z and the class of functions

Fy,R =
{
fy,z : fy,z(t) = 1[y,z](t), y ≤ z ≤ y + R

}
for a fixed y > 0 and R > 0. By application of Lemma 7.1 with d = 1 and

α = k, it follows that for each ε > 0 there exist δ > 0 and R > 0 such that

|Un(y, z)| ≤ ε(z − y)k+1 + Op(n−(k+1)/(2k+1))

for all |y − x0| ≤ δ, z ∈ [y, y + R]. Thus we conclude that∣∣∣∣∫ τ

x0

d(Gn(t) − G0(t))
∣∣∣∣ = op

(
(τ − x0)k+1

)
+ Op(n−(k+1)/(2k+1))

= Op((n−(k+1)/(2k+1))

and the result follows for j = k − 1.

Now, let j = k − 2. We have,

∆̃(k−2)
n (x0) =

∫ x0

0
(x0 − t)d(G̃n(t) − Gn(t)).
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Let τ be a zero of ∆̃(k−2)
n (we can find such a zero the same way we did for

∆̃(k−1)
n ). We can write

∆̃(k−2)
n (x0) = ∆̃(k−2)

n (x0) − ∆̃(k−2)
n (τ)

=
∫ x0

0
(x0 − t)d(G̃n(t) − Gn(t)) −

∫ τ

0
(τ − t)d(G̃n(t) − Gn(t))

= −
∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t)) − (τ − x0)
∫ τ

0
d(G̃n(t) − Gn(t))

= −
∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t)) − (τ − x0)∆̃(k−1)
n (τ).

Let M > 0 be such that x0 ≤ τ ≤ x0 +Mn−1/(2k+1). By the previous result,

there exists c > 0 such that∣∣∣∣(τ − x0)∆̃(k−1)
n (τ)

∣∣∣∣ ≤ cn−(k+2)/(2k+1)

with large probability. Now∣∣∣∣ ∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t))
∣∣∣∣ ≤

∫ τ

x0

(t − x0)|g̃n(t) − g0(t)|dt

+
∣∣∣∣ ∫ τ

x0

(t − x0)d(Gn(t) − G0(t))
∣∣∣∣.

We can find d > 0 such that∣∣∣∣g̃n(t) − g0(x0) − g′0(x0)(t − x0) − · · · − g
(k−1)
0 (x0)
(k − 1)!

(t − x0)k−1

∣∣∣∣ ≤ dn−k/(2k+1)

and∣∣∣∣g0(t) − g0(x0) − g′0(x0)(t − x0) − · · · − g
(k−1)
0 (x0)
(k − 1)!

(t − x0)k−1

∣∣∣∣ ≤ dn−k/(2k+1)

for all t ∈ [x0 − Mn−1/(2k+1), x0 + Mn−1/(2k+1)] with large probability. It

follows that∫ τ

x0

(t − x0)|g̃n(t) − g0(t)|dt ≤ 2d n−k/(2k+1)

∫ τ

x0

(t − x0)dt

= d n−k/(2k+1)(τ − x0)2

≤ 4dM2 n−(k+2)/(2k+1)
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with large probability. Finally, via empirical processes arguments and Lemma 7.1

with d = 2, it follows that∣∣∣∣ ∫ τ

x0

(t − x0)(Gn(t) − G0(t))
∣∣∣∣ = Op(n−(k+2)/(2k+1))

and the result follows for j = k − 2. The same result holds if we replace

x0 by any x ∈ [x0 − Mn−1/(2k+1), n−1/(2k+1), x0 + Mn−1/(2k+1)], for some

M > 0; i.e., we can find K > 0 independent of x such that∣∣∣∣∆̃(k−2)
n (x)

∣∣∣∣ ≤ Kn−(k+2)/(2k+1)

with large probability. Now let 0 ≤ j ≤ k − 3 and fix ε > 0. Suppose

that for all j′ > j and M > 0, there exists c > 0 such that for all z ∈
[x0 − Mn−1/(2k+1), x0 + Mn−1/(2k+1)],

(k − 1 − j′)!|∆̃(j′)
n (z)| ≤ cn−(2k−j′)/(2k+1)

with probability greater than 1 − ε. We can write

(k − 1 − j)!∆̃(j)
n (y)

=
∫ y

0
(y − t)k−1−jd(G̃n(t) − Gn(t))

=
∫ y

0
((y − x) + (x − t))k−1−j d(G̃n(t) − Gn(t))

=
k−1−j∑

l=0

(
k − 1 − j

l

)
(y − x)l

∫ y

0
(x − t)k−1−j−ld(G̃n(t) − Gn(t))

=
k−1−j∑

l=1

(
k − 1 − j

l

)
(y − x)l

∫ y

0
(x − t)k−1−j−ld(G̃n(t) − Gn(t))

+
∫ y

0
(x − t)k−1−jd(G̃n(t) − Gn(t))

=
k−1−j∑

l=1

(
k − 1 − j

l

)
(y − x)l∆̃(j+l)

n (y)

+ ∆̃(j)
n (x) +

∫ y

x
(x − t)k−1−jd(G̃n(t) − Gn(t)) .
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Take x to be a zero of ∆̃(j)
n (such a zero can be constructed using the mean

value theorem as we did for j = k − 2 and j = k − 1). Thus there exists

M > 0 such that x0 − Mn−1/(2k+1) ≤ x ≤ x0 + Mn−1/(2k+1). Now by

applying the induction hypothesis, there exists c > 0 such that for all y ∈
[x0 − Mn−1/(2k+1), x0 + Mn−1/(2k+1)], we have∣∣∣∣(k − 1 − j)!∆̃(j)

n (y)
∣∣∣∣ ≤ c

k−1−j∑
l=1

(
k − 1 − j

l

)
|y − x|ln−(2k−(j+l))/(2k+1)

+
∣∣∣∣ ∫ y

x
(x − t)k−1−jd(G̃n(t) − Gn(t))

∣∣∣∣.
But,

k−1−j∑
l=1

(
k − 1 − j

l

)
|y − x|ln−(2k−(j+l))/(2k+1)

≤
(

k−1−j∑
l=1

(
k − 1 − j

l

)
(2M)l

)
n−(2k−j)/(2k+1)

and ∣∣∣∣ ∫ y

x
(x − t)k−1−jd(G̃n(t) − Gn(t))

∣∣∣∣ = Op(n−(2k−j)/(2k+1))

by using empirical processes arguments. Therefore, the result holds for j and

hence for all j = 0, . . . , k − 1. �

Proof of Lemma 3.6. The arguments are very similar to those used

in Groeneboom, Jongbloed and Wellner (Groeneboom, Jongbloed, and

Wellner (2001b)). We prove the lemma for H̃ l
n as the arguments are simi-

lar for Ĥ l
n. Let c > 0. On [−c, c], define the vector-valued stochastic process

Zn(t) =
(
H̃ l

n(t), . . . , (H̃ l
n)(2k−2)(t), Yl

n(t),

. . . , (Yl
n)(k−2)(t), (H̃ l

n)(2k−1)(t), (Yl
n)(k−1)(t)

)
.

This stochastic process belongs to the space

Ek[−c, c] = (C[−c, c])3k−2 × (D[−c, c])2
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where C[−c, c] and D[−c, c] are respectively the space of continuous and

right-continuous functions on [−c, c]. We endow the space Ek[−c, c] with

the product topology induced by the uniform topology on C[−c, c] and the

Skorohod topology on D[−c, c]. By Proposition 3.1 and Lemma 3.5, we know

that (H̃ l
n)(j) is tight in C[−c, c] for j = 0, . . . , 2k − 2. It follows from the

same lemma together with the monotonicity of (H̃ l
n)(2k−1) that the latter is

tight in D[−c, c]. On the other hand, since the processes
(
Y

l
n, . . . , (Yl

n)(k−2)
)

and (Yl
n)(k−1) converge weakly, they are tight in (C[−c, c])k−1 and D[−c, c]

respectively. Now, for a fixed ε > 0, there exists a M > 0 such that with

probability greater than 1 − ε, the process Zn belongs to Ek,M [−c, c] where

Ek,M = (CM [−c, c])3k−2 × (DM [−c, c])2 , and CM [−c, c] and DM [−c, c] are

respectively the subset of functions in C[−c, c] and the subset of monotone

functions in D[−c, c] that are bounded by M . Since the subspace Ek,M [−c, c]

is compact, we can extract from any arbitrary sequence {Zn′} a further

subsequence {Zn′′} that is weakly converging to some process

Z0 =
(
H0, . . . ,H

(2k−2)
0 , Y0, . . . , Y

(k−2)
0 ,H

(2k−1)
0 , Y

(k−1)
0

)
(6.35)

in Ek[−c, c] and where Y0 = Yk. Now, consider the functions φ1 and φ2 :

Ek[−c, c] �→ R defined by

φ1(z1, . . . , z3k) = inf
t∈[−c,c]

(z1(t) − z2k(t)) ∧ 0

and

φ2(z1, . . . , z3k) =
∫ c

−c
(z1(t) − z2k(t))dz3k−1(t).

It is easy to check that the functions φ1 and φ2 are both continuous. By

the continuous mapping theorem, it follows that φ1(Z0) = φ2(Z0) = 0 since

φ1(Zn′′) = φ2(Zn′′) = 0 and therefore,

H0(t) ≥ Yk(t),

for all t ∈ [−c, c] and∫ c

−c
(H0(t) − Yk(t))dH

(2k−1)
0 (t) = 0.
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It is easy to see check that (−1)kH(2k−2)
0 is convex. Since c > 0 is arbitrary,

we see that H0 satisfies conditions (i) and (iii) of Theorem 3.1. Furthermore,

outside the interval [−c, c] we can take H̃ l
n and Y

l
n to be identically 0. With

this choice, the condition (iv) of Theorem 3.1 is satisfied. By uniqueness of

the process Hk, it follows that H0 = Hk. Since the limit is the same for any

subsequence {Znl
}, we conclude that the sequence {Zn} converges weakly

to

Zk =
(
Hk, . . . ,H

(2k−2)
k , Yk, . . . , Y

(k−2)
k ,H

(2k−1)
k , Y

(k−1)
k

)
and in particular Zn(0) →d Zk(0) and (H̃ l

n)(j)(0) →d H
(j)
k (0) for j =

0, . . . , 2k − 1. �

Proof of Theorem 3.2. We start with the direct estimation problems. For

the LSE, we have for j = 0, . . . , k − 1

(H̃ l
n)(j)(0) = s1s

j
2(H̃

loc
n )(k)(0) = n(k−j)/(2k+1)cj(g0)(g̃(j)

n (x0) − g
(j)
0 (x0)),

whereas in the Maximum Likelihood case, we have

(Ĥ l
n)(j)(0) = n(k−j)/(2k+1)cj(g0)g0(x0)

(
(ĝn(x0) − g0(x0))

ĝn(x0)

)
+

j−1∑
i=0

(
j

i

)(
ĝ(i)
n (x0) − g

(i)
0 (x0)

)( 1
ĝn(x)

)(j−i)

x=x0

using the convention
(j

i

)
= 0 if i < 0.

Weak convergence follows immediately from Lemma 3.6. Note that, for

the MLE, the factor g0(x0)/ĝn(x0) converges in probability to 1. Moreover,

for j = 1, . . . , k − 1 it can be shown, using Proposition 3.1 and uniform

consistency of ĝ
(j)
n in the neighborhood of x0 (see Balabdaoui and Well-

ner (2004a), Propositions 3.2 and 3.3), that the second terms in the above

expressions converge to 0 in probability, and hence

|(Ĥ l
n)(k+j)(0) − n(k−j)/(2k+1)ck−j(g0)(ĝ(j)

n (x0) − g
(j)
0 (x0)| →p 0
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for j = 0, . . . , k − 1.

For the inverse problem, the claim follows from Lemma 3.6 and the inverse

formula given in (2.9) (see Section 2). �

7. Appendix 2 - Proofs from Empirical processes theory

The following proposition is a slight generalization of Lemma 4.1 of Kim and

Pollard (1990), page 201.

Lemma 7.1 Let F be a collection of functions defined on [x0 − δ, x0 + δ],

with δ > 0 small and let α > 0. Suppose that for a fixed x ∈ [x0 − δ, x0 + δ]

and R > 0 such that [x, x + R] ⊆ [x0 − δ, x0 + δ], the collection

Fx,R =
{
fx,y ≡ f1[x,y], f ∈ F , x ≤ y ≤ x + R

}
admits an envelope Fx,R such that

EF 2
x,R(X1) ≤ KR2d−1, R ≤ R0,

for some d ≥ 1/2 where K > 0 depends only on x0, δ, and α. Moreover,

suppose that

sup
Q

∫ 1

0

√
log N(η‖Fx,R‖Q,2,Fx,R, L2(Q))dη < ∞. (7.36)

Then, for each ε > 0 there exist random variables Mn = Mn(α) of order

Op(1) such that

|(Gn − G0)(fx,y)| ≤ ε|y − x|α+d + n− α+d
2α+1 Mn for |y − x| ≤ R0.

(7.37)

Proof. By van der Vaart and Wellner (1996), theorem 2.14.1, page 239,

it follows that

E

{
sup

fx,y∈Fx,R

|(Gn − G0)(fx,R)|
}2

≤ K

n
EF 2

x,R(X1) = O
(
n−1R2d−1

)
(7.38)
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for some constant K > 0 depending only on x0, δ, and the entropy integral

in (7.36). For any fx,y ∈ Fx,R, we write

(Pn − P0)(fx,y) = (Gn − G0)(fx,y)

and define Mn by

Mn = inf
{

D > 0 :
∣∣∣∣(Pn − P0)(fx,y)

∣∣∣∣ ≤ ε(y − x)α+d + n−(α+d)/(2α+1)D,

for all fx,y ∈ Fx,R

}
and Mn = ∞ if no D > 0 satisfies the required inequality. For 1 ≤ j ≤
�Rn1/(2α+1)� = jn, we have

P (Mn > m)

≤ P

(∣∣∣∣(Pn − P0)(fx,y)
∣∣∣∣ > ε(y − x)α+d

+ n−(α+d)/(2α+1)m for some fx,y ∈ Fx,R

)
≤

∑
1≤j≤jn

P

{
n(α+d)/(2α+1)

∣∣∣∣(Pn − P0)(fx,y)
∣∣∣∣ > ε(j − 1)α+d + m

for some fx,y ∈ Fx,R, (j − 1)n−1/(2α+1) ≤ y − x ≤ jn−1/(2α+1)

}

≤
∑

1≤j≤jn

n2(α+d)/(2α+1)

E

{
supy:0≤y−x<jn−1/(2α+1)

∣∣∣∣(Pn − P0)(fx,y−x)
∣∣∣∣}2

(ε(j − 1)α+d + m)2

=
∑

1≤j≤jn

n2(α+d)/(2α+1)

E

{
supfx,y−x∈Fx,jn−1/(2α+1)

∣∣∣∣(Pn − P0)(fx,y−x)
∣∣∣∣}2

(ε(j − 1)α+d + m)2

≤ C
∑

1≤j≤jn

n2(α+d)/(2α+1)n−1n−(2d−1)/(2α+1) j2d−1

(ε(j − 1)α+d + m)2

= C
∑

1≤j≤jn

j2d−1

(ε(j − 1)α+d + m)2
≤ C

∞∑
j=1

j2d−1

(ε(j − 1)α+d + m)2
↘ 0

as m ↗ ∞ where C > 0 is a constant that depends only on x0, δ, and α.

Therefore it follows that (7.37) holds. �
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In the following, we present VC-subgraph proofs for Lemma 4.4 and

Proposition 6.1.

Proposition 7.1 For k ≥ 2 the classes of functions F (1)
y0,R and F (2)

y0,R given

in (4.11) and (6.23) are VC-subgraph classes of functions.

Proof. Consider the collection F (1)
y0,R. We want to show that the class of

subgraphs

D = {{(t, c) ∈ R
+ × R : c < ft(x)} :

x ∈ [τ0, τ2k−3], x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R}

is a VC class of sets in R
+ × R. If we show this, then the class of functions

(4.11) is VC-subgraph. Alternatively, from van der Vaart and Wellner (1996),

problem 11, page 152, it suffices to show that the “between graphs”

D1 =
{{(t, c) ∈ R

+ × R : 0 ≤ c ≤ ft(x) or ft(x) ≤ c ≤ 0} :

x ∈ [y0, y2k−3], x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R}

is a VC class of sets. Let

D1,j =
{
{(t, c) ∈ R

+ × R : 0 ≤ c ≤ ft(x)1[yj−1,yj ](t)

or ft(x)1[yj−1,yj ](t) ≤ c ≤ 0} : x ∈ [τ0, τ2k−3],

x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R
}

for j = 1, . . . , 2k − 3. Since t �→ ft(x)1[yj−1,yj ](t) is a polynomial of degree

at most k − 1 for each j = 1, . . . , k, the classes D1,j are all VC classes. Also

note that

D1 ⊂ D1,1 � . . . � D1,2k−3 ≡ D�k.

By Dudley (1999), theorem 2.5.3, page 153, D�k is a VC class (or see van

der Vaart and Wellner (1996), Lemma 2.6.17, part (iii), page 147). Hence

D1 is a VC class and F (1) is a VC - subgraph class.

The proof for the class F (2)
y0,R is similar.
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Proposition 7.2 The collection of functions

Fy0,R,γ =
{

fy0,y1,···,y2k−3,λ,h : y0 ≤ y1 ≤ · · · ≤ y2k−4 ≤ y2k−3 ≤ y0 + R,

λ ∈ [0, 1], and h ∈ Ck−2
γ [x0 − δ, x0 + δ]

}
defined below in (8.44) is a VC-class. Furthermore, we have

‖Pn − P0‖Fy0,R,γ
= op(y2k−3 − y0)2k + Op(n−2k/(2k+1))

where

‖Pn − P0‖Fy0,R,γ
= sup

fy0,y1,···,y2k−3,λ,h∈Fy0,R,γ

|(Pn − P0)(fy0,y1,···,y2k−3,λ,h)|.

Proof. Fix η > 0, and let Q be a probability measure on (0,∞). Now using

the same arguments as in the proof of Proposition 7.1, the collection Fy0,R

is VC, and we can find D1 = D1(δ, k) < ∞ such that

log N(η‖Fy0,R‖Q,2,Fy0,R, L2(Q)) ≤ D1 log
1
η
.

On the other hand, by Theorem 2.7.1 of van der Vaart and Wellner

(1996), page 155, there exists D2 = D2(δ, k) < ∞

log N(ηγ,Ck−2
γ [x0 − δ, x0 + δ], ‖ · ‖∞) ≤ D2

(
1
η

) 1
k−2

,

where the constant D2 depends on k, and δ, but not on x0. Note that

F ≡ Fy0,R has bounded envelope function F ≡ Fy0,R. Thus if {fj} is an

η‖F‖y0,R−net with respect to L2(Q) for F ≡ Fy0,R and {gj′} is an ηγ−
net with respect to ‖ · ‖∞ for G ≡ Ck−2

γ [x0 − δ, x0 + δ], then {fj · gj′} is a

2ηγ‖F‖Q,2−net for F · G with respect to L2(Q): for f, g with ‖f − fj‖Q,2 ≤
ε‖F‖Q,2 and ‖g − gj′‖∞ ≤ εγ,

‖f · g − fjgj′‖Q,2 ≤ γ‖f − fj‖Q,2 + ‖F‖Q,2‖g − gj′‖∞
by the triangle inequality followed by use

of the sup norm

≤ γη‖F‖Q,2 + ‖F‖Q,2ηγ = 2ηγ‖F‖Q,2.
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It follows that

N(2ηγ‖F‖Q,2,Fy0,R,γ , L2(Q))

≤ N(η‖F‖Q,2,Fy0,R, L2(Q)) · N(ηγ,Ck−2
γ [x0 − δ, x0 + δ], L2(Q)).

(7.39)

By (7.39) and dominance of the second entropy bound as η ↘ 0, we conclude

that

log N(ηγ‖F‖Q,2,Fy0,R,γ , L2(Q)) ≤ K

(
1
η

) 1
k−2

.

where K depends on k and δ (but not on R or Q). On the other hand, it

follows from the error boundedness Conjecture (1.7) (also see Balabdaoui

and Wellner (2005)) that Fx,R,γ admits the function

Fy0,R,γ(t) = CγRk−11[y0,y0+R](t)

as an envelope, where C > 0 depends only on k. Now we can find a constant

D > 0 depending only on η and g0 and such that 0 < supt∈[x0−δ, x0+δ] g0(t) ≤
D. We can write

EF 2
x,R,γ(X1) = C2γ2R2(k−1)

∫ y0+R

y0

g0(t)dt ≤ C2Dγ2R2k−1,

and hence by van der Vaart and Wellner (1996), Theorem 2.14.2, page

240, there exists a constant K ′ depending only on x0 and δ such that

E

{(
sup

fy0,y1,...,y2k−3,λ,h∈Fy0,R,γ

|(Gn − G0)(fy0,y1,...,y2k−3,λ,h)|
)2
}

≤ K ′

n
EF 2

y0,R,γ(X1) = K ′′n−1γ2R2k−1.

Now, define

Mn = inf
{

m > 0 :
∣∣(Pn − P0)(fy0,y1,...,y2k−3,λ,h

∣∣ ≤ ε(y2k−3 − y0)2k

+ n−2k/(2k+1)m, for all fy0,y1,...,y2k−3,λ,h ∈ Fy0,R,γ

}
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and Mn = ∞ if no m > 0 satisfies the required inequality. Using arguments

very similar to those of the proof of Lemma 7.1, we can show that Mn =

Op(1), which proves our second claim. �

8. Appendix 3 - Proofs for Subsections 4.2 and 4.3

To prove Lemma 4.3, we need the following lemma:

Lemma 8.1 Let k ≥ 2 be an integer. The monospline Mk with simple knots

ξ0 = −k + 3/2, ξ1 = −k + 5/2, . . . , ξ2k−4 = k − 5/2, ξ2k−3 = k − 3/2 and

such that Mk(ξj) = M ′
k(ξj) = 0 for j = 0, . . . , 2k − 3 satisfies (−1)kMk ≥ 0

on [−k + 3/2, k + 3/2] ≡ [ξ0, ξ2k−3].

Proof. Consider the function D2k defined on [−k + 3/2, k − 3/2] by

D2k(t) = B2k(t − ξj) − B2k, on [ξj , ξj+1] ≡ [ξj , ξj + 1]

for j = 0, . . . , 2k − 3, where B2k is the normalized Bernoulli polynomial of

degree 2k (defined on [0, 1]) and B2k = B2k(0). By the known properties of

Bernoulli polynomials (see e.g. Bojanov, Hakopian and Sahakian (1993),

pages 117-124), we have D
(l)
2k (ξj−) = D

(l)
2k (ξj+) for l = 0, . . . , 2k − 2. Hence,

D2k is a monospline of degree 2k. Furthermore, since D2k(ξj) = D′
2k(ξj) = 0,

it follows that Mk = D2k on [−k + 3/2, k − 3/2]. Now, the sign of Mk is the

same as the sign of B2k − B2k on [0, 1]. But the latter is determined by the

sign of B2k(1/2) − B2k as 0 and 1 are the only zeros of B2k − B2k on [0, 1].

Using the formula

B2k(1/2) = −(1 − 21−2k)B2k

(see e.g. Abramowitz and Stegun (1972), formula 23.1.21, page 805) and

the fact that B2k > 0 (< 0) when k is odd (even), it follows that Mk ≤ 0

(≥ 0) when k is odd (even), i.e. (−1)kMk ≥ 0. �
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Proof of Lemma 4.3. The first part of the claim follows from Proposition

1 of Michelli (1972); see also de Boor (2004). For the second part, let ξ be

a fixed point in ∪2k−4
j=0 (τj , τj+1). We can assume without loss of generality

that ξ ∈ (τ0, τ1). There exists λ ∈ (0, 1) such that ξ = λτ0 + (1 − λ)τ1.

Consider now the function

(τ0, . . . , τ2k−3) �→ ek(ξ) + |ek(ξ)|
2ek(ξ)

.

Note that it is possible to divide by ek(ξ) since a zero of ek must be a knot. It

is easy to see that the function defined above is continuous in τ0, . . . , τ2k−3.

Furthermore, it can only take two possible values, 0 or 1, and therefore

has to be constant. But, when the knots are equally distant, we know from

Lemma 8.1 that the constant is 0 (1) if k is odd (even). It follows that

(−1)kek(ξ) > 0. �

To prove Lemma 4.7, we need to establish the following result.

Lemma 8.2 For any ε > 0, there exists K > 0 (depending on k) such that

for j = 1, . . . , 2k − 3 the event

0 < (−1)k−1(ĝ(k−1)
n (τj) − ĝ(k−1)

n (τj−1)) < K (τj − τj−1)

occurs with probability greater than 1 − ε.

Proof. A picture is sufficient to prove the lemma, but more formally we

have for x ∈ [x0 − δ, x0 + δ] for small δ > 0

ĝ
(k−2)
n (x − h) − ĝ

(k−2)
n (x)

−h

≤ ĝ(k−1)
n (x−) ≤ ĝ(k−1)

n (x+) ≤ ĝ
(k−2)
n (x + h) − ĝ

(k−2)
n (x)

h
(8.40)

(we assume here that k is even). We denote by ∆ĝ
(k−1)
n (x) the height of the

jump of ĝ
(k−1)
n at the point x; i.e., ∆ĝ

(k−1)
n (x) = ĝ

(k−1)
n (x+)−ĝ

(k−1)
n (x−), and
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by ∆x the value of the corresponding gap (if x = τj, then ∆x = τj − τj−1).

The inequality in (8.40) implies that for all 0 < h < ∆x, we have

0 ≤ lim sup
n→∞

∆ĝ
(k−1)
n (x)
∆x

≤ 1
h

{
g
(k−2)
0 (x + h) − g

(k−2)
0 (x)

h
− g

(k−2)
0 (x − h) − g

(k−2)
0 (x)

−h

}
.

On the other hand, we know from our working assumptions that g
(k−2)
0 is

twice continuously differentiable in the neighborhood of x0. Therefore, using

Taylor expansion, we have

g
(k−2)
0 (x + h) = g

(k−2)
0 (x) + hg

(k−1)
0 (x) +

1
2
h2g

(k)
0 (x) + o(h2)

and

g
(k−2)
0 (x − h) = g

(k−2)
0 (x) − hg

(k−1)
0 (x) +

1
2
h2g

(k)
0 (x) + o(h2)

and hence

1
h

{
g
(k−2)
0 (x + h) − g

(k−2)
0 (x)

h
− g

(k−2)
0 (x − h) − g

(k−2)
0 (x)

−h

}
= g

(k)
0 (x) + o(1)

≤ K

where K can be taken e.g. to be equal to 2 supt∈[x0−δ,x0+δ] |g(k)
0 (t)|. It follows

that for n large enough and for all j ∈ 1, . . . , 2k − 3,

0 < ĝ(k−1)
n (τj) − ĝ(k−1)

n (τj−1) ≤ K (τj − τj−1)

with large probability. �

Proof of Lemma 4.7. We start by showing that

sup
τ̄∈[τ0,τ2k−3]

|E2(τ̄)| = op((τ2k−3 − τ0)2k) + Op(n−(2k)/(2k+1)). (8.41)

We have

|E2(τ̄)|
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=

∣∣∣∣∣
∫ ∞

0

{
(τ̄ − t)k−11[τ0,τ̄ ](t)

(
1

ĝn(t)
− 1

g0(τ0)

)

− Hk

[
(· − t)k−11[τ0,·](t)

(
1

ĝn(t)
− 1

g0(τ0)

)]
(τ̄ )

}
d(Gn(t) − G0(t))

∣∣∣∣∣.
In other words, one can view E2(τ) in the following way: For a fixed t ∈
[τ0, τ2k−3], we compute the value at the point τ̄ of the Hermite interpolation

error for interpolating the function

x �→ (x − t)k−11[τ0,x](t)
(

1
ĝn(t)

− 1
g0(τ0)

)
or, since 1[τ0,x](t) = 1[x≥t] since t ≥ τ0,

x �→ (x − t)k−11[x≥ t]

(
1

ĝn(t)
− 1

g0(τ0)

)
,

= (x − t)k−1
+

(
1

ĝn(t)
− 1

g0(τ0)

)
. (8.42)

This yields a function of t, which is then integrated with respect to (Gn−G0).

Let us denote by

fτ0,...,τ2k−3,λ̄,ĥn
(t)

the function that assigns to each t ∈ [τ0, τ2k−4] the Hermite interpolation

error at the point τ̄ for interpolating the function defined in (8.42), where

λ̄ = (τ̄ − τ0)/(τ2k−3 − τ0) and ĥn = 1/ĝn − 1/g0(τ0).

Let ε > 0, and δ > 0 such that [τ0, τ2k−4] ⊂ [x0 − δ, x0 + δ]. Now, uniform

consistency of the derivative ĝ
(j)
n , j = 0, · · · , k − 2 implies uniform bounded-

ness of ĥ
(j)
n . Hence, for γ > 0 large enough there exists a N = Nγ ∈ N such

that for n > N , the probability of the event

Jx0,δ,γ ≡
{

ω : max
0≤j≤k−2

sup
t∈[x0−δ,x0+δ]

∣∣∣∣∣
(

1
ĝn(ω, t)

− 1
g0(τ0)

)(j)
∣∣∣∣∣ ≤ γ

}
(8.43)

is greater than 1 − ε. Note that for j = 0, γ can be taken arbitrarily small

which will yield a stronger result. However, this is not true for j > 0 since
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the term −1/g0(τ0) disappears. In what follows, we consider the case where

the previous event occurs.

Now fix y0 ∈ [x0 − δ, x0 + δ − R]. Consider the collection

Fy0,R,γ =
{

fy0,y1,···,y2k−3,λ,h : y0 ≤ y1 ≤ · · · ≤ y2k−4 ≤ y2k−3 ≤ y0 + R,

λ ∈ [0, 1], and h ∈ Ck−2
γ [x0 − δ, x0 + δ]

}
(8.44)

where Ck−2
γ [x0 − δ, x0 + δ] is the set of functions on [x0 − δ, x0 + δ] whose

j-th derivative, j = 0, · · · , k − 2, is uniformly bounded by γ. Explicitly, a

function in the previous collection can be written as

fy0,y1,···,y2k−3,λ,h(t)

=
{
(λy0 + (1 − λ)y2k−3 − t)k−1

+ − [Hk(· − t)k−1
+ ](λy0 + (1 − λ)y2k−3)

}
h(t).

We recall here that h ∈ Ck−2
γ [x0 − δ, x0 + δ], where Ck−2

γ [x0 − δ, x0 + δ] is

defined above. If we denote by Fy0,R, the collection of functions appearing

in the first term on the right side of the previous display, we have

Fy0,R,γ ⊂ Fy0,R · Ck−2
γ [x0 − δ, x0 + δ].

By Proposition 7.2, we have

sup
λ̄∈[0,1]

∣∣∣(Pn − P0)(fτ0,τ1,...,τ2k−3,λ̄,ĥn
)
∣∣∣ = op((τ2k−3 − τ0)2k) + Op(n−2k/(2k+1))

or equivalently

sup
τ̄∈[τ0,τ2k−3]

|E2(τ̄)| = op((τ2k−3 − τ0)2k) + Op(n−2k/(2k+1)).

Finally, we focus on the error term, E1. Recall that the corresponding

interpolated function is given by

f̌n(τ̄) = −
∫ τ̄

τ0

(τ̄ − t)k−1 1
ĝn(t)

(ĝn(t) − g0(τ0))(ĝn(t) − g0(t))dt
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for all τ̄ ∈ [τ0, τ2k−3]. Note that the function is (2k − 1)-times differentiable

on [τ0, τ2k−3], and we have

‖Hkf̌n − f̌n‖∞
≤ 1

(2k − 1)!

∫ τ2k−3

τ0

‖Hk[(t − ·)2k−1
+ ] − (t − ·)2k−1

+ ‖∞ |df̌ (2k−1)
n (t)|

≤ dk(τ2k−3 − τ0)2k−1

∫ τ2k−3

τ0

|df̌ (2k−1)
n (t)|,

for some dk > 0. On the other hand, we have

f̌ (2k−1)
n (t) =

[(
ĝn(t) − g0(t)

)(
ĝn(t) − g0(τ0)

ĝn(t)

)](k−1)

=
k−1∑
j=0

(
k − 1

j

)(
ĝ(j)
n (t) − g

(j)
0 (t)

)( ĝn(t) − g0(τ0)
ĝn(t)

)(k−1−j)

,

and hence

df̌ (2k−1)
n (t)

= (ĝn(t) − g0(t)) d

[(
ĝn(t) − g0(τ0)

ĝn(t)

)(k−1)]
+ d
(
ĝ(k−1)
n (t) − g

(k−1)
0 (t)

)( ĝn(t) − g0(τ0)
ĝn(t)

)
+

k−2∑
j=1

(
k − 1

j

)(
ĝ(j+1)
n (t) − g

(j+1)
0 (t)

)( ĝn(t) − g0(τ0)
ĝn(t)

)(k−1−j)

dt

+
k−2∑
j=1

(
k − 1

j

)(
ĝ(j)
n (t) − g

(j)
0 (t)

)( ĝn(t) − g0(τ0)
ĝn(t)

)(k−j)

dt

= dh1(t) + dh2(t) + dh3(t) + dh4(t).

The last two functions, dh3 and dh4 are easier to handle, since we can see

that uniform consistency of the derivatives of the MLE implies that

sup
t∈[τ0,τ2k−3]

|h′
3(t)| = sup

t∈[τ0,τ2k−3]
|h′

4(t)| = op(1),

and hence

(τ2k−3 − τ0)2k−1

∫ τ2k−3

τ0

|h′
3(t) + h′

4(t)|dt = op((τ2k−3 − τ0)2k).
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Now we need go back to study h1 and h2 and the corresponding error

terms, and we start with h2. Recall that∫ τ2k−3

τ0

|dh2(t)| =
∫ τ2k−3

τ0

∣∣∣∣d(ĝ(k−1)
n (t) − g

(k−1)
0 (t)

)( ĝn(t) − g0(τ0)
ĝn(t)

)∣∣∣∣
≤
∫ τ2k−3

τ0

∣∣∣∣dĝ(k−1)
n (t)

(
ĝn(t) − g0(τ0)

ĝn(t)

)∣∣∣∣
+
∫ τ2k−3

τ0

∣∣∣∣dg
(k−1)
0 (t)

(
ĝn(t) − g0(τ0)

ĝn(t)

)∣∣∣∣.
The second term is op((τ2k−3 − τ0)) since dg

(k−1)
0 (t) = g

(k)
0 (t)dt (we apply

the same argument used for dh3 and dh4). As for the first term, we have∫ τ2k−3

τ0

∣∣∣∣dĝ(k−1)
n (t)

(
ĝn(t) − g0(τ0)

ĝn(t)

)∣∣∣∣
=

2k−3∑
j=1

|ĝ(k−1)
n (τj) − ĝ(k−1)

n (τj−1)|
∣∣∣∣ ĝn(τj) − g0(τ0)

ĝn(τj)

∣∣∣∣
≤ D

2k−3∑
j=1

(τj − τj−1)
∣∣∣∣ ĝn(τj) − g0(τ0)

ĝn(τj)

∣∣∣∣, by Lemma 8.2

≤ D(τ2k−3 − τ0)
2k−3∑
j=1

∣∣∣∣ ĝn(τj) − g0(τ0)
ĝn(τj)

∣∣∣∣
= op((τ2k−3 − τ0))

by uniform consistency of the MLE and continuity of g0 which imply that

ĝn(τj)− g0(τ0) = op(1) for j = 1, . . . , 2k − 3. Similar arguments can be used

for h1. We conclude that the associated error term is of the order

op((τ2k−3 − τ0)2k),

or using our notation above

sup
τ̄∈[τ0,τ2k−3]

|E1(τ̄ )| = op((τ2k−3 − τ0)2k).

�
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Komlós, J., Major, P., and Tusnády, G. (1975). An approximation of

partial sums of independent rv’s and the sample disttribution function.

Z. Wahrsch. verw. Geb. 32, 111 - 131.
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