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Abstract: We study the asymptotic behavior of the Maximum Likeli-
hood and Least Squares estimators of a k-monotone density go at a fixed
point zo when k > 2. In BALABDAOUI AND WELLNER (20044), it
was proved that both estimators exist and are splines of degree k—1 with
simple knots. These knots, which are also the jump points of the (k—1)-
st derivative of the estimators, cluster around a point o > 0 under the
assumption that go has a continuous k-th derivative in a neighborhood

of o and (—l)kgék)(xo) > 0. If 7, and 7,7 are two successive knots,
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we prove that the random “gap” 77 — 77 is Op(n~ Y/ ¥V for any
k > 2 if a conjecture about the upper bound on the error in a particular
Hermite interpolation via odd-degree splines holds. Based on the or-
der of the gap, the asymptotic distribution of the Maximum Likelihood

and Least Squares estimators can be established. We find that the j-th

derivative of the estimators at zo converges at the rate n~(*=7)/(2k+1)

for 7 = 0,...,k — 1. The limiting distribution depends on an almost
surely uniquely defined stochastic process Hj, that stays above (below)
the k-fold integral of Brownian motion plus a deterministic drift, when
k is even (odd).
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1. Introduction
1.1. The estimation problem and motivation

A density function g on R is monotone (or 1—monotone) if it is nonincreas-
ing. It is 2—monotone if it is nonincreasing and convex, and k—monotone
for k > 3 if and only if (—1)7¢") is non-negative, nonincreasing, and convex
for j=0,...,k—2.

We write Dy, for the class of all k—monotone densities on RT, and M},
for the class of all k—monotone functions (without the density restriction).
Suppose that gy € Dy and that Xy,..., X, are i.i.d. with density gg. We
write G,, for the empirical distribution function of Xi,...,X,. Our main
interest is in the Maximum Likelihood Estimators (or MLE) §,, of gy € Dk.

When k£ =1, it is well known that the maximum likelihood estimator g,
of go € D; is the Grenander (1956) estimator; i.e. the left-derivative of the

least concave majorant G, of G, and if g6(z0) < 0 with g{, continuous in a
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neighborhood of zg, then

1/3
'’ (gn(20) — go(x0)) —a (%go(xo)fgf)(%)o / 27, (1.1)
where 27 is the slope at zero of the greatest convex minorant of two-sided
Brownian motion +t2, ¢ € R; see PRAKASA RAa0 (1969), GROENEBOOM (1985),
and KiM AND POLLARD (1990).

When k& = 2, GROENEBOOM, JONGBLOED, AND WELLNER (2001B) consid-
ered both the MLE and LSE and established that if the true convex and
nonincreasing density go satisfies g((z9) > 0 (and g is continuous in a

neighborhood of z), then

( n?/% (gu(20) — go(0)) > - ( (3198 (@098 (20)) * H(0) (> 2
w1 (G (x0) —g'(w0)) )\ (mgo(eo)gh (20)*)° HO(0) )
where gy, is either the MLE or LSE and H is a random cubic spline function
such that H® is convex and H stays above integrated two-sided Brownian
motion +t*, ¢t € R, and touches exactly at those points where H?) changes
its slope (see GROENEBOOM, JONGBLOED, AND WELLNER (2001A)).

Our main interest in this paper is in establishing a generalization of the
pointwise limit theory given in (1.1) and (1.2) for general k € N, k > 1.

Beyond the obvious motivation of extending the known results for £k = 1
and k = 2 as listed above, there are several further reasons for considering
such extensions:
(a) Pointwise limit distribution theory for natural nonparametric estima-
tors of the piecewise smooth regression models of smoothness k considered
by MAMMEN (1991) is only available for k € {1,2}. Similar models (with
just one element in the partition) have been proposed for software reli-
ability problems by MILLER AND SOFER (1986). Similarly, pointwise limit
distribution theory is still lacking for the locally adaptive regression spline
estimators considered by MAMMEN AND VAN DE GEER (1997).
(b) The classes of densities Dy, have mixture representations as scale mix-

tures of Beta(l, k) densities: as is known from WILLIAMSON (1956) (see also
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LEVY (1962), GNEITING (1999), and BALABDAOUI AND WELLNER (20044)),
g € Dy, if and only if there is a distribution function F' on (0,00) such that

o) = [ -l tare) = [T (1-50) T dPw) 03

+
where z; = z1{z > 0} and F' = F(k/-). The second form of the mixture
representation in the last display makes it clear that the limiting class of
densities as k — oo, namely Do, is the class of scale mixtures of exponential
distributions. In view of FELLER (1971), pages 232-233, this is just the class
of completely monotone densities; see also WIDDER (1941) and GNEITING
(1998). To the best of our knowledge, there is no pointwise limit distribu-
tion theory available for the MLE in any class of mixed densities based on
a smooth mixing kernel, including this particular case in which the kernel
(or mixture density) is the exponential scale family as studied by JEWELL
(1982). On the other hand, maximum likelihood estimators in various classes
of mixture models with smooth kernels have been proposed in a wide range
of applications including pharmacokinetics (MALLET (1986), MALLET, MEN-
TRE, STEIMER, AND LOKIEC (1988), and DAVIDIAN AND GALLANT (1992)),
demography (VAUPEL, MANTON, AND STALLARD (1979)), and shock models
and variations in hazard rates (HARRIS AND SINGPURWALLA (1968), DOYLE,
HANSEN, AND McNorTy (1980), HILL, SAUNDERS, AND LAUD (1980)).

(¢) The whole family of mixture models corresponding to k € (0, 00) might
be of some interest eventually, especially since the family of distributions
corresponding to the classical Wicksell problem is contained in the class
Dy 2; see e.g. GROENEBOOM AND JONGBLOED (1995).

(d) The sub-class of k—monotone densities with mixing distribution F' sat-
isfying g*=1(0) = k! fooo y~*dF(y) < oo can be regarded as the distribu-
tions arising in a generalization of Hampel’s bird watching problem (HAMPEL
(1987)) in which birds are captured k— times, but only one “inter-catch”
time is recorded. Based on those observed inter-catch times, the goal is to es-
timate the true distribution F' of the resting times Y of the migrating birds,

which we assume to have a density f with k-th moment p(f) < oo. Fur-
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thermore, we assume that the time points of capture form the arrival time
points of a Poisson process with rate A, and given Y = g, the number of cap-
tures by time y is Poisson(Ay) with A small enough so that exp(—Ay) ~ 1,
and the probability of catching a bird more than k times is negligible (see
also HAMPEL (1987) and ANEVSKI (2003)). If S ; denotes the elapsed time
between the first and second captures (the only observed inter-catch), then
it follows by a derivation analogous to Hampel’s that the density of the time

Sk,1 is given by

_ 1 > _ )kl
o) = — / k(y — )81 () dy

which is clearly k-monotone. We obtain F', the probability distribution of

Y, by inverting the previous mixture representation; that is

g* D)

FO=1= 5 000

at any point of continuity ¢ > 0 of F.

In connection with (a), it is interesting to note that the definition of the
family Dy, is equivalent to g € Dy, if and only if (—1)¥~1g*—1) (where g(*—1)
is either the left- or right-derivative of g(k_Q)) is nonincreasing. This follows
from Lemma 4.3 of GNEITING (1999) since Gneiting’s condition lim,_,~ g(x) =
0 is automatic for densities. Thus the equivalent definition of Dy has a nat-
ural connection with the work of MAMMEN (1991) in the nonparametric
regression setting. In parallel to the treatment of convex regression estima-
tion given by GROENEBOOM, JONGBLOED, AND WELLNER (2001B), it seems
clear that pointwise distribution theory for nonparametric least squares es-
timators for the regression problems in (a) could be developed if adequate
theory were available for the the Maximum Likelihood and Least Squares
estimators of densities in the class Dy, so we focus exclusively on the den-
sity case in this paper. In Section 5 we comment further on the difficulties in
obtaining corresponding limit theory for the smooth kernel cases discussed
in (b).
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1.2. Description of the key difficulty: the gap problem

The key result that GROENEBOOM, JONGBLOED, AND WELLNER (2001B) used
to establish (1.2) is that 7,7 — 7,7 = O,(n~"/%) as n — oo, where 7,, and
7,7 are two successive jump points of the first derivative of g, in the neigh-
borhood of xg. Such a result was already proved by MAMMEN (1991) (see
Lemma 8) in the context of nonparametric regression, where the true regres-
sion curve, m, is piecewise concave/convex or convex/concave such that m is
twice continuously differentiable in the neighborhood of xg, and m”(xy) # 0.
Furthermore, MAMMEN (1991) conjectured the right form of the asymptotic
distribution of his Least square estimator, which was later established by
GROENEBOOM, JONGBLOED, AND WELLNER (2001B).

To obtain the stochastic order n~/® for the gap, GROENEBOOM, JONG-
BLOED, AND WELLNER (2001B) used the characterizations of the estimators
together with the “mid-point property” which we review in Section 4. For
k = 1, the same property can be used to establish that n~1/3 is the order
of the gap. As a function of k, it is natural to conjecture that n~1/(2k+1) ig
the general form of the order of the gap. In the problem of nonparametric
regression via splines, MAMMEN AND VAN DE GEER (1997) have conjectured
that n~Y@+1) ig the order of the distance between the knot points of their
regression spline m under the assumption that the true regression curve my
satisfies our same working assumptions, but the question was left open (see
MAMMEN AND VAN DE GEER (1997), page 400). In this manuscript, we refer
to the problem of establishing the order of 7,7 — 7,; as the gap problem.

In Section 4, we show that when £ > 2, the gap problem is closely related
to a “non-classical” Hermite interpolation problem via odd-degree splines.
To put the interpolation problem encountered in the next section in context,
it is useful to review briefly the related complete interpolation problem for
odd-degree splines which is more “classical” and for which error bounds
uniform in the knots are now available. Given a function f € C*=1D0,1]

and an increasing sequence 0 = yg < y1 < -+ < Ym < Ym+1 = 1 Where
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m > 1 is an integer, it is well-known that there exists a unique spline, called
the complete spline and denoted here by Cf, of degree 2k — 1 with interior
knots y1, ..., ¥y, that satisfies the 2k + m conditions

{ (CHw) = Fly), i=1,....m
(CH) o) = FDwo), (CHOYms1) = FOYmer)s 1=0,..0 k= 1;
see SCHOENBERG (1963), DE BOOR (1974), or NURNBERCER (1989), page 116,
for further discussion. If j € {0, ..., k} and f € C**9)[0, 1], then there exists
ck,j > 0 such that
po S = Cflle < g1 F 5 oo (1.4)
For 7 = k, this “uniform in knots” bound in the complete interpolation
problem was first conjectured by pE Boor (1973) for k > 4 as a general-
ization that goes beyond k = 2,3 and 4 for which the result was already
established (see also DE Boor (1974)). By a scaling argument, the bound
(1.4) implies that, if f € C®*[a,b],a < b € R, the interpolation error in
the complete interpolation problem is uniformly bounded in the knots, and
that the bound is of the order of (b—a)?*. One key property of the complete
spline interpolant C'f is that (C'f)*) is the Least Squares approximation of
%) when ) € Ly([0,1]); i.e., if Sg(y1,- - -, ym) denotes the space of splines
of order k (degree k — 1) and interior knots yi, ..., Ym, then
1 2 L 2

/ (€n® — 9@ dr= __min / ($6) ~ 19@) dr (15)

0 SeSk(y1,--ym) Jo
(see e.g. SCHOENBERG (1963), DE BOOR (1974), NURNBERGER (1989)). Con-
sequently, if Lo, denotes the space of bounded functions on [0, 1], then the
properly defined map

c®o,1] — Si(y)
fO = enH®

where y = (y1,...,¥m), is the restriction of the orthoprojector Pg, () from
Lo to Si(y) with respect to the inner product (g, h) = fol g(x)h(x)dx which
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assigns to a function g € Lo, the k-derivative of the complete spline inter-
polant of any primitive of g of order k (note that the difference between two
primitives of g of order k is a polynomial of degree k — 1).

DE BOOR (1974) pointed out that, in order to prove the conjecture, it is

enough to prove that

[Py, () (9) [l oo
sup || Ps, (y)lloo = sup sup —————
y - v geloe  l9lleo

is bounded, and this was successfully achieved by SHADRIN (2001).

The Hermite interpolation problem which arises naturally in Section 4 ap-
pears to be another variant of interpolation problems via odd-degree splines
which has not yet been studied in the approximation theory or spline lit-
erature. More specifically, if f is some real-valued function in C(j)[(), 1] for
some 7 > 1, 0=9y9 <y < - < Yop—a < Yop—3 = 1 is a given increasing
sequence, then there exists a unique spline Hy, f of degree 2k — 1 and interior

knots w1, ..., yor_4 satisfying the 4k — 4 conditions

(Hef)(wi) = f(wi), and (Hif)'(yi) = f'(yi), i=0,...,2k —3.(1.6)

It turns out that deriving the stochastic order of the distance between two
successive knots of the MLE and LSE in the neighborhood of the point of
estimation is very closely linked to bounding the error in this new Hermite
interpolation independently of the locations of the knots of the spline inter-
polant. More precisely, if g;(z) = (z — t)l_f1 /(k —1)! is the power truncated
function of degree k — 1 with unique knot ¢, then we conjecture that there
is a constant dj > 0 such that

B A P 9t = Higilloo < di- (1.7)
As shown in BArLABDAOUI AND WELLNER (2005), the preceding formulation
implies that boundedness of the error independently of the knots of the
spline interpolant holds true for any f € C*+9) that is

sup 1 = Hieflloo < dill £ o
0<y1 < <ygr—4a<1
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If j = k and ||f®R)]|, < 1, it follows from Proposition 1 of BALABDAOUT AND
WELLNER (2005) that the interpolation error must be bounded above by the

error for interpolating the perfect spline

2k—4
2%k )2k
S*(t) = o <t +2Z t—TJ+>
For a definition of perfect splines, see e.g. BOJANOV, HAKOPIAN AND SAHAKIAN
(1993), Chapter 6. Based on large number of simulations, we found that

sup 15" = HkS oo < 75757
0<y1 < <ygk—a<1 = (2k)!

for fairly large values of k (see the last column in Table 2 in BALABDAOUI
AND WELLNER (2005)). The latter strongly suggests that for f € C*)][0,1]

we have

sup 1f = Hief oo < 57 17 e (1.8)

0<y1<-<yar—a<1 ( )

Based on Conjecture (1.7), we will prove that the distance between two
consecutive knots in a neighborhood of xg is O, (n~ k1)),

After a brief introduction of the MLE and LSE and their respective char-
acterizations, we give in Section 3 a statement of our main result which
gives the joint asymptotic distribution of the successive derivatives of the
MLE and LSE. The obtained convergence rate n~*=7)/(2k+1) for the j-th
derivative of any of the estimators was found by BALABDAOUI AND WELL-
NER (2004A) to be the asymptotic minimax lower bound for estimating

(J )( 0), 5 = 0,...,k — 1 under the same working assumptions. The lim-
iting distribution depends on the higher derivatives of Hj, an almost surely
uniquely defined process that stays above (below) the (k — 1)-fold integral
of Brownian motion plus the drift (k!/(2k)!) t?*, when k is even (odd), and
s (2k — 2)—convex; i.e. the 2k — 2 derivative of Hy, is convex. The process
Hj, is studied separately in BALABDAOUI AND WELLNER (2004¢). Proving the

existence of Hy, relies also on our conjecture in (1.7) since the key problem,
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also referred to as the gap problem, depends on a very similar Hermite in-
terpolation problem, except that the knots of the estimators are replaced
by the points of touch between the (k — 1)-fold integral of Brownian motion
plus the drift (k!/(2k)!) t?* and Hj. For more discussion of the background
and related problems, see BALABDAOUI AND WELLNER (20044). For a discus-
sion of algorithms and computational issues, see BALABDAOUI AND WELLNER

(2004B).

2. The estimators and their characterization

Let X1, -+, X, be n independent observations from a common k-monotone
density gg. We consider nonpametric estimation of gy via the Least Squares
and Maximum Likelihood methods, and that of its mixture distribution Fj,

that is the distribution function on (0, 00) such that

© k(t — x)k!
go() —/ Mtzo)y 7 S dFy(t), x> 0.
0

In other words, go is a scale mixture of Beta(l,k) densities. The mixing
distribution is furthermore given at any point of continuity ¢ by the inversion

formula
k ‘ )
Fo(t) = Y (-1 =G (1) (2.9)

where Gy(t) = fg go(x)dx. AAn estimator for Fj can be obtained by simply
plugging in estimators of Géj ) = g(()j 71), 7 =0,...,k, in the inversion formula
(2.9). We call estimation of the (mixed) k-monotone density gy the direct
problem, and estimation of the mixing distribution function Fy the inverse
problem. For more technical details on the mixture representation and the
inversion formula, see Lemma 2.1 of BALABDAOUT AND WELLNER (20044).
Now, we give the definition of the Least Squares and Maximum Likelihood

estimators; these were already considered in the case £k = 2 by GROENEBOOM,
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JONGBLOED, AND WELLNER (2001B). The LSE, g,, is the minimizer of the

criterion function

blo) =5 [ 0t [ gas.o

over the class My, whereas the MLE, g,, maximizes the “adjusted” log-

likelihood function, i.e.

1(g) = /0 " log g()dG(t) — /0 " g(tydt

over the same class. In BALABDAOUI AND WELLNER (20044), we find that
both estimators exist and are splines of degree k — 1, i.e., their (k — 1)-st
derivative is stepwise. Furthermore, as shown in BALABDAOUI AND WELLNER
(20044), the LSE’s and MLE’s are characterized as follows: Let H, and Y,
be the processes defined for all z > 0 by

x te—1 to
Yn(x) = /0 /0 e ) Gn(tl)dtldtg N dtk,1 (2.10)
T (CC

_ t)k_l

= | wmnreeo

and

H,(z) = /Ox /Otk.../ot2 Gn(t1)dt1dts . . . dty, (2.11)
x ($ o t)k—l _

Then the k-monotone function g, is the LSE if and only if

. (2) > Y,(x), forallz>0
n\T _ _
= Y, (2), it (~DF 158 V(@) < ()18 (@),

(2.12)
For the MLE we define the process
R xT k($ o t)k—l
Hy(x,g :/ ——————dG,(t 2.13
(.0 = | o dCalt) (213)
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for all x > 0 and g € Dg. Then, a necessary and sufficient condition for the

k-monotone function g, to be the MLE is given by

ﬁ( i) <1, forallz>0
n x? n _ —_
=1 it ()P @) < (CDE D ().

(2.14)

These characterizations are crucial for understanding the local asympto-
tique behavior of the LSE and MLE. They were exploited in BALABDAOUI
AND WELLNER (20044) to show uniform strong consistency of the estimators
on intervals of the form [c,00),c > 0. Here, they prove to be once again
very useful for establishing their limit theory in both the direct and inverse

problems.

3. The asymptotic distribution
3.1. The main convergence theorem

To prepare for a statement of the main result, we first recall the following
theorem from BALABDAOUI AND WELLNER (2004cC) giving existence of the

processes Hy.

Theorem 3.1 For all k > 1, let Yy, denote the stochastic process defined by

t (t—S)k_ldW + (_l)kk!t2k‘ t>0
Yi(t) = 0 (=D (s) k)T ) =

0 (t—s)* ! —1)kk!
t (t(kjl)! dW (s) + ((21]1)! t*, t<0.

If Conjecture (1.7) holds (also see the discussion in BALABDAOUT AND WELL-
NER (2004cC) ), then there exists an almost surely uniquely defined stochastic

process Hy characterized by the following four conditions:

(i) The process Hy stays everywhere above the process Yj:

Hk(t) > Yk(t), teR.

2k—2)

(i) (—1)*Hy is 2k-convex; i.e. (—1)’“H,g exists and is convex.
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(i) The process Hy satisfies

/ (Hi(t) — Ya(£) APV (1) = 0.

(iv) Ifk is even, limpy oo (HEP () =V (£) = 0 for j = 0,..., (k—2)/2;
if ks odd, limy_oo(Hy(t) — Yi(t)) = 0 and limy oo (HY7 (1) —
Y (@) =0 for j=0,...,(k—3)/2.

Now we are able to state the main result of this paper which general-
izes Theorem 6.2 of GROENEBOOM, JONGBLOED, AND WELLNER (2001B) for

estimating convex (2-monotone) densities:

Theorem 3.2 Let xg > 0 and gy be a k-monotone density such that gg is
k-times differentiable at xo with (—1)kg((]k) (x0) > 0 and assume that g((]k) is
continuous in a neighborhood of xo. Let g, denote either the LSE, G, or the
MLE §, and let F}, be the corresponding mizing measure. If Conjecture (1.7)
holds, then

_k
N1 (g, (20) — go(0)) co(wo) HP(0)
k—1
n21 (g (20) — g8 (x0)) e (z0)HY TV (0)
] —d .
251 (g (20) — g8V (o)) cr1 (o) HF 1 (0)
and
1 - —1)k _
W (B (a) — Fla0)) —a e (a) BV (0)
where
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3.2. The key results and outline of the proofs

Our proof of Theorem 3.2 proceeds by solving the key gap problem assuming
that our Conjecture (1.7) holds. This is carried out in Section 4 in which

the main result is:

Lemma 3.1 Let k > 3 and g, denote either the LSE g, or the MLE §,,. If
go € Dy, satisfies g(()k) (xo) # 0 and Conjecture (1.7) holds, then Tog_3 — 10 =
Op(nfl/(%“)) where 19 < -+ < Top_3 are 2k — 2 successive jump points of

gﬁf’l) in a neighborhood of xg.

Using Lemma 3.1 we can establish the rate(s) of convergence of the esti-
mators g, and g, and their derivatives viewed as local processes in n~ 1/ (2k+1)
neighborhoods of the fixed point z(. This is accomplished in Proposition 3.1
(which depends in turn on a preliminary “existence of points” result given
in Proposition 6.1). Once the rates have been established, we define for the
LSE localized versions Y¢ F!¢ of the processes Y,,, H,, given in (2.10) and
(2.11) respectively, and @gc’ IT[fLOC related to the process H, given in (2.13)

in the case of the MLE. The proof then proceeds by showing that:

e The localized processes Y'¢ and YA{anC converge weakly to Y, , where

o f(f o [P W (s1)dsy .. dsp—1 + a(—l)k@k—k!)!t%, t>0

o fto fsi_l ce fso2 W(Sl)dsl e dsk,1 + a(—l)k@k—k!)!t%:, t < 0

Yoo(t) =

with o = \/g(z¢), a = (—1)kg(()k) (zo)/k! and W a two-sided Brownian
motion process starting from 0.

e The localized processes ﬁffc and fffz"c satisfy Fenchel (inequality and
equality) relations relative to the localized processes Y and YA(%OC
respectively.

e We then show via tightness that the localized processes H!¢ and fffz"c
(and all their derivatives up to order 2k —1) converge to a limit process

satisfying the conditions (i) - (iv) of Theorem 3.1, and hence the limit
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process in both cases is just Hy (up to scaling by constants). When

specialized to t = 0 this gives the conclusion of Theorem 3.2.

Here is the key rates of convergence proposition.

Proposition 3.1 Fiz xg > 0 and let go be a k-monotone density such
that (—l)kg(()k) (xo) > 0. Let g, denote either the MLE g, or the LSE g,. If
Congecture (1.7) holds, then for each M > 0 we have,

k=1 _(i—j)/(2k+1) (@)
_(5) —1/(2k+1) n 9o’ (20) i j
sup |g,7’(xo +n t) — E - - t
a1 (o ) = (i =)t
_ O, (n— (k=) 2k 1) (3.1)

forj=0,...,k—1.

For the LSE, we define the local Y,, and H,,-processes respectively by

o zo-+tn—1/(2k+1)
Yle(t)y = nrt / /

{G (v1) = Gn(0) / Z =20l 6y )du}nf o,

and
. zo+tn—1/(2k+1)
) = it [ [
k— 1 U o )
{gn ’U1 Z ! O (])(xo)}dvl .. .d’l}k
+ Ayt +21k gntH +---+211,nt+flo,n,
where
~ (2k—j)/(2k+1) / .
Ajn = n+,<Hé”<xo)—Y£$)(xo>>, j=0,.. k-1
J:
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Let r, = 1/(2k + 1). In the case of the MLE, the local processes ﬁ?ffc and

H°¢ are defined as

§{£;)C(t) ok /onrtnTk /Uk /vl 90 ;é (v=z0)7 :vo) g((] )( )
= n
gO(:CO) o o o gn( )

dvduvy ... dvg_q

ok ro+tn~" "k pup_q v1 1 ( )
cae [P L i, — Gt
o o o gn(v) )(
d’U1 PN dvk,1

ﬁfzoc(t) _ /:Eo-i—tn_"k /%—1 /1}1 gn(v) — Z;‘:é w}#g&”(wo)
90(2170) o 0 o gn(v)
dvdvl . dvk—l + A\(k_l)ntk_l + -+ A\On

~ (2k—=3)r ~ . kE—1)! ,
o G) gy L ke - _
Ay, = = 1)!j!g0(:1:0) <Hnj (xo0) . ':):0 , j=0,....,k—1.

In the following lemma, we will give the asymptotic distribution of the
local process Y'¢ and ﬁ?lnoc in terms of the (k — 1)-fold integral of two-sided
Brownian motion, go(zg), and g(()k) (o) assuming that the true density g is
k-times continuously differentiable at xo. We denote by Y¢ either Y!°¢ or

Vi
fiee,

Lemma 3.2 Let zg be a point where gy is continuously k—times differen-
tiable in a neighborhood of xy with (—1)kg((]k) (z0) > 0. Then Yl = Y, , in
C[-K, K] for each K > 0 where

Y. (t) \/gO—xOfO Sk—1 | W(Sl)dsl . dSk_l —+ a(—l)kﬂtQk t> 0
a,o \/go—xoft Skﬂ e f52 W(s1)dsy ...dsk—1+ a(_l)kak"tQk £ <0

where W is standard two-sided Brownian motion starting at 0, o = \/go(xo),
and a = (—1)kg(()k) (z0)/K!.
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Now, let H!¢ denote either I:IffC or ITIfIOC.
Lemma 3.3 The localized processes Yf{’c and HTZLOC, satisfy

Hrlzoc(t) _ Y%C(t) >0 for all t>0,

with equality if xo + tn=/ @+ s o jump point of g .

Lemma 3.4 The limit process Y, » in Lemma 3.2 satisfies

To show that the derivatives of H¢ are tight, we need the following

lemma.

Lemma 3.5 For all j € {0,...,k— 1}, let f_ljn denote either fljn or /Tjn.
If Conjecture (1.7) holds, then

‘len = Op(l)' (3.4)

Now we rescale the processes Y'¢ and H!°° so that the rescaled Y!¢
converges to the canonical limit process Yj, defined in Lemma 3.4. Since the
scaling of Y!°¢ will be exactly the same as the one we used for Yz, we define
H! and Y!, by

HL(t) = s HY(s0t), Y4 (t) = s1Y1%(s0t)

where s; and sy are given by (3.2) and (3.3) respectively.
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Lemma 3.6 Let ¢ > 0. Then
I 7 . — 0 1 2k—1
(@O, =YD, @)y = @\, B, HEEY)

in (D[—c,c])?* where Hy, is the stochastic process defined in Theorem 3.1.

Proofs of Theorem 3.2 and the results given in Subsection 3.2 can be

found in Appendix 1.

4. The gap problem - Spline connection

Recall that it was assumed that gy is k-times continuously differentiable at
xo and that (—l)k'g(()k) (xg) > 0. Under a weaker assumption, BALABDAOUI
AND WELLNER (2004A) proved strong consistency of the (k — 1)-st deriva-
tive of the MLE and LSE. This consistency result together with the above
assumption imply that the number of jump points of this derivative, in a
small neighborhood of xg, diverges to infinity almost surely as the sample
size n — oo. This “clustering” phenomenon is one of the most crucial ele-
ments in studying the local asymptotics of the estimators. The jump points
form then a sequence that converges to xy almost surely and therefore the
distance between two successive jump points, for example located just before
and after xg, converges to 0 as n — oo. But it is not enough to know that
the “gap” between these points converges to 0: an upper bound for this rate

of convergence is needed.

To prove Lemma 3.1, we will focus first on the LSE because it is some-
what easier to handle through the simple form of its characterization. The
arguments for the MLE could be built upon those used for the LSE, but in
this case, one has to deal with some extra difficulties due to the non-linear
nature of its characterization.

We start first by describing the difficulties of establishing this result for
the general case k > 2.
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4.1. Fundamental differences

Let 7,7 and 7,7 be the last and first jump points of the (k — 1)-st deriva-
tive of the LSE g,, located before and after zy respectively. To obtain a
better understanding of the gap problem, we describe the reasoning used
by GROENEBOOM, JONGBLOED, AND WELLNER (2001B) in order to prove that
mF — 77 = O,(n~1/?) for the special case k = 2. The LSE §, is characterized

: >Yn(z), 20
H,(z) " = . y (4.1)
=Y, (x), if x is a jump point of g,
where H,(z) = [ (z n(t)dt and Yy, (z) = [ Gn(t)dt. On the interval
[, 7h), the function g, is constant since there are no more jump points

in this interval. This implies that H,, is polynomial of degree 3 on [r;,,7;1).

But, from the characterization in (4.1), it follows that
Hy(ry) = Ya(ry),  Hy(r) =Y, (7).

These four boundary conditions allow us to fully determine the cubic poly-

nomial H, on [r,7;7]. Using the explicit expression for H,, and evaluating it

TL’TL

at the mid-point 7 = (7, +7,7)/2, GROENEBOOM, JONGBLOED, AND WELLNER
(2001B) established that

(7)) = Y, (7)) —;Yn('r;[) _ Gy(ry) ; Gn(T,) (e 17,

Groeneboom, Jongbloed and Wellner refer to this as the “mid-point prop-
erty”. By applying the first condition (the inequality condition) in (4.1), it
follows that

Yo (r, ) + Yn(7'+) Gn(Trj—) — Gu(ry)
2 8

The inequality in the last display can be rewritten as

Yo(r,) +Yo(r) _ Go(rd) — Go(ry)
2 8
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where Gy and Yy are the true counterparts of G,, and Y,, respectively, and
E, is a random error. Using empirical process theory, GROENEBOOM, JONG-

BLOED, AND WELLNER (2001B) showed that
[Enl = Op(n™%) + op((rf — 7)) (4.2)

On the other hand, GROENEBOOM, JONGBLOED, AND WELLNER (2001B) es-

tablished that there exists a universal constant C > 0 such that

Yo(r,,)) + Yo(r,) _ Go()) = Go(7,) (rF— )
2 8 n n

= —=Cy(zo)(ry — ) + op((7f — 7)), (4.3)

Combining the results in (4.2) and (4.3), it follows that

TTT -7, = Op(n_1/5)-

The problem has two main features that make the above arguments work.
First of all, the polynomial H,, can be fully determined on [r;,7;] and
therefore it can be evaluated at any point between 7,; and 7,5. Second of all,
it can be expressed via the empirical process Y,, and that enables us to “get
rid of” terms depending on g, whose rate of convergence is still unknown at
this stage. We should also add that the problem is symmetric around 7,, a

property that helps establishing the formula derived in (4.3).
When k > 2, it follows from the characterization of the LSE given in
(k—1) __

(2.12), that for any two successive jump points of g, /, T,

—, 7.7, the four

equalities
2), and Hy (1) = Y ()

still hold. However, these equations are not enough to determine the poly-
nomial H,, now of degree 2k — 1, on the interval [r,, 7;7]. One would need
2k conditions to be able to achieve this. [We would be in this situation if we
had equality of the higher derivatives of H, and Y,, at 7,7 and 7,7, that is
B (7)) =YP (), HP () =Y (7)) (4.4)

n
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for j =0,...,k—1, but the characterization (2.12) does not give this much.]
Thus it becomes clear that two jump points are not sufficient to determine
the piecewise polynomial H,. However, if we consider p > 2 jump points
Tno < -+ < Tpp—1 (all located e.g. after x(), then I:In is a spline of degree
2k—1 with interior knots 7, 1, - - -, 7, p—2; that is, ﬁn is a polynomial of degree
2k —1 on (75, Tn,j+1) for j =0,...,p—2 and is (2k — 2)-times differentiable
at its knot points 7,0,..., 7, p—1. In the next subsection, we prove that if
p = 2k — 2, the spline H,, is completely determined on [Tn,0, Tn,2k—3] by the
conditions

Hy(tni) = Yo(tui), and H) (1) = Yo (Tn.), i=0,...,2k—3.
(4.5)

This result proves to be very useful for determining the stochastic order of
the distance between two successive jump points in a small neighborhood
of ¢ if our Conjecture (1.7) on the uniform boundedness of the error in
the “non-classical” Hermite interpolation problem via splines of odd-degree
defined in (1.6) holds.

4.2. The gap problem for the LSE - Hermite interpolation

In the next lemma, we prove that given 2k — 2 successive jump points 7, ¢ <
<o < Tpok—3 of g,(f*”, H,, is the unique solution of the Hermite problem
given by (4.5). In the following, we will omit writing the subscript n explictly

in the knots, but their dependence on the sample size should be kept in mind.

Lemma 4.1 The function H, characterized by (2.12) is a spline of degree

2k — 1. Moreover, given any 2k — 2 successive jump points of [}7(12";_1)

, To <
. < Top_3, the (2k — 1)-th spline H, is uniquely determined on [70, Tok—3]
by the values of the process Y, and of its derivative Y, at 1o, ..., Top—3-

f{7(12k—1)

Proof. We know that for any jump point 7 of , we have

H,(r)=Y,(r) and fNI;L(T) =Y, (7).
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This can be viewed as a Hermite interpolation problem if we consider that
the interpolated function is the process Y,, and that the interpolating spline
is H, (see e.g. NURNBERGER (1989), Definition 3.6, pages 108 and 109).
Existence and uniqueness of the spline interpolant follows easily from the
Schoenberg-Whitney-Karlin-Ziegler Theorem (SCHOENBERG AND WHITNEY
(1953); Theorem 3, page 529, KARLIN AND ZIEGLER (1966); or see Theorem
3.7, page 109, NURNBERGER (1989); or Theorem 9.2, page 162, DEVORE AND
LORENTZ (1993)).

In the following lemma, we prove a preparatory result that will be used
later for deriving the stochastic order of the distance between successive
knots of g, in a neighborhood of xg. Given a fixed set of points 7q, - - -, Top_3,
let Hj denote again the spline interpolation operator which assigns to each
differentiable function f the unique spline Hy[f] with interior knots 74, -,
Tor_4 and degree 2k — 1, and satisfying the boundary conditions given in
(1.6).

Lemma 4.2 Let T € U?i0_4(7i,7i+1). If ex(t) denotes the error at t of the

Hermite interpolation of the function x?*/(2k)!; i.e.,

t2k .’E2k
ex(t) = g~ P [W] (t

then
967 (7)en(7) < En + Ry (4.6)

where E,, defined in (4.8) is a random error and R,, defined in (4.9) is a

remainder that both depend on the knots 1y, ..., Tor_3 and the point T.

Proof. Let 7 € U?*4(7;, 7;41). From the characterization in (2.12) and the

fact that H,, = Hy[Y,] on [10, Tok—3], it follows that
Hi[Y,](T) > Y, (7).
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Let Yy the true counterpart of Y,; i.e., Yp(z) = [; (x—t)*1/(k—1)! go(t)dt.

Then, we can rewrite the previous inequality as
Hi[Yol(T) = Yo(7) = —En(7) (4.7)
where
En = Hy[Ys — Yo)(7) — [Yo — Yo)(7), (48)

Based on the working assumptions, the function Yj is (2k)-times continu-
ously differentiable in a small neighborhood of xy. Now, Taylor expansion

of Yy(t), with integral remainder, around 7 up to the order 2k yields

2k—1 —\j 2k—1
t—7) N 7'2k73(t_u)
10 = X e+ [ g el e
j:

for all ¢t € [19,Tox—3]. Using this expansion along with the fact that the
operator Hj is linear and does preserve polynomials of degree 2k — 1, we
can rewrite the inequality in (4.7) as
1 T2k—3 el = (k)
G Pl — w3 o wau > -5,
In the previous display, Hy[(t — u)ik_l](%) is the Hermite spline interpolant
of the truncated power function ¢ +— (t — u)ik_1 (u is fixed), evaluated at

the point 7. Now, we can rewrite the left side of the previous inequality as
T2k—3 1 el = (k)
/? mHk:[(t —w) (7)) 9o (u)du

= O gy [ - w2

b [ Pl 02 (00 - o)

— g (%)ﬁ?{k { / - u)?f—l]du} (F)+Ry  (49)

using once again linearity of the operator Hj. The remainder R, is equal to

the Hermite interpolant of the function

t —u 2k—1
" 1— 1)! /T (t(% —) 1)! (95 (u) = g (7))
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at the point 7. On the other hand, we can further rewrite the integral term
in (4.9) as

L NYA [ / . u)ik_ldu} (7)
(2k —1)! -
S — [ / (- u)%_ldu] () = ot [ (- 7] (7).

(2k —1)! - (2k)!
In other words, the integral term in (4.9) is nothing but the value of the
Hermite spline interpolant of the function t — (¢t — 7)2¥/(2k)! at the point
7. As claimed in the lemma, this value is also equal to —ex(7),where ey
the error of the Hermite interpolation of the function 22*/(2k)!. Indeed, let
Por_1(t) = (t —7)% /(2k)! — t? /(2k)!. Since Py, is a polynomial of degree
2k — 1, we have

=\2k 2k
|| O = || 0+ P

If t =7, Po_1(7) = 0 — 72K /(2k)! = —72% /(2k)!, which implies that

=\ 2k 2k —2k
e [Eo T 0 = | | ) - = et
|
The error e; defined in Lemma 4.2 can be recognized as a monospline of
degree 2k with 2k — 2 simple knots 79, - - -, Tox_3. For a definition of monos-
plines, see e.g. MICHELLI (1972), BoJANOV, HAKOPIAN AND SAHAKIAN (1993),
NURNBERGER (1989), page 194 or DEVORE AND LORENTZ (1993), page 136.

In the next lemma, we state an important property of eg.

Lemma 4.3 The function x — eg(x) has no other zeros than 7, ..., Tok—3

in [10, Tog—3). Furthermore, (—1)kek >0 on |19, Top—3)-

Proof. See Appendix 3. |

In Lemma 4.2, the key inequality in (4.6) can be rewritten as
(—1)%g$?(7) - (~1)Fep(7) <En + Ry, (4.10)
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where the first factor on the right side is already known to be positive by
k-monotonicity of gg. Lemma 4.4 and Lemma 4.5 are the final steps toward

establishing the order of the gap for the LSE based on the Conjecture (1.7).

Lemma 4.4 If Conjecture (1.7) holds, then E,, in (4.6) of Lemma 4.2 sat-

isfies

[En| = Op(n /) 4 0y (a3 — 10)**).

Proof. We have
En = Hk[Yn - %](7—_) - [YTL - YO] (7__)

Using the (generalized) Taylor expansion of Y,,(t) and Yy (¢) around the point
7 up to the order k — 1 yields

k _ .
Vo) -Yolt) = 5= vO)m) v

4!

|
—
—~

tlr— )k
+ @ 46, - Go)e),

and therefore,

B, = 7| /;ﬁu—x)k—ld(«;n—coxw} 7)

t*l)k71

= Hp [LTQk_B gt(2)d(G,, — Go)(:c)} (), where g;(x) = ((kTJr)'
= /7%3 Hilg:(x)](T)d(G,, — Go)(z), by linearity of Hy,

- /72k3 f2(2)d(Gn — Go)().

0

Given x € [T, Top—3), fz(z) = Hk[gt(x)](%)l[;ﬁ%_s} (x), where Hy[g¢(x)](T) is
the value at 7 of the Hermite spline interpolant of the function ¢ — g¢;(z) =
(t — )51 /(k —1)!. Thus, f-(z) depends on the knots 7, - - -, Tog_3, and the
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point s = T € [19, Tok—3), and can be viewed as an element of the class of

functions

1
fzﬁo?R = {fs(x) = PRI y2k—3(x) T € [yo, Yor—3l, S € [Yo,Y2k—3),
rg—0<yo<y1 < - <yo—3<yo+ R} (411)

In view of Conjecture (1.7) together with the triangle inequality, there exists

a constant C' > 0 depending only on k such that

|fs(55)| < C(y2k—3_yO)k_ll[yo,yzk—s}(x)

(1)

and hence the collection }"y(), r has envelope function F, g given by

Fyor(x) = CR* My 40y (7).

1)

Furthermore, ]:?50  is a VC-subgraph collection of functions (see Lemma 7.1
in Appendix 2, for a detailed argument), and hence by van der Vaart and

Wellner (1996), Theorem 2.6.7, page 141

1) K\"
sup V(e Pllg2 £y 12(Q) < (—)

€

for 0 < e <1 where Vj, = 2(V(Fyy,r) — 1) with V(F,, r) the VC-dimension
of the collection of subgraphs and the constant K depends only on V (Fy, r).
It follows that

sup/ \/1+10gN (el Fyo,rllQ,2, yo)R’L (Q))de < 0.

On the other hand, if yo € [z¢9 — J, 29 + J] (an event which occurs with
increasing probability) for some small § > 0, then we can find a constant
M > 0 depending only on d, and go such that 0 < supscpy, yo+5 9o(t) < M.

Therefore,

yo+R
EF? p(X1) = C*R**Y / go(x)dz < C?MR*1.
Yo
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Application of Lemma 7.1 with d = k and o« = k yields
Eq| = op((T26-3 — 7’0)%) + Op(n_Qk/(2k+1))-

Lemma 4.5 If the bound in (1.8) holds, then R,, of Lemma 4.2 satisfies

IR, | = 0p((Tok—3 — 70) ).

Proof. By definition, R,, is the value at 7 of the Hermite spline interpolant

of the function
- w (k)
—_ — T 4.12
tm [ S w0 - o (P (1.12)
By (1.8), there exists a constant D > 0 depending only on k such that

R, <D sup |g57(t) — g7 (7)] (rans — 70)%*.

t€[70,T2k—3]

In the previous bound, we used the fact that the (2k)-times derivative of
the function in (4.12) is g(()k) (t) — g(()k) (7). But, note that this derivative is
op(1), which follows from uniform continuity of g(()k) on compacts. This in

turn implies the claimed bound. |

Proof of Lemma 3.1 for the LSE. Let j € {0,...,2k — 4} be such that
[Tjo, Tj0+1] is the largest knot interval; i.e., Tjo+1 — Tjo = maxogjggk_4(7'j+1 -
7;). Let a = 19, b = 3. Using the inequality in (4.10) and since the
bounds on R,, and E,, are independent of the choice of 7 in U?i64(7'j, Tj41)s

it follows that

sup (—1)kek(f) < Op(n_%/(%ﬂ)) + 0p((T2k—3 — T0)2k).

TE€(TjTig+1)

Now, on the interval [7j,, Tj,+1], the Hermite spline interpolant of the func-

tion 22* /(2k)! reduces to a polynomial of degree 2k — 1. On the other hand,
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2k

the best uniform approximation of the function z°* on [}, 7j,41] from the

space of polynomials of degree < 2k — 1 is given by the polynomial

2%k
o g2k <Tj0+1 - Tjo> L <2$ — (7o + Tj0+1)> (413)
2 922k—1 Ts - T
Jo+1 Jo

where Ty, is the Chebyshev polynomial of degree 2k (defined on [—1, 1]), see,
e.g., NURNBERGER (1989), Theorem 3.23, page 46 or DEVORE AND LORENTZ

(1993), Theorem 6.1, page 75. It follows that

_ Ty 2%
sup (—1)k€k(T) > ‘ —=—— 1 (Tjp+1 — Tjo) (4.14)
TE(Tjo Tig+1) 2451 (2k)! o0 7 ”
1 2%k
= m(%ﬂ ~ Tjo)

since ||T5%||co = 1. But,

2%k—4
Tok—3 — T = Z (Tj+1 - Tj) < (2k — 3)(Tjo+1 _ Tjo)-
j=0
Hence,
s (~1)fex() > : (ot — 7o)
; M=ok — 3)2k24k—1(2k)! 2%k—3 — 70)" -

T€(Tjo,Tig+1)

Combining the results obtained above, we conclude that

(—1)k9(()k)(x0) 2k —2k/(2k+1) 2k
2kodk—1 -3 = Yp D -3 =
Ok — 3)2at1(gg) (72k-3 ~T0)7 S Opln )+ 0p((T2k—3 = 70)™)

which implies that 7o, _3 — 170 = Op(n~1/(k+1)), m

4.3. The gap problem for the MLE

To show Lemma 3.1 for the MLE, one needs to deal with an extra diffucutly
posed by the nonlinear form of the characterization of this estimator, given in
(2.14). In the following, we show how one can get around this difficulty. The
main idea is to “linearize” the characterization of the MLE, and hence be

able to re-use the arguments developed for the LSE in the previous subsetion.
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Lemma 4.6 Let 19, --,Tor_3 be 2k — 2 sucessive jump points of gff‘”,

Then,
Hk:[Yn] - Yn > gO(TO) (fn - Hk:[fn] + An - Hk: [An])

on [19, Tog—3), where Y,, is the same empirical process introduced in (2.10),

c bla—t)1 /1 1 R
wor == [ 5 (52~ ) 4600~ Gro)

and

de) = [ EI (- ) @t - Guto)

o (B=1! \gn(t)  go(70)

Proof. Let G, (z) = Jo Gn(s)ds. The characterization in (2.14) can be

rewritten as

Tz -t >0, forxz>0
[T G - Gate) STy
0 gn(t) =0, if z is a jump point of g, .

(4.15)

(k—1)

Note that when z is a jump point of § , the two parts of (4.15) imply

that the first derivative of the function on the right side is equal to 0 at the

jump point zx; i.e.,
T —¢ k—2 .
/ % d(Crn(t) — Gn(t)) = 0. (4.16)
0

For = > 0, let

Note that H, # H, defined in (2.13), and on [ry, Tor_3], H, is a spline of

degree 2k — 1 with knots 79, - - -, Tok_3. For € [r9, Tor_3], we can write

T — k—1 R
/ %d@n(w—«;n(t»
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B 1 xx_ k=1 g0 (4) _
_ /O( 11 d(Go(t) — G (1))

go(70)

[ (- )G - 6a0)

gn(t)  go(7o)

_ @) = Ya@) o e L1 Vo
Sy AR o) EECRE

Note that

pua) = [0 (S - s ) Gl - Gule)

an()  go(m0)
is a polynomial of degree k — 1. From (4.15) and (4.16), it follows that H,,

is the Hermite spline interpolant of the function
Yo + g0(0) { =pn + fu + A}
such that
Hy > Yo + g0(70) (—pn + fo + An).
Hence,
Hio (Yo + 90(10) {—pn + fr + An}] = Yo + g0(10) {—pn + fn + Ar}
on [19, Tok—3], or equivalently
Hi[Yn] = Yo > go(70) (fa = Hilful + An = Hi [An]) .

As Hi[Y,] —Y,, has been already studied for proving the order of the gap
in the case of the LSE, the final step is to evaluate each of the interpolation

errors
& = fo — Milfa] and & = A, — Hi[A). (4.17)
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Lemma 4.7 Let & and & be the interpolation errors defined in (4.17).
Then,

_ 2k
€11l = 0p((rar—s = 70)*) and €21l = 0p((T26—5 = 10)*) + Op (n~557).

Proof. See Appendix 3.

Proof of Lemma 3.1 for the MLE. From our study of the distance
between the knots of the LSE, and using very similar caluculations we can

show that for all 7 € U?iﬁ(q, Tjt1)
(=1 gd () (—DFer(7) < En + Rn — go(70) (€1(7) + E2(7)),
which implies that by the results obtained for the LSE
2k — g
D(ri-g = 10)* (L +0,(1) < Op (n7251 ) + gol(ro) (IE1]loe + [1€2]]oc)

for some constant D > 0 depending on k and xy. Hence, it follows from

Lemma 4.7 that
2k _ 2k
D(1a—3 —710)" (1 +0p(1)) < Op (n Tcﬂ)

which yields the order n=/(2k+1) for the distance between the knots of the
MLE in the neighborhood of z. |

5. Conclusions and discussion

As noted in Section 1, one of the motivations for this work was to try to
approach the problem of pointwise limit theory for the MLE’s in both the
forward and inverse problems for the family of completely monotone densi-
ties on RT. This is one very important special case of the family of nonpara-
metric mixture models with a smooth kernel as was mentioned in part (b)
of our discussion in Section 1. JEWELL (1982) established consistency of the

MLE’s of g € Dy and the corresponding mixing distribution function F' in
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this setting, but local rates of convergence and limiting distribution theory
remain unknown. Our initial hope was that we might be able to learn about
the problem with £ = oo by studying the problem for fixed k£, and then
taking limits as k — oo. Unfortunately, we now believe that new tools and
methods will be needed. Here is the state of affairs as we understand it now.

In terms of the rates of convergence, and localization properties, our de-
velopment here shows that the local behavior of the estimators near a fixed
point g > 0 becomes dependent on an increasing number of jump points or
knots in the spline problem. In other words, one needs to consider 2k —2 con-
secutive jump points (knots) 79, < -+ < Ty, 2k—3 of the (k —1)-st derivative
of the estimators in a neighborhood of g in order to be able to find a bound
on Tpj4+1 — Tnj,J = 0,...,2k —4 as n — oo. Thus the problem becomes
increasingly “less local” with increasing k, and this leads us to suspect that
the situation in the k = oo (or completely monotone) problem might be only
“weakly local” or perhaps even “completely non-local” in senses yet to be
precisely defined.

Another aspect of this problem is that although the MLE is asymptot-
ically equivalent to the (mass unconstrained) LSE for each fixed k if our
conjecture (1.7) holds, they seem to differ increasingly as k increases. For
k =1, the MLE and the LSE are identical; for k£ = 2, the MLE differs from
the (mass unconstrained), but the LSE always has total mass 1. For k > 3,
the MLE and LSE differ, and, moreover, the total amount of mass in the
unconstrained LSE for n = 1 is My = ((2k — 1)/k)(1 — 1/(2k — 1))k=1 7
2e~1/2 ~1.21306... # 1 as k — oo. We do know know how the mass of the
unconstrained LSE behaves jointly in n and k, even though (by consistency)
the mass of the LSE converges to 1 as n — oo for fixed k. We also do not
even know if the unconstrained LSE exists for the scale mixture of exponen-
tials, even though it is clear that the constrained estimator (defined by the
least squares criterion minimized over Dy, rather than Mj) with mass 1 does

exist. Since our current proof techniques rely so heavily on showing equiv-
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alence between the MLE and the (unconstrained) LSE, it seems likely that
new methods will be required. We do not know if the (mass) constrained
LSE’s and the MLE’s are asymptotically equivalent either for finite k£ or
for £ = oo. Our current plan is to study the constrained LSE’s with total
mass constrained to be 1 for finite sample sizes, to investigate the asymp-
totic equivalence of these mass-constrained LSE’s and the MLE’s, and to
(perhaps) extend this study to k& = oo via limits on k. We do not yet know
the “right” Gaussian version of the estimation problem in the completely
monotone case.

Another way to view these difficulties might be to take the following
perspective: since more knowledge is available concerning the MLE’s for
the families Dy with k finite, and since D, is the intersection of all the
Dy’s (and hence well-approximated by Dy with k large), we can fruitfully
consider estimation via model selection, choosing k£ based on the data, over
the collection U2 | Dy,.

In summary, we have tried to shed some more light on the local behav-
ior of two nonparametric estimators of a k-monotone density, the Maxi-
mum Likelihood and Least Squares estimators. We have shown that they
are both adaptive splines of degree k — 1, with knots determined by the
data and their corresponding criterion functions. When (—1)kg(()k) (x0) > 0,
the distance between their knots in a neighborhood of a point xy > 0 was

—1/(2k+1) §f a conjecture concerning the uniform boundedness

shown to be n
of the interpolation error in a new Hermite interpolation problem holds, and
once this control of the distance between the knots is available, pointwise
limit distribution theory follows via a route paralleling previous results for
k = 1,2. Although we do not exclude the possibility that this order could
be established via other different approaches, we hope that the techniques
developed here demonstrate that there could still be many interesting and

powerful connections between statistics and approximation theory.

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaowi and Wellner/k—monotone: limit distribution and spline connection 34

6. Appendix 1 - Proofs for Subsection 3.2, and proof of Theorem
3.2

The proof of Proposition 3.1 will rely crucially on Proposition 6.1. Con-
sider the event J, = JT(LD N JT(LQ) where JT(Li), 1 =1,2, are defined by
JV = IO (xg, k, M)
= {there exist (k4 1) jump points 7,1,...,Tp k+1
(not necessarily successive) satisfying
xo — n~ V@R < Tnl <0 < Tpkt1 < 2o+ Mn =1/ (2k+1)

fen 1/ @k+1) < il — Tad < Mn—l/(2k+1)}’
and

T = I (. kyej) = { inf

tE[Tn,1,Tn, k+1]

a0 - g8 )] < Cjn—(k—j>/(2k+1>} .
Proposition 6.1 Suppose that (—1)kg(()k) (zg) >0 and g(()k) is continuous in
a neighborhood of xg. Let g, be either the MLE §, or the LSE g, and
let 0 < j < k — 1. Suppose also that [;° y~12dGo(y) < oo holds. Then, if
Congjecture (1.7) holds, for any e > 0, there exists M > 0 and c¢; > 0 such
that P(J,) > 1 — € for all sufficiently large n.

Proof. Fix € > 0. In what follows, we consider only the LSE since the
result in the case of the MLE can be proved similarly by using the same
perturbation functions and uniform consistency of the estimator. We will

start with j = 0. For ease of notation, we will write the jump points of

gﬁl’“*” without the subscript n. Let 71 be the first jump point of gﬁl’“*” after
zo — n~ /@D 7 the first jump point after 7 +n /D m ) the

first jump point after 7, + n~/2*+1) By Lemma 3.1, there exists M > 0
such that

0< T — 71 < Mn~1/CGEHD
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with probability > 1 —e. Note that by construction 7411 — 7 > fn 1/ (@k+1)

Fix ¢ > 0 and consider the event

inf  |gn(t) — go(t)] > en =R/ GE+D), (6.18)
tE[ﬁ,T]H_ﬂ

On this set and for any nonnegative function g on |71, 7x+1], we have

/ ) - go(t))g(t)dt‘ > en—k/(2k+1) / e (6.19)

1
Now, let B be the B-spline of degree k — 1 and with support [z1, zg1] (for
definitions and basic material on B-splines, see e.g. NURNBERGER (1989),

Theorems 2.6 - 29.9, pages 98 - 99). The B-spline is given by
B(t) = [z1,- - wp ) (- 1) k(t = )

where [to, - - -, t;]g is the divided difference of degree m at the points tg, - - -, t;
ie.,

[tla e 7tm+1]g - [t()a e 7tm]g
tm+1 — to

[tolg = g(to) and [to, -, tmt1lg =

9

(see e.g. DEVORE AND LORENTZ (1993), pages 120 - 123, or DE Boor (2001),
pages 3-12)). After some algebra, we find that B can be given more explictly
by

+oo

(t—7)h! ' (t — )
Hj;él(Tj —71) ijﬁk;(Tj — k) )

B(t) = (—1)kk:<
for all t € [Ty, Tk+1]. Let |n| > 0 and consider the perturbation function

pt)= ] (7-m)xB@).

1<i<j<k+1

It is easy to check that for |n| small enough, the perturbed function

gn,n(t) = gn(t) + Up(t)

is k-monotone on (0,00). Indeed, p was chosen so that it satisfies pU) () =

p(j)(Tk+1) =0 for 0 < j < k — 2, which guarantees that the perturbed
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function g, , belongs to C*=2(0,00). For 0 < j < k — 3, the properties of

) ~(4)

strict convexity and monotonicity of (—1)/g;’ on (0,00) are preserved by

gj?(?]% as long as || is small enough. For k — 2, (—1)"3_2@&]{72) is a convex
and nonincreasing on (0,00) piecewise linear function. Now note that p is
a spline of degree kK — 1 whose knots are included in the set of knots of g,.
Moreover, for small values of || it can be easily checked that (—1)¥2 gg’f,: 2)
is nonincreasing and convex on (0, c0).

It follows that

This implies that

The previous equality can be rewritten as

/ () @nlt) — go(t)) dt / M PG () — Golt).

1 T1

Taking g = p in (6.19), we obtain

/Tk+1p(t)d(Gn(t)_G0(t))‘ > Cn_k/(2k+1) /Tk+1p(t)dt

1
= e M) TT (1 —m) (6:20)
1<i<j<k+1

> onk/(2h+1) (nfl/(QkJrl)) k(k+1)/(26.21)

— o~ (BHRIR/(2(2k+1))

where in (6.20), we used the fact that B-splines integrate to 1, whereas in
(6.21) we used the facts that there are k(k + 1)/2 terms in the product
H1§i<j§k+1(7j — 7;) and that 7; — 7; > n~ /@) 1 < < j <k+1. Let
0<yo<yi < - <yk—1 <y be (k+ 1) points in (0,00) and consider the

function fy, 41,501,y defined by

-----

kl
g — t)E1

fyo,---,yk(t) = (_1)kk H

0§i<j§k 1:0 J#l (5 — y)
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k—1
= 2oyl =t (6.22)
j=0
where
aj = (_1)kkH0§l<l’§k(yl’ - )

Hj’yﬁj(yj - ?/j’)

Let R > 0 and consider the collection of functions

2
F o = (oo @ 90 <91 < -+ <ypo1 < yo + R} (6.23)
where fy, ., isas defined in (6.22). Here the components of y = (yo, . . ., Y2x—3)

)
i

Note that for j =0, ..., k, the product Hj/#j(yj/ —y;) contains k terms and
hence «; is a product of k(k+1)/2 —k = k(k —1)/2 terms that are at most

k

play the role of the 7’s. We first find an envelope function for the class ]:ZE(Q)

R distant from one another. It follows that
aj < kRFED/2 for j=0,... k.

Thus the functions being summed in (6.22) have common envelope kR**=1/2 (304

R— t)li_ll[yo,yOJrR] (t), and this yields the envelope
Fyo,R(t) = kQRk(kil)/Q(yo + R - t)i_ll[yo,yoJrR} (t)

for the class ‘7:353)1%' Furthermore, ]-';?R is a VC-subgraph collection of func-

tions (see Lemma 7.1 in Appendix 2 for details of the argument), and hence
by van der Vaart and Wellner (1996), Theorem 2.6.7, page 141,

2 K\
wup N (el Ey rlloa Fiti 12(@) < (T)

€

for 0 < € < 1 where V}, = 2(V(F) — 1) with V(F) = V(Fy,,r) the VC -

dimension of the collection of subgraphs. Therefore

1
SLle/O \/1 +108(N (€ll By Q.2 Fo s La(@) ) de < .
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On the other hand, if yo is in a small neighborhood [z — 4, z¢ + J] for some
small § > 0, there exists some constant C' > 0 depending only on §, R and
go(xo) such that 0 < go < C on [yo,yo + R] for all yo € [xg — I, 20 + 0]. It
follows that

yo+R
EF? p(X1) < K'RFED / (yo + R — 2)*2go(x)dax
Yo

KC kKtC
< (k—1) p2k—1 _ k(k+1)—1
- 2k -— IR i 2k —1 i

Therefore, by vAN DER VAART AND WELLNER (1996), Theorem 2.14.1, we

2
E{ < sup ‘(Gn - GO)(fyo,yh---,yk) ) }
Fuosvrses yke‘r-(?,R

< 5J_~71f207R()<1) = O(n~ ' RFEHD-1Y, (6.24)

have

for some constant K’ depending only on k, x(, and 4. Application of Lemma 7.1
in Appendix 1 with d = k(k + 1)/2 and « = k yields

< e(yr —yo) B2+ 0, (n*(3+k>k/(2(2k+1>))

(B = ) i)

uniformly in yg, ..., yi. It follows that

Th+1
/ p(t)d(Gn - GO)(t)‘ = Op <n7(3+k)k/(2(2k+1))>

1

and we can choose ¢y = ¢ to be large enough so that the probability of the
event (6.18) is arbitrarily small. This proves the result for j = 0.

Now let 1 < j < k — 1. This time we will need (k + 1 + j) jump points
T1 < -+ < Tht144- As for j = 0, 7y is taken to be the first jump point of

(k—1) 2k+1) 1/(2k+1)

n after zo — n~Y/( , T2 the first jump point after 7 + n~

and so on. Notice that the existence of at least £ + 1 + j jump points is
guaranteed by the fact that g(()k) (zo) # 0 which implies that with probability

1, the number of jump points tends to infinity with increasing sample size
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n. Consider the function
W)= I  (@m-m)xB;®
1<i<j<k+j+1
where Bj is the B-spline of degree k + j — 1 with support [71, Tr4144]; i-e.,
k+j—1 k+j—1
(-0t (e 05 >

[ljm(m—7) I (75— Tots)

Bj(t) = (—1)k+j(k+j)(

It is easy to check that p; = q](-j ) is a valid perturbation function (it is a

spline of degree k — 1) since for |n| small enough, the function

gn,n,j = gn + np;

is k-monotone. It follows that

lim Qn(gn,n,j) - Qn(gn)

n—0 n

=0

which implies that

/Tk+1+j - (t)(gn (t) B go(t))dt _ /Tk+1+j pj(t)d(Gn(t) — Go(t))dt.

1 T1
By successive integrations by parts and using the fact that q](-i) (r1) = q](-i)
0 fori=0,...,k+ j — 2, we obtain
Tk+1+j . () () Thk+1+4j
[ evaoa o - o o= [ piodE.0 - Gt

1 1

(Tht144) =

Therefore, if we assume that there exists ¢ > 0 such that

inf
tE[T1,Thr144]

39(t) — g8 (1)] > e n= =D/ kD (6.25)

then

[ niwa@an - Go(t))dt‘

> e n-(b=)/Ck+D) / a5 (t)dt
T1

> ¢ (k + §) n~ =9/ @k+D) (n—l/(2k+1>

= ¢ (k+j) n QU=+t (k+5+1))/(2(2k+1))

) (k4+1+47)(k+2+j)/2

= ¢ (k+ j) n~ Gkt E+)?)/2RR+)
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Using similar empirical process arguments as in the proof for j = 0 together
with an application of Lemma 7.1 with 2d = 3k — j + (k +j)? and o = k, it
follows that

Tk+1+5 . .
[ n0a@. 0 - Guttnar] = 0, (w ks )

1

and the result for 1 < j < k — 1 follows. |

With Proposition 6.1 in hand we are prepared for the proof of the rates
Proposition 3.1.

Proof of Proposition 3.1. We will use induction starting from the highest
order of differentiation k£ — 1. The techniques used here are very much anal-
ogous to the ones used in the case kK = 2 in GROENEBOOM, JONGBLOED, AND
WELLNER (2001B). But this was possible mainly because of the result estab-
lished in the previous lemma. We begin by establishing the rate for j = k—1.
Let M > 0 and 0 < € < 1. We consider two sequences of (k+ 1) jump points

Ti,1s-+sTht1,1 and T12,...,7Tp41,2 as described in the previous proposition,
where 711 is the first jump point of gﬁf“*l) after zog + Mn~1/@k+1) and T1,2

2k+1) - Similarly, we define two other

is the first jump after 7411 + n=1/(
sequences Ti 1 ...,Tk+1,—1 and 71 _2,...,Tx4+1,—2 to the left of xg. By the
previous theorem, we can find ¢ > 0 so that,

inf (g2 t) — g8 (1)) < en~ YD

tE[T1,6,Tht1,i)

for ¢+ = —2,—1,1,2 with probability greater than 1 — €. Let & and & be
the minimizer of ’57(1/9—2) — g(()k_Q)\ on [71,1,Tk+1,1] and [71,2, Tk+1,2] respec-
tively. Define £_1 and &_o similarly to the left of zy. For all ¢ € [z —

Mn=V/CEHD) g0 4 Mn~Y/(2k+D] e have with probability greater than 1 —e

(D" () < (D) ()

(—1)k2F2) (&) — (—1)k2F ) (¢y)
& —&

<
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_ (DR (&) = ()P0 () + 2en7H GRHD

L—&
< (_1)1@729(()16—1)(52) 4+ 2en 1/ (2k+1)

since & — & > n~ /(1) Similarly, with probability greater than 1 — ¢, we
have that

(=DF20 (1) > (1) 250D (=) = (<1)F 2V (6p) — 20m /D,

Now, using the fact that é1o = 29 + Op(n~"/ 1) and differentiability of
g(()k_l) at the point z(, we obtain (3.1) for j = 0. Using similar arguments
as in the proof of Lemma 4.4 in GROENEBOOM, JONGBLOED, AND WELLNER
(2001B), we can show (3.1) for j = k — 2 which specializes to
2 G (o + D) — gl () — = Rl ()
= Op(n*Q/(Q’“H))

for all M > 0. Indeed, since the jump points 7;;,j = 1,....k + 1,1 =
—2,-1,1,2 are at distance from zg that is Op(nfl/(%“)), we can find
with probability exceeding 1 — e, K > M such that & and & are in
[aco—Mn_l/(%H),:co —|—Kn_1/(2k+1)], €9 and 1 in [z — Kn Y@+ g0t
Mn=Y/ (2k+1)]. But we know that, with probability greater than 1 —e¢, we can
find ¢ > 0 such that

98D (E01) — g5 P (Ea)] < en Y ERHD,
Also, with probability greater than 1 — €, we can find ¢ > 0 such that

sup g;k—l)(t) _ g((]’“’l)(xo) < dn Y@k,
t€xo—Kn=1/(2k+1) zo4 Kn—1/(2k+1)]

Hence, with probability greater than 1 — 3¢, we have for any ¢t € [xg —
Mn~Y @R+ g0 4 N =1/ R+

(-1 g2 (1)
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(=122 (&) + (—1)F gV (@)t - &)
(~1)F 2982 (&) — en 2D ((—1)k 268 ()
+Cln71/(2k+1))(t o 51)
(—1)* 28 (o) + (€1 — w0) (—1)* 265 (o)
+ (= &)(— 1) 268" (ap)
_ en~2/ (k1) c’n_l/(2k+1)(£1 _— (6.26)
> (DM (o) + (8= wo) (~ 1) (o) — (e + 26 )n = BRHD,

AV

Y

Y

where in (6.26), we used convexity of (—l)k*Qg(()k_m “from below”. On the

—o (k=2
k2g(() )

other hand, using convexity of (—1) but this time “from above”,

we have
(—1)25%2) (1)
(D252 (&) — ()25 P (e y)

< (D) + . (t=¢-1)
< (_1)k—29((]k72)(§71)+Cn—2/(2k+1)
_1\k—2 (k=2) (L 1\k—2 (k—2) —2/(2k+1)
G Dl (3 <2_5_01 (€) +2en72B0
< (=R 28 (@) + (61 — 20)(—1)F 28 ()
¥ 21— 2 ()2 w)

+ (—1)k72g(()k71) (51)(75 — 5_1) =+ 20n72/(2k+1)M
§1— &1

)+ (621 — 20)(— 1) 28" (20)
(621 —a0)2(~1)F 2" (v)

1
2
+ ((_1)19—29((]#1)(%0) JrC/n_l/(2k;+1)> (t—&1)+ 26n—2/(2k+1)w
§1— &

IA
~—~
|
—_
S—
T
no
)
o
~~
8
(=)

(—1)F 265 (o) + (t — 20) (= 1)* 298" (0)

+ (& + 2+ 2Kc’> n =2/ (k+1)
2

IN

where v € (€-1,20), D1 = SUPyefay-sats) 199 (2)] and [0 — 8,0 + 8] can

be taken to be the largest neighborhood where g(()k) exists and is continuous.
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In all the previous calculations, n is taken sufficiently large so that [zg —
Kn~ V@D g0 4 Kn =1/ k4] C (29 — 6,20 + ). We conclude that (3.1)
holds for j = k — 2. Now, suppose that (3.1) is true for all j* > j —1; i.e.,
for all M > 0

k=1 _(i—j")/(2k+1) (8

—(5") —1/(2k+1) n 90 (20)
sup g, ’(xo +n t) — —
A D ]

i=]
= Op(n—(k—j/)/(%ﬂ)).

=’

We are going to prove (3.1) for j — 1. We assume without loss of generality
that £ and j — 1 are even. In what follows, €41 denotes the same numbers
introduced before but this time they are associated with gﬁi 71); i.e., for any

0 < e < 1, there exist ¢ > 0 and K > M such that
9970 (€x1) — g5 (Ex)| < en(TIED/CERY

with probability greater than 1 — € and where & € [xg + Mn~V@k+1) g0 4
Kn~YV@D] and €1 € [zg — Kn~ /@D g0 — Mn~Y kD] Now, using
the induction assumption, we know that we can find ¢’ > 0 such that, with

probability greater than 1 — ¢,

k-1 nf(ifj’)/(2k+1)g(()i) (o)

a0") —1/(2k+1)4y _ i—j'
< ey - S,
S Clnf(kfj/)/(Qkﬁ’l) (627)
for all |[t| < M and j" > j — 1. Using convexity of gﬁi U “from below”, we

have for all [t — 29| < Mn~/ (k1) with probability greater than 1 — 2¢,

()
> gi M E)+aP et -6+ + (kij)!g;’“‘”(&)(t—&)k‘j
(G-1) : < 9 (x0) —j
> gf V(&) — en TIED/EREL R Y
i=j ’

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaowi and Wellner/k—monotone: limit distribution and spline connection 44

1 ), . ez
* (Z (ig—oj(—O)l)!(fl 500)1]1) : 2!&)

(t— &)
(k=)

. . t—&)?
4 k=@ ¢ gy = (h=i=1)/2k+1) { 2!51)

IR ASSVCYAEY (t(; EI;) i (6.28)

(G-

Using Taylor expansion of g; (51) around g(] )(xo), we can write

| | ) |

g(()j_l)(&) = g(()j_l)( 0) + g(()j)(xo)(& — @) + -+ Q%T(jg;?)(ﬁl — @)"
(k) .

e LRt

where v € (g, £1). Using this expansion and the fact that |t — &;| < Kn~V/@k+1)
the right side of (6.28) can be bounded below by

-1

Z;I (2—]-1-1 —20)” ]+1+ZQO e —20) I (t— &)
kz _ 90 (%) ¢ — xO)HA@ g +gék71)(xo)w
= 2! -

Z—j—l

k—j (k)

KP e v .

— (C + C/ E p') n (k—j+1)/(2k+1) + (k‘g—oji(—l—)l)'(él - -TO)k A
p=1 " '

= g9V (@0) + 9 (w0) (t — x0)
(]+1)(

90

+TO) (&1 —20)? +2(51 —z0)(t — &1) + (t— &1)?)

(kl

kj
4. (o Z
p=

- 'p' (&1 — @0)* 7 P(t = &)

—(h—j+1)/(2k+1) 3" (v) k—jt1
_ + J L £ W A— _ —-J
ct+d E i—j+1 )(51 0)
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. . (k—1)
= o 1’<xo>+gé”<xo><t—xo>+---+r§.)§’)<t—xo>’“ :
k—j P
_ c+0/2£'p (k=i +1)/(2k+1) (lle . J:),n‘(’“‘””/@k“)
y2 —J !
p=1

since 0 < & — zg < Kn~/@+1D  Now, we use convexity of g,ﬁj’” “from
above”. We first need to establish a useful inequality. Since gff_Q) is convex,
we have for all t' € [xg — Mn~Y kD) 20 4 Mn~1/CE+D] and

(h=2) ey (k=2)
g;k:—2) (t/) < gilk:—2) (5_1) + gn (gl)l _gg_l (5—1) (t/ _ 5—1)-

By successive integrations of the last inequality between £_1 and ¢, we obtain

_ 2
30 ) < a0 e+ g e

2!
o BT () (gt
&1 —& (k=)
It follows that with probability greater than 1 — 2¢, we have
)
~G-1) () G e =€)
< g0 (6 @ ()t = &) + 9T () T

g €)= g P € ) + 2en MY (¢ gy
§1—&1 (k =)t
< g e + en BTN/

k=100 (20) o ‘
+ 9_ S5 (Eoq —ao)' I 4 InRE/@RHD (e )

k-1 (@) 2
€T o i t— &
+ § : (.90 ( 0) '(5_1 — 2g)" 1y I~ (k=i=1)/(2k+1) ( ;’ 1)

_ k—j
oot (a0 )+ Sn k) %

. (k) ,
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y
EZS_

(1 —z0) 7 | (t—&21)

i=j
k—1 (z) 2
gO (330) i—j—1 (t_g—l)
R P gt~ ) 2!
i=j+1
¢ k=)
(k—1) “1ek+)) (E—&41)
+ (o a) e )
KP DK’H‘+1 o
e+ K"y 4 Z pl 1 o n—(k=3+1)/(2k+1)

(t — {l?())kfj

= o e0) 0] o)t =m0+ g o)

1 K~ (k=it1)/(2k+1)

46

with K’ = e(1+ K") + ¢ 7] B DUCE i follows that (3.1) holds

for j — 1.

Proof of Lemma 3.2. Fix K > 0. Recall that r, = 1/(2k + 1). We will

prove the lemma for ¢ > 0; similar arguments can be used for ¢ € [-K,0).

In the Least Squares case, we have

T

ylee — 2k rotin R ke ... 02 G -G
nt) = n n(v1) (o)
) o o

- (go@co) T (u— 0)gh(20)
4+t 7(]6 _1 0 (u— xo)k_lg(()k_l)({lfo)>du}

d'l)ld'UQ PN d’l}k,1
= An + Bna

where

zo+tn" "k V—1 v2
o o o

{Gn(vl) — Gn(.’Eo) — (Go(vl) — G0($0))}dvldvg e dvk_l,
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and

zo+tn~ "k Vi1 V2
zo Zo Zo

{GO(UI) — Go(wo) — /Ul (90(500) + (u — 20)go(z0)

1 —1 (k-1
4+ 4 (k_l)!(u—xo)k 1g((] )(:co)>du}dv1dv2..

But, with U, denoting /n(T'y, —1I), [p(t) = n~' Y77, 1jg,<y Where &1, ...

are i.i.d. U(0,1) random variables, we have

T

xro+itn~ "k Vi—1
anTk*1/2 / /
zo Zo

" (Uniciton) - 0a(Git )) Hdvj

0

zo+tn~" "k Vg1
P (k=1/2)r / /
0 o

/ <Un(Go(Ul)) n(Golao > Hd%

0

Il

Ap

and using Taylor expansion of Gy(v1) in the neighborhood of x,

47

B dvk_l.

, zo+tn~ "k 7} —r k:+1 i . &
B, - k/ / / o (gé’<v1>—gé><xo>)

. H dvi
zo+tn~ "k v Ul _-TO +1 (k
—l—n%”“/ / / (it 1) — % ) (xo HdUz
=1

= Bnl + Bn?a

where |[v] — xo| < |v; — xo|. Now,

BnQ n?k’/‘k /xo+tnrk /Ukl /1)3 fto
= o (UQ—IE()) +d7)2'--d2}k_1
g((]k) (CUO) (kj -+ 2)' o o zo
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Tl

48

2.I<37’1C To+in~ 3
= r3) / / / v3 — x9)" Pdvg - dvg_y

T

' n2krk zo+tn~ "k k1
= m/ (Vk—1 — @0)™" " dvg—
/-

R\ ) = (2o o

(k)

Furthermore, by continuity of g5’ at zg, we deduce that Byi(t) = o(1)
uniformly in 0 < ¢ < K and hence
(k) 2k
B, — (2k)‘go (x0)t™", (6.29)

as n — oo uniformly in 0 <t < K. Using the identity

U(Go(v)) — U(Go(wo)) < W (Go(v)) = W (Go(0)) — (Go(v) — Golwo))W (1),

where W is two-sided Brownian motion process, we have

zo+tn~ "k Vi1 v2
A, L =12 / / /
) o o

(Unm) U(or) — (U (o) — U(:co)))dvl vy

P (k=1/2)7s /xOHnrk /Ukl .../v2 (W(Go(v)) - W(Go(xo))>

—Tl

v [

(Go Ul GO xo dv1 dvk_l
= Anl + An2 + An3'

T

xo+tn~ "k Vig—1 V2
Ay < 2n<’“/2>’“k|yUn—UHoo/ / / dvy ... dvg_1
x0 0 )

zo+itn" "k V1 v3
= 212U, —IUHOO/ / / (vg — xo)dvy . .
x0 0 0
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T

xo+in~ "k Vi1 va q
_ onl-12my, —UHOO/ / / L (o — 20)2dvs
xQ xo o 2

k—1/2 1 rotn Tk k—2
- Jzo
1 ¢ k—1
= 2t - Ul (o)
- . n

_ log(n)?
_ k—1_1r./2
S O( 172

_ %MO(log(n)?)
nkrk

since ||U, — Uljoo = O (n_1/2 (10g(n))2> via KoMLOS, MAJOR AND TUSNADY

(6.30)

(1975); see e.g. SHORACK AND WELLNER (1986), page 494. On the other hand,

using the fact that gg is nonincreasing, we have

X xo+tn~ "k V1 V2
W (Dlgo(aoynlt /2 [ [ [ oo o
) )

zo

k
o L[t
= W )lgoo)nY? g<n>

= [WQ)lgo(zo)t*n " =, 0,

AnS

IN

(6.31)

as n — oo uniformly in 0 < ¢ < K. Finally, using the change of variables

sj = nl/ @k (y, — 20) = n"(v; — xg) for j =1,...,k — 1, we have
zo+tn" "k
Ape = nlb~ 1/2)7’k/ / / ( (Go(v1)) — W(Go(flfo))>
codvg_q

py(k=1/2)rse, —(k—D)r //

7 (WGt - WGt
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dsk. 1

a w?/ / / < ’“sl—i—xo)—Go(:co))dsl...dsk_l
d

/0/0 /0 W(nTk(Go(n’“ksl+:co)—Go(:co)))dsl...dsk_l

t Sk—1 S2
— / / / W(s190(zo))dsy ...dsx—1 asn — o0
0o Jo 0
4

\/M/Ot/OSkl"'/OSQ W (s1)ds1 ... dsp_1.

(6.32)

Therefore, combining (6.29), (6.30), (6.31) and (6.32) yields

Y3 (t)

= Voo // / W (s1)dsy ... dsg— 1+@t2k9c()k)(x0)

= Y,.(t)

for 0 <t < K. A similar argument for —K < t < 0 yields the conclusion.

In the Maximum Likelihood case, we apply very similar argumuments along

with uniform consistency of g, . |

Proof of Lemma 3.3. We now consider the difference of the two local

processes Y'¢ and H¢. We have

AL () — V(1)

T

2k /:Hn k // {((én(vl) — Go(w0)

~ (Gulwn) - Gn<xo>>)

dvy - -+ dvk_l} + A(k_l)ntk_l + -+ Alnt + Aon

zo+tn~ "k
anT’k / / / < Gn(vl)) d'Ul e dvk—l

(k+1)r)

n ~ _
— 7(k — 1)! <Gn(.’/€0) — Gn(aﬁo))tk 1
+ ‘Zl(k:—l)ntki1 + -+ Alnt + AOn
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T

zo+tn~ "k Vg —
_ anTk / / / ( Gn(vl)) d’l}1 N dkal
o 130

— A(k 1) puE A(k 1) Ty Alnt + AOn

zo+tn~ "k
_ 2k7“k / / / < Gn(”l)) d’l)l . dvk_l

+ A(k: 2) k_ -+ Alnt + AOn

zo+tn~" "k
_ QkT’k / / / < Gn(”l)) dvi...dvg_q
zo+tn" "k
rik / / . / dvy . ..dvg_q
) zo o

./Om (Guvr) = Gulvn) ) dvn

+ A(k 2)n 72 At + Agy,
zo+tn~ "k
_ 2k7“k / / / ( Gn(vl)) d’l)l . dvk_l
th=
(k4+2)r %
e L [ (@) = Gulon) ) + At

+ A(kfg) R b Apgt + Apg

Tk

_ ke /Wm / / ( Gn(vl))dvl...dvkl

— A(k 2) 2y A(k 2) 244 Alnt + AOn

Tl

_ p2kn /mm / / < Gn(v1)>dv1...dvk_1

+ A(k 3) k_ -+ Alnt + AOn

= nZkre (ﬁn(:co +itn"") — Yy (zo + tn_rk)> >0,

51

by the first Fenchel condition satisfied by the LSE. Very similar calculations
yield the second Fenchel condition satsified by ﬁéoc in the case of the MLE.

Similarly, for the localized processes ?f{’c and ﬁffc, by the particular choice

ofﬁjn,OSjSk—l,wehave

(Hy*(t) = Y15°(1) /90 (o)
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zo+tn~ "k
= 2]”"’“/ / / —gn go(v )dvdvl .dvg_q
gn(v)

n2kre / / d(G,, — Go)(v)dvy ... dvg_1
o gn
+ A(k 1) tki -+ AOn

zo+n~ "k pup_q U1 1
_ n2krk _'n—k"l‘k _ / / .. / — dG )Hk ld'Uz
k! 20 20 w0 9n(V)

+ A\(k:—l)ntk_l +--+ A\On-

But notice that for any ¢t > 0

/tLdG () = — Fk=Dp).

It follows that

T

xo+tn~ "k Vg —
/ / / )dvl dvk_l
0 o gTL
zo+n~ "k .
= / / / H( ) ) dUl . dvk,1

t]n ]rk:,\ .
= n(xo+tn™" )—Z
=0

-TO

Therefore,

Lo (t) — Ylee(t)
| Hp(wo+tn VD) gk )

k=1 TR

k—1
tjn 3/@2k+1)
(J)
NCE (xO)}

n?k/(?k—l—l)go (5130)

+
J

=0
+ A\(k:—l)ntk ! + - +A0n
2k/(2k+1)90/§6 ){ K, (0 + tn=Y/CE+DY | gk —h/(2h+1)
el i
tin=i/@k+l) /. 1 K
T ) (H,(f)(xo) LB ke J)

= k(k—j)!
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k—1

kl , i - .

LD LA Grtlag J} + Agonat* 4 + Ay
=0

n2k/(2k+1) g_ogjo) { — kﬁn(:co + tn_l/(2k+1)) + (o + tn_l/(2k+1))k}

by replacing the coefficients A\jn, 0 < j < k—1 by their definitions. It follows
that

Al (1) - Foe(1)

2K/ (2h4D) (i_o(_xii <%(wo 4t V@DV F (g 4 /26 ”))

v
o

Proof of Lemma 3.4. GROENEBOOM, JONGBLOED, AND WELLNER (2001B)

chose the “canonical process” to be

t
— [ Wy ¢
0
so that with X () = Y'(t) = W(t) + 4t> we have
dX (t) = 12t%dt 4+ dW (t) = fo(t)dt + dW (1) (6.33)

where fo(t) = 12t? is convex. Here we make a different choice, namely fo(t) =
(—1)ktk (so that fo(t) = t? in the case k = 2). Thus we will rescale the

limiting process Y, , so that we obtain the “canonical process”
/ / / W u1 dulduQ cdug_ —I—( )k K Qk
(6.34)
for t > 0. Let 0 = \/go(xo) and a = (—1)kg(()k) (x0)/k!. Then

\/M/Ot /uk_1 e /Ou2 W (ur)duy - - - dug—q

Y
+ ( kl) g(()k)( )(_1)k(2k—l,j)!t2k‘
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Furthermore,
k!
Yoo(t) = a(— 1)k t%—i—o// / W (up)duy - - dug_q
k.l Uk —1
4 a(— 1)k(2k) t2k—|-04_1/20/ / / W(auy)duy - - - dug—1

Il=

|
a(— 1)’“(2]2) 2k 4 o712 / / / W(uy)duy - - dug—;

¢ a(=1)"k! 2% o 1

= (Qk)' ——t \/_ W u1 Ozk 1d 1---duk.,1
1)FE!

4 ((Qk))'k 2k 4 o1 /2k / / / W(uy)duy -+ - dug_q.

Therefore,

k!
$1Ya0(s2t) < a(—1)F (%)!sl(sﬂ)%

saoat Uk—1 u2
+ slal/Q_ka/ / / W (uy)duy ... dug_1,
0 0 0

and the process on the right side of the last display equals Yj as defined

n (6.34) if as;s3* = 1, s10'/?>"*¢ = 1, and sy = 1. Solving this system
of equations yields o = (a/c’)%/®**1 and therefore s; and so are given by
(3.2) and (3.3) respectively. Thus, Y, 4 (%) g Yi(t/s2)/s1 [ |

Proof of Lemma 3.5. We will give the proof only for the LSE as the
arguments are very similar for the MLE. Also, Let j € {0,...,k — 1} and
denote A, (z) = Hy,(x) — Y,(x) for all z > 0. Here, we show first Lemma
3.5 for j = k — 1 and use and an induction argument for j < k — 1.

(k—1)

Consider k successive jump points, 71, . .., Tx, of gn, where 7 is the first
jump after xg. By the mean value theorem, there exist Tl(l) € (11, 72), 72(1) €
(T2,73), -y T]gl_)l € (Tk—1, 7%) such that A;L(Ti(l)) =0for1l <i<k—1.Also,

by the same theorem there exist 71(2) € (71(1),72(1)),. (2)2 € ( ,il)Q,T,il)l)

such that A” (t (2)) =0for 1 <i<k—2. It is easy to see that we can carry
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on this reasoning up to the (k — 1)-st level of differentiation and so there

exists 7*=1) such that
Ag@fl) (T(kfl)) —0.
Denote 7 = 7*=1)_ We can write
AF (z0) = AP (@g) — AF(7).

But

T

AFD(z) = d(Gn(t) — Gp(t)), for x>0,

S—

implies that

AGD (zp)] = /Td@n(t)—Gn(t))'

0

< | [ a@ui - coton) +

0

[ a0 - Gote)

o

_ /;(gn(t) - go(t))dt' +

0

[ a0 - Gato)

0

IN

T
0

/ G (t) — gol0)] dt +

JRCECE Go(t))‘-

0

Fix 0 < € < 1. By Lemma 3.1 and Proposition 3.1, we can find M > 0 and
¢ > 0 such that with probability greater than 1 — e

o <717 <T0+ Mn~ 1/ (2k+1)

and

g Y @o)
k1)

Gn(t) — go(zo) — go(wo)(t — xo) — - - (t — 20) | < cn /D)

for zg — Mn~ Y@+ < ¢ < zq + Mn~Y/@k+1)_ On the other hand, using

Taylor expansion, we can find d > 0 that

- 9(()]971)(900)

G )

90(t) = go(x) + go(wo)(t — xo) — -+ < d(t—ao)

< k@R
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for xg— Mn=Y/@k+1) < ¢ < zo4+ Mn=1/@k+1) and where ¢ = dM*. Tt follows
that

/\gn —go(t)|dt < (c+c’)nk/(2k+1)/ dt
zo

(C+ c/)nfk/(2k+l) % (7_ o CUO)
(C + C/)Mnf(kJrl)/(QkJrl)'

IN

Now,

fﬂ&m—%wzéﬂmﬂwmmwaw»

0

Consider the empirical process
Un2) = [ 141G ~ Go(t)
for 0 < y < z and the class of functions
Fyr={fyz: fy:(t) =1(t),y <z <y+ R}

for a fixed y > 0 and R > 0. By application of Lemma 7.1 with d = 1 and
«a = k, it follows that for each € > 0 there exist § > 0 and R > 0 such that

Un(y, 2)| < e(z —y)F + Op(n*(k+1)/(2k+1))

for all |y — zo| <4, z € [y,y + R]. Thus we conclude that

/ ' d(Gn(t) — Go(t))' = o ((T - xo)kﬂ) + O, (n=(k+D/(2h+1)

0

_ Op((nf(k+1)/(2k+l))

and the result follows for j =k — 1.
Now, let 7 = k — 2. We have,

A2 (40 = /0 " (20 — (G (t) — G (1)),

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaouwi and Wellner/k—monotone: limit distribution and spline connection 57

Let 7 be a zero of A;’H) (we can find such a zero the same way we did for

A%) We can write

AED(ag) = Al-2(ag) - AE-(r)

(30 = 0d(Colt) = G(t) — [ (7 = 0d(Cor(t) = Gu(0)
=~ [ @0 0G0~ Galt) — (= 20) [ d(Gu(t) ~ Ealt)

0

Il
ﬁ
o

= [ (@0 0d(Galt) = Galt) - (7~ s AE (1),

0

Let M > 0 be such that zg < 7 < 2o+ Mn~1/(2k+1) By the previous result,
there exists ¢ > 0 such that

—(k+2)/(2k+1)

(r— xo)Angfl)(T) <ecn

with large probability. Now

/T<xo—t>d<én<t>—Gn<t>>\ < [ =)l - st

0 0

+| [ 0= a0 - Gowy)|.
zo

We can find d > 0 such that

g (o)
n(t) = go(x0) — go(20)(t — z0) — -+ — (214—71)!@ — mo)F T < dn R/ GRHD)
and

g(kil)($o)
90(t) = go(xo) — go(x0)(t — x0) — -+ — h(t — 20)" | < dn~H/GETD

for all t € [zg — Mn~Y kD 2o 4 Mn~Y/ kD] with large probability. It
follows that

/ (t — 20)|gn(t) — go(t)|dt < 2d n~F/ (kD) / (t — xo)dt
xo xo

- d n—k/(2k+1)(7_ . x0)2
< 4dM?2 n~(k+2)/(2k+1)
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with large probability. Finally, via empirical processes arguments and Lemma 7.1
with d = 2, it follows that

‘ /T(t —20)(Gp(t) — Go(t))‘ = O, (n~(k+2)/(2hk+D))

and the result follows for j = k — 2. The same result holds if we replace
zo by any x € [zg — Mn~ V@1 n=1/ k1) g0 4 M=V D] for some

M > 0; i.e., we can find K > 0 independent of = such that

'A%kQ)(.’E) < Kn~(k+2)/(2k+1)

with large probability. Now let 0 < j < k — 3 and fix € > 0. Suppose
that for all 7/ > 7 and M > 0, there exists ¢ > 0 such that for all z €
[0 — Mn~VCk+D) o 4 Mp=1/@k+D)],

(k=1 =AY (2)] < en~Gh=30/ @k
with probability greater than 1 — e. We can write

(k —1—)1AY (y)
=[0G - ea0)

_ /0 (g —2) + (@ — ) dCnlt) — GalD))

k—1—j L | )
= ; <'I€ :ll ])( o .’E)l /Oy(:p B t)]gflfjfld(Gn( ) . Gn(t))
k—1—j . y | )
= ; <k ll J) (y o x)l/o (x o t)k_l_j_ld(Gn( ) Gn(t))

- (7 )wearaee
+ 89(@)+ [ o= 0" Id(Cnlt) ~ Galt).
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Take x to be a zero of ASZ ) (such a zero can be constructed using the mean
value theorem as we did for j = k — 2 and j = k — 1). Thus there exists
M > 0 such that zg — Mn Y@+D < 2 < 20+ Mn~ V@D Now by
applying the induction hypothesis, there exists ¢ > 0 such that for all y €
[2g — Mn~YCE+1) g 4 Mn~1/(k+1)] e have

k—1—j )
(-1-E00)| < e 3 (7T - altures e
=1

Y . ~
4 / (z —t)*1d(Gp(t) — Gn(t))"
But,
k—1—j ;
3 <k —1- J> ly — z|ln— (b= G+D)/ k1)
=1 !
" k-1
P
=1
and

/ "(@ — (G (1) Gn(t))' = 0 (n~ =D/ kD)

by using empirical processes arguments. Therefore, the result holds for j and
hence for all j =0,...,k— 1. |

Proof of Lemma 3.6. The arguments are very similar to those used
in Groeneboom, Jongbloed and Wellner (GROENEBOOM, JONGBLOED, AND
WELLNER (2001B)). We prove the lemma for ﬂfz as the arguments are simi-

lar for lflfI Let ¢ > 0. On [—c, ¢], define the vector-valued stochastic process

Zu(t) = (HL),.... (H) D (1), Y, (1),

o (YD), ()0 ), (v) ED (1))
This stochastic process belongs to the space
Ek[—C, C] = (C[-C, C])3k72 X (D[_Cu c])Q
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where C[—c,c] and D[—c,c] are respectively the space of continuous and
right-continuous functions on [—c¢,c¢]. We endow the space Ei[—c,c] with
the product topology induced by the uniform topology on C[—c,c| and the
Skorohod topology on D[—c¢, ¢]. By Proposition 3.1 and Lemma 3.5, we know
that (H.)U) is tight in C[—¢,¢] for j = 0,...,2k — 2. It follows from the
same lemma together with the monotonicity of (H.)*=1 that the latter is
tight in D[—c, ¢]. On the other hand, since the processes (YY,..., (Y} )*=2)
and (YL)*=1 converge weakly, they are tight in (C[—c,¢])* ™ and D[—¢, ]
respectively. Now, for a fixed ¢ > 0, there exists a M > 0 such that with
probability greater than 1 — €, the process Z,, belongs to Ej, ys[—c, c] where
Epar = (Cul—c,d)* 2 x (Dyr[—e,¢])? , and Cir|—¢, ¢ and Dyr|—c, ] are
respectively the subset of functions in C[—c,c] and the subset of monotone
functions in D[—c, c| that are bounded by M. Since the subspace Ej y/[—c, c]
is compact, we can extract from any arbitrary sequence {Z, } a further
subsequence {Z,,~} that is weakly converging to some process

Zy = (HO, L HEY vy y D g R, YO(’“*”) (6.35)

in Ex[—c,c] and where Yy = Yj. Now, consider the functions ¢; and ¢ :
Ey[—c,c] — R defined by
¢1 (Zl, ey ng) = inf (Zl (t) — ng(t)) A0
te[—e,c]

and

C

P2(21, .- -, Z3k) —/ (21(t) — 2ox(t))d2zp—1(t).

—C
It is easy to check that the functions ¢, and ¢o are both continuous. By
the continuous mapping theorem, it follows that ¢1(Zy) = ¢2(Zy) = 0 since
01(Zpr) = ¢2(Zyr) = 0 and therefore,

Hy(t) > Y3(t),

for all t € [—¢, ] and

/C (Ho(t) — Yi(t))dHE* V(1) = 0.

—C
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It is easy to see check that (—l)kH(g%_?) is convex. Since ¢ > 0 is arbitrary,
we see that Hj satisfies conditions (i) and (iii) of Theorem 3.1. Furthermore,
outside the interval [—c, ¢] we can take H!, and Y!, to be identically 0. With
this choice, the condition (iv) of Theorem 3.1 is satisfied. By uniqueness of
the process Hy, it follows that Hy = H}. Since the limit is the same for any
subsequence {Z,, }, we conclude that the sequence {Z,} converges weakly

to
Z = (Hk, o ,H]g2k—2)’yk’ o ’Yl<:(k72)7H]§;2k71),Yl§k71)>

and in particular Z,(0) —4 Z,(0) and (H!)(0) —y4 H,gj)(O) for j =
0,...,2k —1. ]

Proof of Theorem 3.2. We start with the direct estimation problems. For
the LSE, we have for j =0,...,k—1

(HLYD(©0) = sish(HL) P (0) = n®=D/CH D¢ (60359 (o) — g5 (0)),

whereas in the Maximum Likelihood case, we have

(YD) = nE=D/CHD e (g0)g0(z0) ((gn(:cogi(—x é;)o(xo))>

Ji 7 (5 () L\
+ 3 (1) (e - o @) (515

i=0 L ! ’ gn(x) T=T0

using the convention (JZ) =0if i <O.

Weak convergence follows immediately from Lemma 3.6. Note that, for
the MLE, the factor go(z¢)/gn(xo) converges in probability to 1. Moreover,
for j = 1,...,k — 1 it can be shown, using Proposition 3.1 and uniform
consistency of g,(f ) in the neighborhood of z( (see BALABDAOUT AND WELL-

NER (2004A), Propositions 3.2 and 3.3), that the second terms in the above

expressions converge to 0 in probability, and hence
|(HL)ED(0) — n*=D/ 4Dy (90)(39) (o) — g5 ()] — 0
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for j=0,...,k—1.
For the inverse problem, the claim follows from Lemma 3.6 and the inverse

formula given in (2.9) (see Section 2). [

7. Appendix 2 - Proofs from Empirical processes theory

The following proposition is a slight generalization of Lemma 4.1 of Kim AND

PoLLARD (1990), page 201.

Lemma 7.1 Let F be a collection of functions defined on [xo — 6, x¢ + 0],
with § > 0 small and let o > 0. Suppose that for a fized x € [xg — 0, ¢ + I]
and R > 0 such that [x,z + R] C [zg — J,x0 + 6], the collection

Fx,Rz{fx,yEfl[x,y}a feF, x§y§x+R}
admits an envelope Iy r such that
EF2a(X1) < KR* ', R<R,,

for some d > 1/2 where K > 0 depends only on xg, §, and «. Moreover,
suppose that

1
sup [\ fog Nl ol 2 Fo La(@))dn < oc. (7.36)
0

Then, for each € > 0 there exist random variables M, = M,(a) of order
Op(1) such that
(Gn = Go)(fay)l < ely—al*T+ n" M,  for ly — z| < Ro.
(7.37)

Proof. By vAN DER VAART AND WELLNER (1996), theorem 2.14.1, page 239,
it follows that

2
E{ sup \(Gn—coxfxﬂ)\} < %EF;R<X1>:0(n—1R2d—1)

fa:,yej:x,R
(7.38)
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for some constant K > 0 depending only on xg, ¢, and the entropy integral

n (7.36). For any f,, € Fy r, we write
(P _PO)(f:vy) ( )(fxy)
and define M,, by

M, = inf {D >0: ‘(Pn _ PO)(fx,y) < e(y - x)a—f—d + n—(oz-i—d)/(Qoz-i-l)D7

for all f,, € .7:173}

and M,, = oo if no D > 0 satisfies the required inequality. For 1 < j <
| R/ (et | = 5 we have

P(M,, > m)

< p('(pn — Py)(fay)

> e(y _ x)aer

+ p(etd)/Q@a+1) o 01 some foy € fx,R>

< Z P{n(a+d)/(2a+1)

1<5<in

(B = Po)(fuy)| > (i — 1)*" +m

for some fr, € Fo, (j = D~ V@D <y —a < jn (Wl)}

Supy;ogy—x<jn_1/(ga+l) (]P)TL - PO)(f:v,y—:v)

;

=
Z p2a+d)/2a+1)

<
) — +d 2

1<i<jn (e(j 1)a T m)

2
E{sup _oEF (P _Po)(f,)}
- Z n2(a+d)/(2a+1) fay—o€ z,jn—1/(20+41) n T, Yy—T
j — 1)otd 2

1<5<gn (e(j — 1ot + m)

= 1<5<jn (e(4 — 1)a+d T m)2
Z 2d71 i - d71
B d — +d 2
1<J<Jn €(j 1 otd +m)? — yatd +m)

as m /" oo where C' > 0 is a constant that depends only on xg, J, and a.
Therefore it follows that (7.37) holds. [
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In the following, we present VC-subgraph proofs for Lemma 4.4 and
Proposition 6.1.

Proposition 7.1 For k > 2 the classes of functions ‘7:35;?1% and ‘7:353?1% given
in (4.11) and (6.23) are VC-subgraph classes of functions.

Proof. Consider the collection ]:ZE;?R. We want to show that the class of
subgraphs
D={{(t,c) eRT xR:c< fi(z)}:
z € [10, Tog-3), To — 6 <yo <y1 <+ <yok-3 < yo + 1}
is a VC class of sets in RT x R. If we show this, then the class of functions

(4.11) is VC-subgraph. Alternatively, from van der Vaart and Wellner (1996),
problem 11, page 152, it suffices to show that the “between graphs”

D = {{(t,c)€R+xR:0§c§ft(x) or fi(z) <c<0}:

x € [yo,Yak—3], T0o—0 Syo <y1 < -+ <yap—3 < yo + R}
is a VC class of sets. Let

D, = {{(t,c) ERY XR:0< e < file)ly, ,,(0)
or fi(x)1y, .y, (t) <c <0} :x € [r0, T2k-3],

x0—53y0<y1<"'<y2k73§yo+R}

for j =1,...,2k — 3. Since t — fi(2)1,_, ,,;(t) is a polynomial of degree
at most k — 1 for each j = 1,...,k, the classes D ; are all VC classes. Also
note that

Dy CDi1U...UD k-3 = Dig.

By Dudley (1999), theorem 2.5.3, page 153, Dy, is a VC class (or see van
der Vaart and Wellner (1996), Lemma 2.6.17, part (iii), page 147). Hence
D, is a VC class and FU) is a VC - subgraph class.

The proof for the class ‘7:35(2),)1% is similar.
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Proposition 7.2 The collection of functions
Fyo,Ry = {fyo,yl,---,ygkg,)\,h Yo <Y1 <o S yok—a < Yok—3 < Yo + R,
A€ [0,1], and h € CE~2[xg — 6,20 + 5]}
defined below in (8.44) is a VC-class. Furthermore, we have
[P, — POH]:yQ,R,’Y = 0p(Y2k—3 — yO)Qk + Op(ni%/@]ﬁl))
where

”]P)n - POH = Sup ’(]P)n - PO)(fy07y17"'7y2k737)‘7h)"

yo, R,y
yo,yl,w,ygk_g,k,hE]'—yo,R,w

Proof. Fix n > 0, and let @ be a probability measure on (0, 00). Now using
the same arguments as in the proof of Proposition 7.1, the collection Fy r
is VC, and we can find Dy = D1(d, k) < oo such that

1
10g N(nHFyo,RHQ,Qvfyo,RvLQ(Q)) <D log 6

On the other hand, by Theorem 2.7.1 of VAN DER VAART AND WELLNER

(1996), page 155, there exists Dy = Dy(d, k) < oo

k—2 1\ 72
log N (1y, C5 ™ *[wo — 6,20 + 0, || - [loc) < Do p ,

where the constant Do depends on k, and &, but not on xy. Note that
F = Fyo,r has bounded envelope function F' = Fy, g. Thus if {f;} is an
N||F|ly,r—net with respect to Lo(Q) for F = Fy, r and {g;} is an ny—
net with respect to || - || for G = 05_2[500 — 6,9 + 0], then {f; - gj} is a
2ny||F'||g,2—net for F - G with respect to La(Q): for f,g with || f — fjllg,2 <
€l Fllgz2 and [lg = gjllee < €,

If-9=figirloz < f = fillo2 + [1FllQzllg — gjlle
by the triangle inequality followed by use

of the sup norm
< ylFllge+ IFllQenmy = 2my[Fllg.-
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It follows that

N(277'YHFHQ72’FyoyR,%LQ(Q))
< NlIFl Qa2 Fyo.rs L2(Q)) - N (17, CE 20 — 8,20 + 6], L2(Q)).
(7.39)

By (7.39) and dominance of the second entropy bound as 1\, 0, we conclude
that

1\ 72
108 N1 Flloa Fa o 1a(@) < & (1)
where K depends on k and § (but not on R or @)). On the other hand, it
follows from the error boundedness Conjecture (1.7) (also see BALABDAOUI

AND WELLNER (2005)) that F, g, admits the function

FyovRﬂ(t) = Ckaill[yo,yoJrR] (t)

as an envelope, where C' > 0 depends only on k. Now we can find a constant
D > 0 depending only on n and go and such that 0 < supyc(z—s, o445 90(t) <
D. We can write
yo+R
EF2 g (X1) = C2* B2 / go(t)dt < C*Dy*R*,
Yo
and hence by VAN DER VAART AND WELLNER (1996), Theorem 2.14.2, page

240, there exists a constant K’ depending only on xg and  such that

2
E{(f sup (G = GO) Fynsrn)) }
Y0-Y1

..... von—3:MhEF Yo, Ry

K’
< —EF2 p,(X1) = K'n 'R 1.
n ) )

Now, define

—2k/(2k+1
+n / )m7 for all fymyl,---,yzkfg,)\,h S }—yoyRﬂ}
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and M,, = oo if no m > 0 satisfies the required inequality. Using arguments
very similar to those of the proof of Lemma 7.1, we can show that M, =

Op(1), which proves our second claim. H

8. Appendix 3 - Proofs for Subsections 4.2 and 4.3

To prove Lemma 4.3, we need the following lemma:

Lemma 8.1 Let k > 2 be an integer. The monospline My, with simple knots
&o=—-k+3/2, & =-k+5/2, ..., p-a=k—5/2, Eo—3 =k —3/2 and
such that My(&;) = Mj(&) =0 for j =0,...,2k — 3 satisfies (—1)* M}, > 0
on [—k+3/2,k+3/2] = [0, {2k—3)-

Proof. Consider the function Dy defined on [~k + 3/2,k — 3/2] by

Doy (t) = Baw(t — &) — Bag, on [§5,&541] = €5, &5 + 1]

for j =0,...,2k — 3, where By is the normalized Bernoulli polynomial of
degree 2k (defined on [0, 1]) and Bgy = Bay(0). By the known properties of
Bernoulli polynomials (see e.g. BoJANOV, HAKOPIAN AND SAHAKIAN (1993),
pages 117-124), we have D) (¢;—) = DY) (&;+) for 1 =0,..., 2k — 2. Hence,
Dy, is a monospline of degree 2k. Furthermore, since Doy (§;) = D), (&) = 0,
it follows that My = Dy on [—k + 3/2,k — 3/2]. Now, the sign of M, is the
same as the sign of By, — Bgy on [0, 1]. But the latter is determined by the
sign of Bax(1/2) — By, as 0 and 1 are the only zeros of By — Bay on [0, 1].

Using the formula
Bor(1/2) = —(1 — 2172\ By,

(see e.g. ABRAMOWITZ AND STEGUN (1972), formula 23.1.21, page 805) and
the fact that Bg, > 0 (< 0) when k is odd (even), it follows that M} < 0
(> 0) when k is odd (even), i.e. (—1)*M; > 0. [ |
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Proof of Lemma 4.3. The first part of the claim follows from Proposition
1 of MicHELLI (1972); see also DE Boor (2004). For the second part, let £ be
a fixed point in U?i64(7'ja7'j+1)- We can assume without loss of generality
that £ € (79,71). There exists A € (0,1) such that £ = Arp + (1 — \)71.
Consider now the function

ex(§) + lex(§)
2e(§)

Note that it is possible to divide by ey (&) since a zero of e; must be a knot. It

(7—07“-77_2]973) =

is easy to see that the function defined above is continuous in Ty, ..., Top_3.
Furthermore, it can only take two possible values, 0 or 1, and therefore
has to be constant. But, when the knots are equally distant, we know from
Lemma 8.1 that the constant is 0 (1) if k£ is odd (even). It follows that
(—1)hex(€) > 0. n

To prove Lemma 4.7, we need to establish the following result.

Lemma 8.2 For any € > 0, there exists K > 0 (depending on k) such that
forj=1,...,2k — 3 the event

0 < (=D)F (gD (ry) — g~V(rj21)) < K (15 — 75-1)

occurs with probability greater than 1 — €.

Proof. A picture is sufficient to prove the lemma, but more formally we

have for x € [xg — d, 20 + 6] for small 6 > 0

3@ —n) - o (@)

—h
(k—2) L (k-2)
< G V(em) < gD () < I Y h]z @) (5.40)
(we assume here that k is even). We denote by Af]?(zk_l)(x) the height of the

jump of g,(f*” at the point z; i.e., Aﬁgkfl)(x) = gﬁl’“*”(ﬁ)—g,ﬁ’“*”(x—), and
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by Az the value of the corresponding gap (if = 7, then Ax = 7; — 7;_1).
The inequality in (8.40) implies that for all 0 < h < Az, we have

AT (2)
< 1l
0 < 17rlrlsolip AL
B G O R e o B S el O R S )
~h h —h ’
On the other hand, we know from our working assumptions that g(()kﬂ) is

twice continuously differentiable in the neighborhood of xg. Therefore, using

Taylor expansion, we have

_ _ _ 1
g0 @+ h) = g6 (@) + hay' (@) + 31295 (@) + o(h?)

and
(@ —h) = g8 P (@) — gl TV (@) + %thg’“ (z) + o(h?)

and hence

o 2@+ - 2@ o P@-n-g @\ _ w

H 7 28 b= @ o)

< K

where K can be taken e.g. to be equal to 2 SUD¢ (30 —5,20-+9] \g(()k) (t)]. It follows
that for n large enough and for all j € 1,...,2k — 3,

0< g r) = o V(o) <K (75— 75-1)
with large probability. |
Proof of Lemma 4.7. We start by showing that

sup  |E2(F)| = 0p((Tan—3 — 70) %) + Op(n~ PR/ (ZFL)), (8.41)

T€[10,72k—3]

We have

|€2(7)]
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s {<T = 0 Mg ) (e )

- = 0 M, 0 - o )| <T>} A(Gt) — Golt)

9n(t)  go(70)

In other words, one can view £(7) in the following way: For a fixed t €
[T0, Tok—3], we compute the value at the point 7 of the Hermite interpolation
error for interpolating the function
1 1
z— (z—t)F 11 t)(A———)
( A\ G®  wm)
or, since 1 41(t) = 1jz>4 since t > 7o,

(e gk 11
o 0 e (5 )

R 1 _ 1
= t)+ <§n(t) 90(70)>. (8.42)

This yields a function of ¢, which is then integrated with respect to (G,,—Go).

Let us denote by
Fror i (1)
the function that assigns to each t € |1y, Tor—4] the Hermite interpolation
error at the point 7 for interpolating the function defined in (8.42), where
A= (7 —70)/(Tak—3 — 70) and hy, = 1/gn — 1/g0(70).
Let € > 0, and 0 > 0 such that [y, 7ox—4] C [x0 — I, 2o + 6]. Now, uniform

consistency of the derivative gfj ), j=0,--+,k— 2 implies uniform bounded-

)

ness of ﬁﬁf

that for n > N, the probability of the event

. Hence, for v > 0 large enough there exists a N = N, € N such

(G 90(170)>(j) = ”}

(8.43)
is greater than 1 — e. Note that for j = 0, v can be taken arbitrarily small

Jpo 54 = 4w : max sup
0,0, .
0=7<k=21e[2—6,20+4)

which will yield a stronger result. However, this is not true for 7 > 0 since
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the term —1/go(70) disappears. In what follows, we consider the case where
the previous event occurs.

Now fix yg € [xg — 0,20 + J — R]. Consider the collection

Fyo.Ry = {fyo,yl,---,ygk_g,)\,h Yo <Y1 <o S yor—a S yor—3 < yo + R,

A€ [0,1],and h € 05_2[500 — 6,0 + 5]} (8.44)

where C¥~2[zg — 6,29 + 0] is the set of functions on [zg — &, z¢ 4 0] whose
j-th derivative, j = 0,---,k — 2, is uniformly bounded by . Explicitly, a

function in the previous collection can be written as

fyo,y1w~7y2k—37>\,h(t)
= {()\yo + (1= Nyar—s — 5 = [Hi(- = )5 O + (1 - )‘)?/%—3)} h(t).

We recall here that h € 05_2[300 — 9,9 + ¢, where 05_2[300 —0,z9 + 4] is
defined above. If we denote by Fy, r, the collection of functions appearing

in the first term on the right side of the previous display, we have
Fyo,Ry C Fyo,R - 0572[550 — 0,209 +6).
By Proposition 7.2, we have

/_\51[1p] (P, — PO)(fro,n,...,rgk,g,?\,fzn) = op((Toh_3 — 70)2%) + Op(n—2k/(2k:+1))
€lo,1

or equivalently

sup  [E2(7)] = 0p((Tap—s — 10)2F) + O, (n 2K/ k+1)y,
TE[70,72k—3]

Finally, we focus on the error term, £ . Recall that the corresponding

interpolated function is given by
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for all 7 € |19, Tox—3]. Note that the function is (2k — 1)-times differentiable
on 19, Tok—3], and we have

< o /TM_3 [HE[(t = )21 = (t = )% oo [df D (2)]
= k-1, b + + oo iEin
Tok—3  _
< di(ro_3 — 10)% 1 / df{ZEV (@),
T0

for some di > 0. On the other hand, we have

g (k—1)
Fo=Dgy = <§n(t) — go(t)) (W)]
) j: (k i 1> (990 - a8 ®) (%@g)om)) o
and hence

df(2k_1) (t)

n

= (Gn(t) — go(t)) d[(M)(kl)}

Gn (1) A
d (@(%k_l)(t) - gék_”(t)) (%(tg)o(ﬂﬂ)
k—2 A N

— (k-1 -() () Gn(t) — go(0) \ 7
’ ;( ;) @0 ) (BEEE)
= dh (t) + dhs (t) + dhg(t) + dh4(t).

The last two functions, dhs and dhy are easier to handle, since we can see

that uniform consistency of the derivatives of the MLE implies that

sup  |hg(t)[ = sup  [R)(£)] = 0p(1),

te[r0,7ok—3] t€l10,7ok—3]

and hence
T2k—3
(Tap—3 — 70)*"! / |h(t) + Ry (t)]dt = op((Tar—3 — 70)*).
0

imsart ver. 2005/05/19 file: tr503.tex date: August 31, 2006



Balabdaowi and Wellner/k—monotone: limit distribution and spline connection 73

Now we need go back to study h; and ho and the corresponding error

IN

terms, and we start with hs. Recall that
/7—%_3 |dh2(t)| = /7—%_3 d <g(k 1)(t) _ g(k—l)(t)) <gn(t) — 90(7—0))'
70 70 " ’ gn(t)
/72’“3 4+ (1) (ﬁn(t)i 90(70)) ‘
70 In(t)
T2k=3 - gn(t) — go(70)
[ N (2=
T0 0 gn(t)
The second term is op((T2x—3 — 70)) since dg(()k_l)(t) = g(()k) (t)dt (we apply
the same argument used for dhs and dhy4). As for the first term, we have
/TQ’”’ gD (1) <§n(t)A— 90(70))‘
T0 gn(t)

At u() — g0(0)
= YV ) - gDy ) |2
jzl ’ n(75)
2%k—3 R
< D (15 —Tj-1) w, by Lemma 8.2
j=1 gn ()

Jn T] — 90 TO)
gn(75)

2k—
D(7op-3 — 7o) Z

= 0p((T2x—3 — 70))

IN

by uniform consistency of the MLE and continuity of gy which imply that
Gn(7j) — go(10) = 0p(1) for j =1,...,2k — 3. Similar arguments can be used

for hy. We conclude that the associated error term is of the order
2k
op((Tox—3 — 70)7"),
or using our notation above

sup  [E1(7)] = op((Tar—3 — 0)*).
fG[To,TQk_g]
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