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Abstract

We propose two test statistics for use in inverse regression problems Y = Kθ + ε,
where K is a given linear operator which cannot be continuously inverted. Thus, only
noisy, indirect observations Y for the function θ are available. Both test statistics have a
counterpart in classical hypothesis testing, where they are called the order selection test
and the data-driven Neyman smooth test. We also introduce two model selection criteria
which extend the classical AIC and BIC to inverse regression problems. In a simulation
study we show that the inverse order selection and Neyman smooth tests outperform their
direct counterparts in many cases. The theory is motivated by data arising in confocal
fluorescence microscopy. Here, images are observed with blurring, modeled as convolution,
and stochastic error at subsequent times. The aim is then to reduce the signal to noise
ratio by averaging over the distinct images. In this context it is relevant to decide whether
the images are still equal, or have changed by outside influences such as moving of the
object table.

Keywords: Hypothesis testing, Inverse problems, Model selection, Nanoscale bioimaging,
Nonparametric regression, Order selection.

1 Introduction

Statistical estimation theory for ill-posed inverse problems, particularly by nonparametric
techniques, has been studied intensively within recent years. Examples which fall into this
context include deconvolution problems (cf. Fan, 1991, and Johnstone et al., 2004), positron
emission and X-ray tomography (Johnstone and Silverman, 1991, and Cavalier, 2000), the
heat equation (Mair and Ruymgaart, 1996), imaging (Kaipio and Somersalo, 2005) or prob-
lems related to satellite gradiometry (Bissantz et al., 2007).
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In these models the object of interest, i.e. the unknown density or regression function θ, is
not observed directly but only after an application of an operator K, which for simplicity is
assumed to be known throughout most parts of this paper. More specifically, suppose that
we have observations (zk, Yk), k = 1, . . . , n, from the model

Yk = (Kθ)(zk) + εk, (1)

where the zk are fixed design points, the εk’s are i.i.d. errors with Eεk = 0, Eε2k = σ2 and
Eε4k < ∞, and K is a compact injective linear integral operator between L2–spaces L2(μ1)
and L2(μ2), for measures μ1, μ2.
Much work focuses on optimal estimation of θ in a mean integrated square error sense, cf.
Mair and Ruymgaart (1996), Cavalier and Tsybakov (2002) and Hoffmann and Reiß (2007),
among many others. It is well-known that due to the ill-posedness of the problem, one ob-
tains slower rates of convergence for estimating the unknown signal θ than for nonparametric
estimates with direct observations. The actual rate of convergence is determined both by the
smoothness of θ as well as by the degree of ill-posedness of the inverse problem. Roughly
speaking, for so-called mildly ill-posed problems, one still has a polynomial rate of conver-
gence, while for severely ill-posed problems (including Gaussian deconvolution), in general
only logarithmic rates can be obtained. For extensive discussion see Bissantz et al. (2007).
Since nonparametric estimation of θ in inverse problems is hard, parametric modeling may
become particularly interesting, whenever feasible. However, before actually employing para-
metric models, one should assess their adequacy via a lack-of-fit (or goodness-of-fit) test. For
deconvolution density estimation, L2-type statistics for testing goodness-of-fit are discussed
in Holzmann et al. (2007). An application to parametric modeling of the brightness distri-
bution in the Milky Way is given in Bissantz et al. (2003). Yet, to our knowledge, for inverse
regression models there are no specific methods available. In this paper we shall provide such
methods.
We construct omnibus tests, these are tests which are consistent against a wide class of al-
ternative models, by extending the concept of order selection tests and Neyman smooth type
tests to the setting of inverse regression models. Lack-of-fit testing based on selecting an
appropriate order of an orthogonal series expansion was studied first by Eubank and Hart
(1992) and was termed order selection testing, since indeed one form of the test statistic can
be viewed as a test on the selected (or estimated) order of the series. Its area of application
was extended from linear regression models to likelihood based models by Aerts, Claeskens
and Hart (1999, 2000). The selected order in such a test is obtained via a modified version
of Akaike’s (1973) information criterion. A similar type of test, though originally introduced
for testing the distribution function in a goodness-of-fit setting, uses instead the Bayesian
information criterion (Schwarz, 1978). These tests build on the idea of a Neyman (1937)
smooth test and were introduced by Ledwina (1994). Both the order selection test and the
Neyman smooth test extend naturally to inverse regression modeling, where the orthogonal
series expansion is canonically given by the singular value expansion, and the ordering of the
singular functions is determined by the magnitude of the corresponding singular values.
In this paper we study tests for the null hypothesis that the regression function θ lies in some
finite-dimensional subspace of L2(μ1), i.e. that

H0 : θ(z) =
p∑

j=1

ajtj(z), (2)
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where the tj are given functions in L2(μ1). Note that sinceK is injective, we could equivalently
rephrase the hypothesis H0 to

H ′
0 : (Kθ)(z) =

p∑
j=1

ajK(tj)(z).

Since the integral operator K and the functions tj are known, the hypothesis H ′
0 is completely

specified. Further, Kθ follows a direct regression model, and therefore the above mentioned
methods could be applied to test H ′

0. Nevertheless, there are several reasons why it is prefer-
able to test the hypothesis H0 directly. First, H0 and not H ′

0 is the natural way to formulate
the hypothesis. Second, deviations from the hypothesis H0 might be somewhat easier to de-
tect, since an extra application of the integral operator K typically has a smoothing effect.
Thus testing H0 directly may result in a more efficient test (cf. also Holzmann et al., 2007,
for a theoretical investigation and simulation results in density deconvolution). Moreover,
testing H0 directly allows testing in situations where K is unknown (but has to be estimated
as well) and where the hypothesis H ′

0 is therefore not completely determined.
We consider testing specific linear hypotheses, namely where the regression function is as-
sumed to be a finite linear combination of certain singular functions, i.e. the basis functions
of L2(μ1) occurring in the singular value decomposition of K. There are several situations
where this is of particular interest. One such example is when K is self-adjoint and its eigen-
functions are trigonometric basis functions. In this case, testing the hypothesis H0 given
in (2) amounts to testing whether θ only has finitely many frequencies, where p determines
the maximal frequency allowed in θ under H0. In case of rejecting H0, the modified order
selection test will also provide an alternative estimate of the maximal frequency contained in
θ.
The paper is organized as follows. In Section 2 we introduce the singular value decomposition
and formulate the hypotheses that we are going to investigate. Further, we discuss examples
for model (1). Section 3.1 contains a version of the order-selection test for inverse regression
models, which was originally introduced for direct regression by Eubank and Hart (1992). In
Section 3.2 we construct an inverse data-driven Neyman smooth test, as proposed by Ledwina
(1994) for direct density testing. In a simulation study in Section 4 we investigate the power
properties of our methods, as compared to tests based on the direct hypothesis H ′

0. It turns
out that against alternatives which contain additional eigenfunctions (or more precisely, func-
tions from the singular value decomposition), our methods have a significantly higher power
than methods based on H ′

0.
Our study is motivated by a problem in fluorescence nanoscale microscopy. Here, images
are observed with blurring and stochastic noise, and the aim is to detect structural changes
in this sequence of images. Thus, in Section 5 we extend our methodology to test whether
the distinct images observed in this deconvolution problem are equal up to possibly different
intensities.
Both the order selection test and the data-driven Neyman smooth test are closely related
to model selection criteria, specifically to the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), and in Section 6 we discuss extensions of our proce-
dures to model selection. All proofs are deferred to the appendix.
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2 Inverse regression models

2.1 Singular value decomposition

Since K in model (1) is assumed to be compact, we can consider its singular value decompo-
sition (cf. Kress 1999, p. 277). More precisely, there exist orthonormal bases (φj) of L2(μ1)
and (ψj) of L2(μ2), and singular values λj > 0, such that Kφj = λjψj and K∗ψj = λjφj .
Here K∗ denotes the adjoint operator of K (Kress 1999, p. 40). We shall assume that the
inverse problem (1) is mildly ill-posed, so that the singular values λj decay polynomially.
Specifically, we suppose that there exist c, C, β > 0 such that

c j−β ≤ λj ≤ C j−β , j ≥ 1. (3)

Examples for mildly ill-posed inverse problems are given in Section 2.2. In contrast, an inverse
problem is called severely ill-posed if the singular values λj decay exponentially fast, for which
the successive theory, at least in its present form, does not apply. An example is the backward
heat equation (cf. Kress 1999, p. 267).
The hypotheses that we are interested in are of the form

H0 : θ =
p∑

j=1

ajφj, (4)

for some (fixed) p. Note that by orthogonality of the (φj), aj =< θ, φj >L2(μ1). The hypothesis
H ′

0 now takes the form

H ′
0 : Kθ =

p∑
j=1

bjψj ,

where bj =< Kθ,ψj >L2(μ2) satisfies bj = λjaj . If it is assumed that averaging over the
design points zk is close to integration w.r.t. μ2, an estimate for bj is given by

b̂j,n =
1
n

n∑
k=1

ψj(zk)Yk.

In this paper we impose for simplicity the following

Assumption 1. Assume that

1
n

n∑
k=1

ψi(zk)ψj(zk) = δi,j , i, j = 1, . . . , n,

with δi,j the Kronecker delta.

Under hypothesis H0, see (4), and Assumption 1, for j = p+ 1, . . . , n,

b̂j,n =
1
n

n∑
k=1

ψj(zk)εk.

Further, Eb̂j,n = 0, E(b̂i,nb̂j,n) = δi,j σ
2/n, i, j = p + 1, . . . , n. Then an estimator for aj is

given by âj,n = b̂j,n/λj . The tests suggested in Section 3 will be based on the magnitude of
the âj,n.
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2.2 Examples

Example 1 (Deconvolution). Suppose that θ, g ∈ L2[0, 1] are periodic functions, and consider
the convolution operator

(Kθ)(z) = g ∗ θ(z) =
∫ 1

0
g(z − t)θ(t) dt.

First consider the subspace of functions in L2[0, 1] which are symmetric around 1/2 (in the
following denoted by L2

s[0, 1]), and suppose that θ, g ∈ L2
s[0, 1]. The operator K is self-adjoint

on L2
s[0, 1], has eigenfunctions φj(t) =

√
2 cos(2(j − 1)πt), j ≥ 1, and eigenvalues

λj =
∫ 1

0
g(t)φj(t) dt, j ≥ 1.

These are the non-zero Fourier coefficients of g. For the λj we assume the polynomial decay
(3), which implies that g is of finite smoothness. An orthogonal design is e.g. given by the
uniform design

zk = (k − 1/2)/n, k = 1, . . . , n. (5)

The hypothesis H0 means that we test for finite frequencies in the signal θ.
If one drops the symmetry assumption on g (and on θ), the example gets more difficult, since
it involves complex eigenfunctions. In fact, on the space L2

C
[0, 1] of complex-valued square-

integrable functions, the operator K is a normal operator for general (real-valued) g ∈ L2[0, 1]
with eigenfunctions φj(t) = exp(2πijt), j ∈ Z, and eigenvalues

λj =
∫ 1

0
g(t) e−2πijt dt, j ∈ Z.

Here one estimates the Fourier coefficients of Kθ by

b̂j,n =
1
n

n∑
k=1

Ykφj(zk),

where w̄ denotes the complex conjugate of w ∈ C. Since the observations Yk and the convolu-
tion function g are real, λj = λ−j and b̂j,n = b̂−j,n. Therefore, in the test statistics introduced
in Section 3, one should only use the values |b̂j,n|2 or |b̂j,n/λj |2 for j > p, in which case the
theory could be developed in an analogous way.
The example generalizes easily to the two- and multidimensional case as well as to the two-
sample case with equal blurring function g and design points (zk), as considered in the appli-
cation in Section 5.

Example 2 (Radon Transform and Tomography). The Radon transform is of substantial
practical importance as it describes e.g. the map of a cross-section through a patient’s body
onto the detector space in computer or emission tomography. For detailed information on
computarized tomography see e.g. Natterer (1986). In a statistical framework, emission to-
mography was studied by Vardi et al. (1985), Johnstone and Silverman (1990) and Golden-
shluger and Spokoiny (2006), among others.
In a simple framework, the operator in the Radon transform KR can be represented by a
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linear, injective integral operator which maps a function in the “brain space” L2(B,μB) of
emission densities in the patient’s body to the “detector space” L2(D,μD). Here B is the unit
disc, parametrized by polar coordinates (r, ϑ), and D is parametrized by the angle ϕ ∈ [0, 2π)
of the detected line through the patient’s body, and its impact parameter s ∈ [−1, 1]. The
Radon operator KR is then given by

KRθ(s, ϕ) =
1

2
√

1 − s2

√
1−s2∫

−√
1−s2

θ (s cos(ϕ) − t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt,

where θ ∈ L2(B,μB), and dμB(r, ϑ) = r
πdrdϑ. It maps injectively into the space L2

inv ⊂
L2(D,μD) of functions on D satisfying f(s, ϕ) = f(−s, π+ϕ), and where dμD(s, ϕ) = 1

π2 (1−
s2)1/2dsdϕ. In brain space, the singular value decomposition involves the Zernike functions

φ(p,q)(r, ϑ) =
√
q + 1 · Z |p|

q eipϑ, q = 0, 1, 2, . . . , p = −q,−q + 2, . . . , q,

where Zk
m is the radial Zernike polynomial of degree m and order k, and in detector space the

functions ψ(p,q)(s, φ) = Uq(s)eipϕ, where Uq(cos(κ)) = sin ((q + 1)κ) / sin(κ) is the Chebyshef
polynomial of the second kind. Moreover, the singular values of KR are λ(p,q) = (q + 1)−1/2,
so that for (p, q) ∈ {0 ≤ q; p = −q,−q + 2, . . . , q}, KRφ(p,q) = λ(p,q)ψ(p,q).
The observational model is (1), where the design points zk ∈ [0, 1] × [0, 2π) are an (at least
approximately) orthogonal design for the basis functions ψ(p,q). The hypotheses (2) now
describes the signal θ as a combination of finitely many functions φ(p,q), where the value
of q restricts the radial complexity of the signal, whereas p bounds its absolute angular
frequency from above. In a two-sample problem, by taking differences one can also apply
the methodology for testing equality of two images observed indirectly under the Radon
transform.

3 Model testing

We consider testing the hypothesis that a function has a prescribed parametric form while
not specifying a parametric alternative model. Such tests fall within the area of omnibus
nonparametric methods. For an extensive overview of such methods, we refer to Hart (1997).
In this paper we focus attention to two types of tests, namely the order selection test and the
data-driven Neyman smooth type test.

3.1 The order selection test

Eubank and Hart (1992) proposed the use of order selection tests for testing the fit of a linear
model in a fixed design regression model. The method starts with expressing the difference
between the hypothesized linear function and the true regression function as an orthogonal
series. For our hypothesisH ′

0 this corresponds to writing (Kθ)H′
0
−(Kθ)true =

∑∞
j=1 bp+jψp+j.

A modified Mallows’ (1973) criterion was used by Eubank and Hart (1992) to choose the
number of terms in the series estimator. Their test can also be formulated as follows. Let

T ′
n = max

1≤m≤n−p

1
m

m∑
j=1

nb̂2j+p,n

σ̂2
,
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where σ̂2 is a consistent estimate of σ2, cf. e.g. Munk et al. (2005). Eubank and Hart (1992)
show that if Eε41 <∞ and

1
n

n∑
k=1

ψ2
i (zk)ψ

2
j (zk) ≤ C (6)

for some C > 0 and all p+ 1 ≤ i, j ≤ n, under H ′
0 we have that

T ′
n

L→ T ′ := sup
m≥1

1
m

m∑
j=1

Z2
j , n→ ∞, (7)

where Z1, Z2, . . . are i.i.d. standard normal random variables, and L→ denotes convergence in
distribution. According to (7), the hypothesis H ′

0 is rejected with asymptotic level α > 0 if
the value of T ′

n exceeds the (1−α) quantile q1−α of T ′. For the quantile q1−α, explicit formulas
are available; alternatively it can be determined by simulation. We shall call the test based
on T ′

n the classical order selection test, for further details concerning it cf. Eubank and Hart
(1992) or Hart (1997). Note that the test statistic T ′

n is based on the magnitude of estimates
b̂j,n of the Fourier coefficients bj =< Kθ,ψj >L2(μ2), j = p+ 1, . . . , n, and thus measures the
distance of Kθ from the functions specified in H ′

0. However, if one wants to detect deviations
from the functions specified in the hypothesisH0, a test which is directly based on the distance
between θ and the function in H0 seems to be more appropriate. Therefore, we suggest a
test statistic which is based on the magnitude of estimates â2

j,n of the Fourier coefficients
< θ, φj >L2(μ1). More precisely, consider

Tn = max
1≤m≤n−p

1
Λm

m∑
j=1

n â2
j+p,n

σ̂2
= max

1≤m≤n−p

1
Λm

m∑
j=1

n b̂2j+p,n

σ̂2λ2
j+p

,

where Λm,p = Λm =
∑p+m

j=p+1 1/λ2
j , and

T = sup
m≥1

1
Λm

m∑
j=1

Z2
j

λ2
j+p

. (8)

The distribution of the supremum of the i.i.d. random walk, T ′, is explicitly available (cf.
Spitzer, 1956), but the derivation depends heavily on symmetry arguments for the vectors
(Z2

1 −1, . . . , Z2
n−1). These arguments do not carry over to the case of T which is a supremum

of weighted random walks. However, the following lemma shows that the distribution of T
can be approximated arbitrarily well by simulations.

Lemma 1. Suppose that the singular values satisfy (3). Then for x > 1 and n ∈ N,

P
(

sup
m≥n

1
Λm

m∑
j=1

Z2
j

λ2
j+p

≥ x
)

= O
( 1
(x− 1)2n

)
. (9)

Furthermore, P (1 ≤ T <∞) = 1.

In Figure 1 we have displayed the densities of truncated versions of T ′ and T for different
decay of the eigenvalues, where we only consider sup1≤m≤50 in (7) and (8). We truncate in
order to achieve a better approximation of the distributions of T50 and T ′

50 in the subsequent
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Figure 1: Simulated densities of T ′ (dashed line) and T for centered normal noise (σ =
0.1), where we use sup1≤m≤50 in (7) and (8). The eigenvalues of T are λi = i−1(solid),
λi = i−2(dotted), λi = i−5(dashed-dotted), respectively. Note that due to truncation the
simulated probabilites P (T < 1) and P (T ′ < 1) are non-zero, in contrast to the asymptotic
limit.

simulations. Note that this truncation results in a small proportion of values for T and T ′

which are < 1. It is apparent from Figure 1 that the densities of T are more shifted to
the right as the decay of the eigenvalues increases. This implies that using the non-adjusted
distribution of T ′ instead of T for our tests would result in too liberal procedures.
The next theorem shows that asymptotic critical values for Tn are given by the critical values
of T .

Theorem 2. Suppose that in model (1), Assumption 1 is satisfied. Further suppose that the
singular values of K satisfy (3) and that the singular functions (ψj) satisfy (6). Then under
the hypothesis H0 we have that for x > 1,

P (Tn ≤ x) → P (T ≤ x), n→ ∞. (10)

Let cα denote the critical value at level α for the statistic T . Then the test which rejects
when Tn > cα is equivalent to the test which rejects when j̃n > 0, where

j̃n = arg max1≤m≤n−pAn(m) and An(m) =
m∑

j=1

nb̂2j+p,n

σ̂2λ2
j+p

− cαΛm.

Therefore, if the null hypothesis is rejected, the value of j̃n automatically suggests an alter-
native model which includes further basis functions. Similarly to the proof of Theorem 2, it
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can be shown that j̃n converges in distribution to

j̃ = arg maxm≥1

( m∑
j=1

Z2
j

λ2
j+p

− cαΛm

)
.

In order to get an impression of the theoretical power properties of tests based on Tn, we
prove consistency of such a test under a fixed alternative. The argument follows along similar
lines as in Hart (1997, p. 196) for the classical order selection test.

Theorem 3. Suppose that there exist δ > 0 and j ≥ 1 such that

lim
n→∞P

(
b̂2j+p,n ≥ δ

)→ 1. (11)

Then P (Tn ≥ cα) → 1, as n→ ∞, for any α > 0.

A further investigation of power properties of Tn in finite sample situations, in particular as
compared to T ′

n, is provided in the simulation study in Section 4.

3.2 A data-driven Neyman smooth test

In a series of papers, Ledwina (1994) and Kallenberg and Ledwina (1995) introduced data-
driven versions of Neyman’s goodness-of-fit test for testing the fit of a density function. Such
tests can also be transferred to the lack-of-fit problem in regression models, cf. Hart (1997)
and Inglot and Ledwina (2006). The idea behind the data-driven Neyman smooth test is
similar to the order selection test, though it has several important differences. First, the
order is determined by the Bayesian information criterion BIC (Schwarz, 1978) where the
maximized likelihood ratio value is replaced by the score statistic as follows. Define the
sequence

S′
n(k) =

k∑
j=1

nb̂2j+p,n

σ̂2
, k = 1, . . . , n− p.

Then

B′
n(k) = S′

n(k) − k log n, k = 1, . . . , n− p,

k̃′ = argmax1≤k≤n−pB
′
n(k).

Second, the test statistic used is S′
n(k̃′), which is the score test at the chosen model order. A

third difference is that in order to apply this test, the choice k = 0 is not allowed. Indeed, if
it were allowed to obtain that k = 0, by consistency of the BIC as a model selection criterion,
under the null hypothesis H ′

0 it would consistently select k̃′ = 0, and hence not be usable as
a test (see Ledwina, 1994). Then if Eε41 < ∞ and if (6) holds, one has that P (k̃′ = 1) → 1,
and therefore

S′
n(k̃′) L→ χ2

1.

The hypothesis is thus rejected with asymptotic level α if S′
n(k̃′) exceeds the 1 − α quantile

of a chi-squared random variable with one degree of freedom. We shall call the test based on
S′

n(k̃′) the classical data-driven Neyman smooth test.
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For the hypothesis H0, we propose a modified version of the data-driven Neyman smooth test
which is based on estimates â2

j,n of the Fourier coefficients < θ, φj >L2(μ1). To this end define

Sn(k) =
k∑

j=1

nb̂2j+p,n

σ̂2λ2
j+p

, k = 1, . . . , n− p,

and consider the selection criterion Bn(k) = Sn(k) − Λk log n, 1 ≤ k ≤ n − p, k̃ =
argmax1≤k≤n−pBn(k).

Theorem 4. Suppose that in model (1), the eigenvalues satisfy (3) and that the eigenfunctions
satisfy (6). Then under the hypothesis H0 we have that as n tends to infinity, P (k̃ = 1) → 1,
and consequently that

Sn(k̃) L→ Z2/λ2
p+1,

where Z is standard normal.

The critical value of the data driven Neyman smooth test for inverse regression is determined
by a chi-squared critical value with one degree of freedom, and by the eigenvalue λp+1, which
corresponds to the first additional eigenvector used under the alternative hypothesis. This
behavior is expected for a test for which the order is determined by the BIC, with penalty
factor the log of the sample size. A consistency result against fixed alternatives, similar to
Theorem 3, could also be proved for the inverse data-driven Neyman smooth test, by following
the argument in Kallenberg and Ledwina (1995), which we, however, omit for brevity. The
fact that the power of the data driven Neyman smooth test for local alternatives depends on
the first coefficient in the alternative model was discussed in a study of goodness-of-fit tests in
Claeskens and Hjort (2004); a similar conclusion about contiguous alternatives was reached
by Inglot and Ledwina (2001).
Extensions to general spectral schemes. As pointed out by the associate editor both
test statistics are special cases of

Tf,n = max
1≤m≤n−p

1∑p+m
j=p+1 1/f(λj)2

m∑
j=1

n b̂2j+p,n

σ̂2f(λ2
j+p)

.

Here f ≡ 1 for T ′
n and f(x) = x for Tn. More generally, one might consider a sequence of

functions fm possibly depending on m, s.t. fm → f . If one wants to obtain a consistent test
based on θ (which is the goal of the present paper) and not on Kθ, then we stress that at least
asymptotically fm(x) → x. Note, that in the spectral domain this corresponds to an approxi-
mation of the identity. Any choice other than a regularized version of f(x) = x would yield a
test which puts deviant weights on alternatives characterized by different Fourier coefficients
ai �= 0. Nevertheless, this could be useful for the construction of tests with increased sensitiv-
ity against specific types of alternatives, however, its omnibus character would be violated.
Interestingly, the choice of fm is similar to the choice of a spectral regularization method (cf.
Mair and Ruymgaart 1996). Indeed, there one uses a function g(λj ;α) (which corresponds
to f−2

m and α corresponds to m−1), depending on a regularization parameter α > 0. In par-
ticular, one requires g(λj ;α) → λ−2

j for α → 0. The version we use corresponds to spectral
cut-off estimation (cf. Mair and Ruymgaart 1996, p. 1426). Note that due to the form of
the test statistic Tn as a maximum, a choice of the truncation parameter m is not required,
which is quite an advantage of the method. One might also wish to regularize additionally
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the function f , similar to tapering in orthogonal series estimation. Then one would require
an additional parameter, say N(n) → ∞, and one could use e.g. λ2

j/(N(n)−1 + λ2
j )

2 instead
of λ−2

j . For estimation, it is well known that this can reduce the finite sample MSE. For
testing, such an additional regularization step does not seem to be necessary as the level of
our method is kept quite accurately (cf. Section 5).
The case of estimated K. We close this section with a brief discussion for testing in model
(1) if there is additional noise in the operator K. Concerning estimation purposes there has
been some recent work in this direction (cf. Hoffmann and Reiß, 2007; and Cavalier and
Hengartner, 2005). Generally speaking, if the whole operator K has to be estimated (cf.
Hoffmann and Reiß, 2007), our indirect approach would involve estimation of the functions
φj , ψj and the singular values λj , which is infeasible. Further, hypotheses of type (4) cannot
be interpreted if the functions φj are unknown.
In contrast, if only the eigenvalues are unknown but can be estimated (Cavalier and Hen-
gartner, 2005), our approach will be useful in general. In a white noise model, Cavalier and
Hengartner (2005) show that as long as the noise level in the eigenvalues is less or equal to
the noise level in the function Kθ, the rate is the same as for known eigenvalues. In our
context of hypothesis testing, we expect that the asymptotic distribution of the test statistics
remains the same if the noise level in the eigenvalues is less than the noise level in Kθ. A full
analysis of this issue is beyond the scope of this paper, however, a small simulation study in
the next section confirms the above statement.

4 Simulation study

In this section we describe the results of a simulation study of the (inverse) order selection
and the (inverse) Neyman smooth tests based on the statistics Tn and Sn, respectively, and
compare it to their classical (direct) counterparts, based on statistics T ′

n and S′
n. For this

purpose, we generate data from model (1), where K is a convolution operator on [0, 1]. The
kernel of the convolution integral is defined by choosing its eigenvalues for the system of
eigenfunctions φj(x) =

√
2 cos(2πjx) to decay as λj ∼ 1/j.

First we discuss the order selection test. In Fig. 2 we compare the empirical distribution
functions, based on 1000 simulations, of the test statistic Tn for n = 50, 500, respectively, with
the distribution function of the asymptotic statistic T . The noise terms εk have standard
deviation 0.1 and are distributed either normally or according to a t-distribution with 10
degrees of freedom. Note from the figure that the empirical distribution of Tn approximates
already closely its asymptotic shape, given by the distribution of T , for rather small sample
sizes. For the t−distributed noise, which is the more difficult case, the distribution of T500 is
hardly distinguishable from the distribution of T , and for the normal case this is even more
true.
In the second part of the simulations we generated data from certain alternatives, where
we assume that one of the Fourier coefficients aj of θ is now nonzero, and the noise is
normally distributed. Moreover, we both consider the case p = 0 (or, in more detail,
H0 : aj = 0 for all j, i.e. hypothesis (2) with p = 0, which effectively tests the signal
for being zero), and the non-trivial null hypothesis p = 3, where we generate artificial data
with θ3:1 : (a1, a2, a3) = (1/10, 1/10, 1/10) and θ3:2 : (a1, a2, a3) = (1/10, 1/20, 1/30). For
every combination of parameters we have repeated 20 times the following procedure and av-
eraged the resulting powers. First, the critical values for the test were estimated from 500
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Figure 2: Simulated distribution functions of T50 (dashed line), T500 (dotted line) and T (solid
line) for simulations with normal noise (l.h.s.) and for simulations with t-distributed noise
with 10 degrees of freedom (r.h.s.).

simulations, and in the second step used to determine the power of the test in another 100
simulations. Hence, we have computed 2000 simulations for each combination of parame-
ters to determine the power of the test, grouped into blocks of 100 simulations for which we
re-simulated the critical value of the test to include both the randomness in the simulated
critical values and in the observed data. Finally, we also considered the case that the eigen-
values λj are unknown, but estimates from additional observations are available. First, we
performed simulations where we assume that the estimated eigenvalues λ̂j are disturbed by
an additive error, with error terms distributed i.i.d. normal with standard deviation 0.05
and mean 0. Second, we considered multiplicative noise, distributed according to a truncated
normal distribution with standard deviation 0.05 (but now mean 1), where the truncation
was performed symmetric to the mean and such that negative values of the noise factor were
avoided. In both scenarios we used critical values for the tests based on simulations with the
estimated (noisy) eigenvalues, and generated the observations used in the subsequent tests
based on the true (in practice unknown) eigenvalues as given above.
In Table 1 (left-hand side) we compare the power of the inverse order selection test with its
classical counterpart (where the latter is based on the statistic T ′

n) for a number of combina-
tions of the design sample size n, the noise standard deviation σ, and the index j and value
aj of a non-zero Fourier coefficient of θ. The critical values for the tests for levels of 0.05, 0.1
and 0.2 were determined from the simulations under H0 : aj = 0 for all j. In a similar
way, we performed simulations of the inverse and classical Neyman smooth tests for the same
settings as for the order selection test. The critical values used were again determined from
simulations under H0 : aj = 0 for all j. The right-hand side of Table 1 gives the results for
the simulated power of the inverse and classical (direct) Neyman smooth test.
We draw the following conclusions from Table 1. For the case of low frequency alternatives
(notably the case p = 0, a1 �= 0), the classical (direct) tests perform somewhat better than the
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inverse tests. Here, the increase of the critical values due to assigning larger weights to high
frequency components results in a slight loss of power for the inverse tests. In most of the
other scenarios, the inverse tests outperform their classical (direct) counterparts. Moreover,
the inverse order selection is superior to the inverse Neyman test in the majority of cases,
with again an exception for the lowest frequency alternative. In more detail, for both types
of tests and H0 : p = 0, the power decreases at fixed level of the perturbation with the order
of the affected eigenfunction due to the decrease of the corresponding eigenvalue. An increase
in the sample size or a reduction in the variance of the noise yields significant increases in
the power (at fixed type and level of the perturbation). The power against perturbations in
the 5th or 10th eigenfunction increases if the null is changed to H0 : p = 3. This is due to
the fact, that the associated eigenvalues are now 4/5 and 4/10 of the largest eigenvalue λ4

in the alternative, instead of 1/5 and 1/10 compared to λ1 under H0 : p = 0. However, the
choice of the true function θ = θ3:1 or θ = θ3:2 is not important. Note that the simulations
with non-trivial null hypothesis and testing data generated under the null show that the test
approximately keeps its level; this holds both for the simulations with simple null hypothesis
H0 : p = 0 and the non-trivial case H0 : p = 3. Next, estimation of the variance with a
simple difference estimator (Rice, 1984) results in a slight exceedance of the nominal level
which in turn leads to an apparent increase in the power of the order selection test at given
perturbation type and level for H0 : p = 3, as compared to the case for known variance σ2.
Finally, if the eigenvalues have to be estimated, the tests still perform reasonably well.

5 Application to confocal fluorescence microscopy

5.1 Modelling the observations

Fluorescence microscopy at nanoscales is often hampered by poor signal-to-noise ratios of
the individual image frames. Hence, in general a series of several image frames is taken
consecutively and accumulated or averaged to yield a single image. However, this has the
disadvantage that slight movement of the object table or of the observed object, e.g. in live
cell imaging, results in an additional blur of the final image. This could be avoided by testing
the individual image frames for significant differences, and, possibly, proper image registra-
tion before accumulation of the individual frames. Another relevant application is automatic
tracking of structural changes within the imaged object over a long time period. For exam-
ple, GFP (green fluorescent protein)-tagged proteins are used to detect structural changes of
intracellular organelles caused by mutations in this protein and for pharmacological tests (cf.
Pepperkok and Ellenberg, 2006, for automatic microscopy). Similarly, the monitoring of the
motion of intracellular objects such as proteins or transport compartments is of substantial
interest. To this end, it is important to note that the image map which describes the micro-
scope is strongly localized, i.e. there is a close correspondence between loci on the observed
image and those in the true object. Hence, if we aim to detect changes at certain regions of
the cell, it is tempting to restrict the analysis to a suitable part of the image.
In this section we will demonstrate the ability of our inverse testing procedure to detect
significant image differences, which can e.g. be used to decide whether single frames may be
accumulated straightforwardly. We will first introduce the specific hypotheses to be tested in
this application, then introduce the deconvolution model for the data, and finally present the
results from an application to a (typical) sequence of images of fluorescently labeled living
cells acquired with a confocal laser scanning microscope (Leica TCS).
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Figure 3: Light microscopic image of fluorescently labeled intracellular membrane structures
in HeLa cells (cervix cancer cell line) using the lipophilic carbocyanine dye DiI (red). In the
small sub-images we focus on a typical example for alterations in the imaged object due to
biological processes in the cells. It shows the movement of a tubular membrane compartment,
which may serve as transport or carrier for proteins. Detection of such compartments helps
to illucidate intracellular trafficing pathways.

Our aim is to assess the significance of differences between two images of the same object.
Hence, we apply our test to the following null hypothesis:

H0 : I1 = cI2

where I1 and I2 represent the intensity distributions of the first and second image, respectively,
and c > 0 is a (real) constant which allows for different exposure times of the images. The
constant c can be estimated straightforwardly from the data by taking the ratio of the means
of the two images. Since the estimate ĉ always was very close to one (with standard deviation
approx. 1%) we have not considered the additional estimation error any further.
Next we introduce the model for such data obtained from confocal microscopy. Typically,
available are count data representing observed image intensities on a two- or three-dimensional,
equidistant, grid of design-points in the unit square or cube. Here, we consider the two-
dimensional case, however the extension to three-dimensional data is straightforward. The
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design points are given by

zjk =
(

2j − 1
2n

,
2k − 1

2n

)
, 1 ≤ j, k ≤ n.

Hence, at our disposal are observations Yjk = (Kθ)(zjk) + εjk, where

(Kθ)(z) = g ∗ θ(z) =
∫

[0,1]2
g(z − t)θ(t) dt,

where ”∗” represents the convolution of the periodic functions θ, g ∈ L2([0, 1]2), and g is called
the point-spread-function [PSF] of the microscope. The PSF describes the imaging process
and may be computed from the optical properties of the microscope. It represents the image
of a point-source observed by the respective microscope. The convolution with the PSF
amounts to a smoothing of the original image of the object, where typical smoothing scales
are of order ≈ 100nm. However, often the biological structures of interest within the imaged
object are of comparable size, and it therefore is necessary to compensate for the convolution
of the image with the PSF. Finally, the standard model for the distribution of the photon
count data Yjk is Yjk ∼ Poiss [(Kθ)(zjk)], all independent. Hence, the distribution of each
pixel Ỹjk of the difference image I1 − ĉI2 is given by the difference of two (scaled) Poisson
variables. This model implies that the noise of the observations Ỹjk is not homoscedastic.
However, as will be discussed in more detail in Section 5.2, the large number of design points
(10000 − 25000) in our application counterbalances this potential problem sufficiently.
We now discuss briefly the properties of the operator K which is needed to apply the inverse
tests. Note that the linearity of the operator K implies that EỸjk = K(θ1 − cθ2), where
θ1 − cθ2 is the difference of the (unknown) true intensity distributions of the first and second
image I1 and I2. The spectral transform for the convolution operator is given by the Fourier
transform on [0, 1] × [0, 1]. Hence, the eigenfunctions of K are φj,k(t) = exp(2πi((j, k) · t),
(j, k ∈ Z) and t ∈ R

2, and its eigenvalues are

λj,k =
∫

[0,1]2
g(t) e−2πi((j,k)·t) dt, j, k ∈ Z.

The Fourier coefficients bj,k,n of Kθ can then be estimated by

b̂j,k,n =
1
n2

n∑
l=1

n∑
l̃=1

Ỹl,l̃φ
∗
j,k(zl,l̃),

and those of the original image θ by âj,k,n = b̂j,k,n

λj,k
.

Now we comment on the implementation of the order selection test for the specific setting
under consideration here. A similar reasoning holds true for the Neyman smooth test. In
contrast to the one–dimensional case considered in Section 3.1 there does not exist a natural
ordering of the eigenvalues by the index of the eigenfunctions anymore. We use the following
test statistics for the test of the hypothesis H0 of zero difference between signals, as defined
above. It is based on a surrogate to the one–dimensional ordering of the eigenvalues based
on the Euclidean norm of their index pairs (j, k):

Tn = max
1≤rl≤

√
2n2

1
Λrl

∑
1≤j2+k2≤r2

l

n2|âj,k,n|2
σ̂2

,
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Time stamps 1st/
2nd frame in sec. 1.4 2.8 4.2 5.6 7.0 8.4 9.8 11.25

1.4 - 90/89 3 6/18 0 0 0 0
2.8 90/89 - 1 18/40 0 0 0 0
4.2 3 1 - 3/14 1 0 0 0
5.6 6/18 18/40 3/14 - 2 0 0 0
7.0 0 0 1 2 - 32/41 5/4 5/13
8.4 0 0 0 0 32/41 - 68/55 20/43
9.8 0 0 0 0 5/4 68/55 - 31/22

11.25 0 0 0 0 5/13 20/43 31/22 -

Table 2: P-values of the inverse order selection test (left) and the inverse data-driven Neyman
smooth test (right) for testing the null hypothesis that two specific images in the time sequence
are identical up to a scaling constant and noise (for a single number the P-values of the two
tests are equal).

where rl is the ordered sequence of values of
√
j2 + k2 for −n ≤ j, k ≤ n (with j, k ∈ Z),

and σ̂2 is an estimator of σ2 = Eε2. In our computations we used the following bivariate
difference scheme estimator (Munk et al., 2005)

σ̂2 =
1

2n(n− 1)

∑
1≤l≤n,1≤l̃≤n−1

(
Ỹl,l̃+1 − Ỹl,l̃

)2
.

The data considered here are real-valued, hence it follows that aj,k,n = a−j,−k,n, and we
compare the realized value tn of Tn computed from the data with the quantiles of the simulated
distribution of

T = sup
1≤rl

1
Λrl

∑
1≤j2+k2≤rl

Z2
j,k

|λj,k|2 ,

where Zj,k := Z−j,−k ∼ N(0, 1), and Λrl
=

∑
1≤j2+k2≤rl

1
|λj,k|2 .

5.2 Application to the HeLa data

We use our method now to compare single image frames in a sequence of confocal images of
living HeLa cells, an established cell line. The standard imaging procedure in this case would
be to accumulate a certain number, say 4, images of the same object at the same position to
improve the signal-to-noise ratio. In our case, there are 9 images which have been acquired
in a total time period of ≈ 11.25 seconds. Their voxel size is 138.9nm in x and y-direction,
which corresponds to a zoom level of 2.5. To speed up computations, we focus on a sub-image
with size of 101 × 101 pixels close to the middle of fig. 3 which contains both cell membrane
and cell interior, in order to be representative of the structure of the image.
Table 2 gives the result of the application of the inverse order selection and the inverse
Neyman smooth tests to a number of comparisons of image pairs from this sequence (the
results for the direct tests were similar). From the results we find that, for images acquired
within ≈ 2 − 3s, the null is in many cases not rejected to within a level of 5%, whereas the
images are significantly different for image pairs taken at larger time intervals. This implies
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that care has to be taken before images taken at larger intervals are accumulated. A detailed
visual inspection of the image sequence indeed confirms that the images both change w.r.t.
large scale movements, and w.r.t. to changes of small scale features such as moving vesicles,
which is to be attributed to actual changes of the object (cf. fig. 3). Concluding, the analysis
indicates that the test is sensitive enough to detect actually existing image changes, wheres
it is not over-sensitive, in the sense that the null is not rejected for several image pairs, which
are in most cases images captured in immediate sequence (e.g. those at timestamps 1.4s and
2.8s).
The HeLa data has been obtained with a standard confocal laser scanning microscope, where
the PSF can be modeled well by a unimodal function. However, higher resolution images
(particularly in the z−direction) can be obtained from more sophisticated fluorescence mi-
croscopes such as I5M or 4PI-microscopes, where a higher resolution is achieved by a more
complicated PSF with strong sidelobes in the z−direction (cf. Bewersdorf et al., 2006). There-
fore, it is here even more important than for confocal microscopy to include the deconvolution
into the test statistics. Again, we suggest to use our testing procedure to detect changes in
the image due to real changes in living cells, and to find image misalignements prior to image
averaging. Related deconvolution settings where image changes and misalignment are impor-
tant to detect exist in many fields. Here we mention laser ophthalmoscopy (e.g. Nourrit et
al., 2005), where it is of interest to detect changes of the human retina (after correction for
image changes due to eye movements).
We close this section with a discussion of some of the assumptions required in Theorems 2
and 4. For our theoretical results we assume the noise to be homoscedastic. In contrast to
this, the image data is (approximately) Poisson distributed, and hence the homoscedastic-
ity assumption does not hold. However, the empirical Fourier coefficients b̂j,k,n are computed
from the sum of a very large number of design points (10000−250000 depending on the image
geometry), which counterbalances this potential problem sufficiently. Indeed, some additional
numerical simulations show that the test is somewhat conservative in this setting, but still
performs reasonably well, if the number of design points is sufficiently large. In more detail,
we performed simulations under the null hypothesis as follows. Two artificial images with
Poisson noise were generated, where the pointwise Poisson means are based on a smoothed
version of the HeLa image at the (first) time step 1.4s. The smoothing was performed by
averaging any point with its four immediate neighbours. In one of these images, the Poisson
means were rescaled with a scaling factor c̄ which was selected randomly distributed according
to a uniform distribution with mean one and standard deviation ≈ 2%, which is the typical
variability between the total intensities of the HeLa images used here. In 100 simulations, the
inverse order selection test rejected in 17, 13 and 2 simulations for levels 0.2, 0.1 and 0.05,
respectively, and the inverse Neyman smooth test in 17, 9 and 3 cases. Finally, the PSF of a
fluorescence microscope (e.g. of confocal or 4PI type) is band-limited, i.e. only has finitely
many non-zero Fourier coefficients. This implies that it is not possible to attain any infor-
mation on the object at scales smaller than approximately the Nyquist frequency. Hence, we
actually only consider the Fourier transforms of the functions θ and Kθ within the support
of the OTF (i.e. the Fourier transform of the PSF), where assumption (3) on the OTF is not
necessary anymore.
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6 Discussion: Connections to model selection and extensions

Both order selection and data-driven Neyman smooth tests have a strong connection to model
selection methods. We first define the AIC and BIC in their original framework, then we make
a link back to the test statistics, and we proceed by proposing adjusted AIC and BIC versions
which can be used in inverse regression problems.
The criteria AIC and BIC are originally derived in a likelihood setting. Let �n(γ) denote the
log likelihood function of Y1, . . . , Yn, with unknown parameter vector γ. In the direct normal
linear regression setting, for example, where Yi = β1φ1(xi) + . . . + βpφp(xi) + εi and the
independent errors εi ∼ N(0, σ2), the log likelihood function is based on the normal density,
and the parameter vector γp = (σ2, β1, . . . , βp). For hypothesis testing, the null hypothesis

H0 : E(Y |x) = θ(x) =
p∑

j=1

βjφj(x)

is contrasted with the alternative hypothesis

Ha : θ(x) =
k∑

j=1

βjφj(x) for some k > p.

For each value of k = p, p+ 1, . . . there is a corresponding maximized log likelihood function
�n(γ̂k). Hence, to each of the possible models under Ha, corresponds a value of the criteria

AIC′(k) = 2�n(γ̂k) − 2(k + 1), BIC′(k) = 2�n(γ̂k) − log(n)(k + 1),

where k+1 =length(γk). Maximizing these criteria is equivalent to maximizing the differences

aic′(k) = AIC′(k) − AIC′(p) = 2{�n(γ̂k) − �n(γ̂p)} − 2(k − p)
bic′(k) = BIC′(k) − BIC′(p) = 2{�n(γ̂k) − �n(γ̂p)} − log(n)(k − p),

for k = p, p + 1, . . .. We recognize the log likelihood ratio statistic. For normal data, up to
a constant not depending on k, this statistic is equal to n{log(SSEp) − log(SSEk)}, where
the error sum of squares SSEk =

∑n
i=1(Yi − β̂1φ1(xi)− . . .− β̂kφk(xi))2. The likelihood ratio

statistic is first order equivalent to the score statistic Sk. To define Sk, denote by rn an upper
bound for the values of k−p, and let γ̃k be the estimator of γk under the null hypothesis, that
is, where βp+r = 0 for r = 1 . . . , rn, hence the vector of length p+ rn + 1, γ̃k = (γ̂p, 0, . . . , 0).
Further, define J(γ) the corresponding Fisher information matrix, with J−1

k,k its submatrix of
dimension (k − p) × (k − p) in the lower right corner. Then,

Sk =
(
∂�n(γ̃k)
∂βp+r

)t

r=1,...,k

J−1
kk (γ̃k)

(
∂�n(γ̃k)
∂βp+r

)
r=1,...,k

.

For the regression model as in (1) under the orthogonality assumption (and for now assuming
normality) Sk = S′

n(k) is the score statistic in the direct case if σ̂2 is the maximum likeli-
hood estimator. For the data-driven Neyman smooth test the connection to the BIC is now
immediate, using the score statistic instead of the log likelihood ratio statistic. For the order
selection test, there is a resemblance to the AIC, with a fixed penalty of cα times the value
Λk. In the traditional AIC, cα = 2.
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For indirect regression problems, the value Λk plays the role of the effective number of pa-
rameters in the model. This value is arrived at via arguments in the last part of the proof
of Lemma 1. Hence, for inverse regression problems, the penalty is not the number of coef-
ficients in the model, but rather the weighted number of coefficients, where the weights are
the eigenvalues of the integral operator K.
Based on the reasoning above, we propose two new model selection criteria that are versions
of the AIC and BIC type model selection methods for use in inverse regression problems. The
criteria read as follows:

aic(k) =
k∑

j=1

nb̂2j+p,n

σ̂2λ2
j+p

− 2Λk, bic(k) =
k∑

j=1

nb̂2j+p,n

σ̂2λ2
j+p

− log(n)Λk. (12)

The order k for which the criterion takes on the largest value is selected as the best model
order for the given data. It is illustrative to consider polynomially decaying eigenvalues as in
(3) which gives, e.g.

bic(k) ∝
k∑

j=1

n(j + p)2β
b̂2j+p,n

σ̂2
− log(n)

(
k2β+1 +O(k2β)

)
. (13)

Hence, instead of penalizing with the dimension of the model k a much stronger penalty k2β+1

is required. To our knowledge only Loubes and Ludeña (2004) deal explicitly with model se-
lection in the context of penalized estimation for (nonlinear) inverse problems. In particular,
our criterion aic(k) in (12) is related to one of their selection criteria, cf. Remark 3.6 in
Loubes and Ludeña (2004). In a related approach, Butucea and Comte (2007) investigate
estimation based on model selection of a linear functional of θ in density deconvolution.
We conclude by mentioning some topics for future work. Even though testing for functions
that are linear combinations of eigenfunctions covers a range of interesting applications, in-
cluding testing for equality of two images, there are situations where other hypothesis tests
are called for. In such situations, an orthogonalization approach can be included to make
the basis functions that occur in the null hypothesis orthogonal to the eigenfunctions of the
kernel, something which imposes both technical and practical complications.
The model selection question above translates to an order selection issue. Other interesting
model selection problems arise with multivariate data. For example, when the variable z
is multivariate, interest may lie in selecting components of z to be included in the model.
It would be of great interest to see how this methods are capable to deal with sparseness
assumptions.
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Appendix

Proof of Lemma 1. Note that from (3), there are c1, C1 > 0 such that

c1
(
(m+ p)2β+1 − p2β+1

) ≤ Λm ≤ C1

(
(m+ p)2β+1 − p2β+1

)
.

Therefore, from the Hajek-Renyi inequality (cf. Petrov, 1995, p. 53) we have for k ≥ n and x > 1 that

P
(

max
n≤m≤k

1
Λm

m∑
j=1

Z2
j

λ2
j+p

≥ x
)

= P
(

max
n≤m≤k

1
Λm

m∑
j=1

Z2
j − 1
λ2

j+p

≥ x− 1
)

≤ 1
(x− 1)2

E(Z2
1 − 1)2

( 1
Λ2

n

n∑
j=1

1
λ4

j+p

+
k∑

j=n+1

1
Λ2

jλ
4
j+p

)

≤ L

(x− 1)2
( 1
n4β+2

n∑
j=1

j4β +
k∑

j=n+1

j4β

j4β+2

)

22



for some L > 0. Letting k → ∞ proves (9) as well as P (T < ∞) = 1. The statement P (T ≥ 1) will
follow if we show that

1
Λm

m∑
j=1

Z2
j

λ2
j+p

→ 1 a.s., m→ ∞.

To this end note that the conditions of Theorem 3 (ii), Chap. 3.3. in Chow and Teicher (1978) are
satisfied for aj = 1/λ2

j+p, since bm = Λm/am ∼ m evidently satisfies the conditions of their theorem.
This concludes the proof of the lemma.

Proof of Theorem 2. Since σ̂2 is consistent for σ2, it will be sufficient to prove Theorem 2 for the case
of known σ2. We will show that P (Tn > x) → P (T > x) for x > 1. Let

Sm,n =
1

Λm

m∑
j=1

n b̂2j+p,n

σ2λ2
j+p

, Sm =
1

Λm

m∑
j=1

Z2
j

λ2
j+p

.

Then
|P (Tn > x) − P (T > x)| ≤ P (An) + P (Bn) + |P (Cn,1) − P (Cn,2)|,

where

An =
{
Sm ≤ x, 1 ≤ m ≤ mn, sup

mn+1≤m<∞
Sm > x

}
,

Bn =
{
Sm,n ≤ x, 1 ≤ m ≤ mn, max

mn+1≤m<n−p
Sm,n > x

}
,

Cn,1 =
{

max
1≤m≤mn

Sm > x
}
, Cn,2 =

{
max

1≤m≤mn

Sm,n > x
}
,

where mn → ∞ is a sequence which will be specified below. From an application of the multivariate
Berry-Esseen theorem (cf. Bhattacharya and Rango Rao, 1976) as in Eubank and Hart (1992) and
Hart (1997), we get that

|P (Cn,1) − P (Cn,2)| ≤ a(mn)m2
n

Eε41
σ4

√
n
,

where a(m) only depends on m. Thus it is possible to find a sequence mn → ∞ slowly enough such
that

|P (Cn,1) − P (Cn,2)| → 0.

Furthermore, from Lemma 1 we immediately see that P (An) → 0. Finally consider Bn. Let Zj,n =
n b̂2j+p,n/σ

2. We follow the proof in Eubank and Hart (1992). We have

Bc
n ⊃

n−p⋂
k=mn+1

{∣∣∑k
j=1(Z

2
j,n − 1)/λ2

j+p

∣∣
Λk,p

≤ x− 1

}
.

Let nj = j2, j(1) largest integer j such that j2 ≤ mn, and j(2) largest integer j such that j2 < n− p.
Define

ξj,n = max
1≤r≤nj+1−nj

∣∣∣∣∣∣
nj+r∑

i=nj+1

(
Z2

i,n − 1
)
/λ2

i+p

∣∣∣∣∣∣ , j = j(1), . . . , j(2) − 1,

ξj(2),n = max
1≤r≤n−1−nj(2)

∣∣∣∣∣∣
nj+r∑

i=nj+1

(
Z2

i,n − 1
)
/λ2

i+p

∣∣∣∣∣∣ .
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For any integer k with mn + 1 ≤ k ≤ n, either nj < k ≤ nj+1 for some j(1) ≤ j ≤ j(2), or
nj(2) < k ≤ n− p. It follows that for mn + 1 ≤ k ≤ n− p,∣∣∑k

i=1(Z
2
i,n − 1)/λ2

i+p

∣∣
Λk,p

≤
∣∣∑nj

i=1(Z
2
i,n − 1)/λ2

i+p

∣∣
Λnj,p

+
ξj,n

Λnj ,p
.

Hence

Bc
n ⊃

j(2)⋂
j=j(1)

[{∣∣∑nj

i=1(Z
2
i,n − 1)/λ2

i+p

∣∣
Λnj ,p

≤ x− 1
2

}⋂{
ξj,n

Λnj ,p
≤ x− 1

2

}]
. (14)

From Markov’s inequality,

P

⎛⎝ j(2)⋃
j=j(1)

{∣∣∑nj

i=1(Z
2
i,n − 1)/λ2

i+p

∣∣
Λnj,p

>
x− 1

2

}⎞⎠ ≤ 4
(x− 1)2

j(2)∑
j=j(1)

v(1, nj , n)
Λ2

nj ,p

, (15)

where for s ≤ r, by computing the variance of the quadratic form,

v(s, r, n) = Var

[
r∑

i=s

(Z2
i,n − 1)/λ2

i+p

]

=
1

n2σ4

⎛⎝ n∑
k=1

(
r∑

i=s

ψ2
i+p(xk)/λ2

i+p

)2
⎞⎠(Eε41 − 3σ4

))

+
2
n2

n∑
k,l=1

(
r∑

i=s

ψi+p(xk)ψi+p(xl)/λ2
i+p

)2

≤ C

(( r∑
i=s

1
λ2

i+p

)2

/n+
r∑

i=s

1
λ4

i+p

)
, (16)

where we used (6). Here and in the following C > 0 is a generic constant which might change from
line to line. Using (3) one shows that the right-hand side of (15) is of order

j(2)∑
j=j(1)

(
(j2)2β+1

)2
/n+ (j2)4β+1

(j2)4β+2
, (17)

which tends to 0 as n,mn → ∞.
Next we estimate the contribution of the second term in the intersection (14). Note that from (16),
we get

v(s, r, n) ≤ C

r∑
i=s

1
λ4

i+p

.

Therefore we can use an inequality due to Billingsley (1968, p.102) with ν = 2, α = 1 and ui = λ−4
i+p

to estimate

Eξ2j,n ≤ C
(
log(8j + 4)

)2 nj+1∑
i=nj+1

1
λ4

i+p

Thus

P

⎛⎝ j(2)⋂
j=j(1)

{
ξj,n

Λnj,p
≤ x− 1

2

}⎞⎠ ≥ 1 −
j(2)∑

j=j(1)

(
log(8j + 4)

)2Λ−2
nj ,p

nj+1∑
i=nj+1

1
λ4

i+p

≥ 1 − C

j(2)∑
j=j(1)

j−2,
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which tends to 1 as mn → ∞. This proves that P (Bn) → 0, as desired.

Proof of Theorem 3. From (11) and Lemma 1,

P
(
Tn ≥ cα

) ≥ P
( 1

Λj

j∑
i=1

n b̂2i+p,n

σ̂2λ2
i+p

≥ cα

)
≥ P

(
b̂2j+p,n ≥ σ̂2λ2

j+pΛjcα

n

)
→ 1.

Proof of Theorem 4. Using (16) and Markov’s inequality, for k ≥ 2 we estimate

P
(
k̃ = k

) ≤ P
( k∑

j=1

nb̂2j+p,n

σ2λ2
j+p

− Λk logn ≥ nb̂21+p,n

σ2λ2
1+p

− Λ1 logn
)

= P
( k∑

j=2

Z2
j,n − 1
λ2

j+p

≥ (Λk − Λ1) (logn − 1)
)

≤ C

(( k∑
i=2

1
λ2

i+p

)2

/n+
k∑

i=2

1
λ4

i+p

)
/
(
(Λk − Λ1) (log n − 1)

)2

,

which tends to 0 as n→ ∞.
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