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Abstract

The central limit theorem (CLT) for stationary ergodic Markov chains is investigated.
We give a short survey of related results on the CLT for general (not necessarily Harris
recurrent) chains and formulate a new sufficient condition for its validity. Furthermore,
Markov operators are considered which admit invariant orthogonal splittings of the space
of square-integrable functions. We show how conditions for the CLT can be improved if
this additional structure is taken into account. Finally we give examples of this situa-
tion, namely endomorphisms of compact Abelian groups and random walks on compact
homogeneous spaces.
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1 Introduction

Let (S,A, µ) be a probability space and (ξk)k∈Z be a stationary, ergodic Markov chain with
state space S, transition operator Q and stationary distribution µ. It is assumed that
(ξk)k∈Z is realized on its own sample path space (Ω,B, Pµ). Denote by L0

2 the subspace
of LR

2 (S,A, µ) = L2 consisting of functions with
∫

f dµ = 0. Given f ∈ L0
2 let

Sn(f) = f(ξ1) + . . . + f(ξn).

We will be interested in conditions on f ∈ L0
2 under which Sn(f) satisfies the central limit

theorem (CLT)
Sn(f)/

√
n

n→∞⇒ N(0, σ2(f)), (1)

with
ESn(f)2/n

n→∞→ σ2(f). (2)

Here N(0, σ2) denotes the normal law with mean 0 and variance σ2, which in the degen-
erate case σ2 = 0 is equal to the Dirac measure at 0, and ⇒ denotes weak convergence of
distributions.

Definition 1.1. If for a function f ∈ L0
2, (1) and (2) hold, we say that f is asymptotically

normal.

Asymptotic normality of functions f ∈ L0
2 has been studied intensively in the literature, and

we want to review some of the results. A very simple sufficient condition (cf. Gordin & Lif̌sic
[11]) is the existence of a solution g ∈ L2 to the equation

f = g −Qg. (3)

If (3) holds, f is asymptotically normal with limit variance given by

σ2(f) = |g|22 − |Qg|22, (4)

where | · |2 is the L2-norm. Under the same assumption also the functional central limit
theorem (FCLT) holds (see, for instance, Borodin & Ibragimov [1]). Furthermore, we may
change Pµ to the probability measure Ps corresponding to the chain started from a point
s ∈ S so that ξ0 = s, and the CLT and FCLT still hold true for almost all s ∈ S with respect
to µ. In general we may conclude (3) from the convergence in L2 of the series

∞∑
n=0

Qnf. (5)

Then we can set g =
∑∞

n=0 Qnf . The convergence of (5) implies, in particular, |Qnf |2 →
n→∞

0.

An obvious sufficient condition under which the series (5) converges is

∞∑
n=0

|Qnf |2 < ∞. (6)

However, the assumptions (6) and even (5) seem to be too restrictive, at least for some special
classes of transition operators. A bounded operator K in a Hilbert space is called normal if
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it commutes with its adjoint: KK∗ = K∗K. Let D denote the closed unit disc in C. Gordin
& Lif̌sic [12] observed that the condition∫

D

1
|1− z|

ρf (dz) < ∞ (7)

is sufficient for f to be asymptotically normal, provided the operator Q is normal. Here ρf is
the spectral measure of f with respect to Q. In this case the formula for the limiting variance
σ2(f) reads

σ2(f) =
∫

D

1− |z|2

|1− z|2
ρ(dz). (8)

Observe that (7) is equivalent to the solvability in L2 of the equation

f = (I −Q)1/2g. (9)

The detailed proofs of these results, along with some generalizations and applications, were
published by Gordin & Lif̌sic in ([1], Ch. 4, Sect. 7-9). See also Derriennic & Lin [3], and
for the self-adjoint case, which corresponds to reversible chains, Kipnis & Varadhan [13].
It was assumed in the above mentioned papers that the path space of (ξk)k∈Z is endowed
with the stationary measure Pµ. Under slightly stronger conditions the same conclusion was
established in [4] for µ−almost all measures Ps, s ∈ S, provided that Q is a normal operator.
All above mentioned papers used martingale approximation.
A natural question now arises whether it is possible to relax the known conditions for the
CLT which make sense for arbitrary transition operators (like (5) or (6)). A related problem
is to obtain a formula for the limiting variance valid (as (8)) in some cases when (3) has
no solution in L2. Recently some results in this direction have been obtained. Maxwell &
Woodroofe [15] showed that if f ∈ L0

2 satisfies

∑
n≥1

n−3/2
∣∣∣ n−1∑

k=0

Qkf
∣∣∣
2

< ∞, (10)

then f is asymptotically normal. In case |
∑n−1

k=0 Qkf |2 = O(n−α) for some α < 1/2, Derriennic
& Lin [6] showed that the FCLT for the Markov chain, started at a point, holds true.
Several questions however remain open. We do not know, for example, whether (9) implies
the CLT without normality assumptions. It can be shown using the results in [5] that (9) is
equivalent to the convergence in L2 of

∑
n≥1 n−3/2

∑n−1
k=0 Qkf (compare this to (10)).

An important class of Markov operators Q is specified by the condition

QQ∗ = I. (11)

Such operators are sometimes called coisomteries because the adjoint operator Q∗ is an isom-
etry in view of (11). The corresponding class of Markov chains is useful to produce examples
of transition operators with properties very far from normal (remark that only those coisom-
teries are normal which are unitaries; the latter leads to σ2(f) = 0 in (16)).
This paper is organised as follows. In Section 2, we derive a new sufficient condition for a
function f ∈ L0

2 to be asymptotically normal. This is applied to certain linear processes. Our
main interest is the situation in which there exists an orthogonal splitting

LC
2 (S,A, µ) = ⊕i∈IHi
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invariant under the Markov operator, i.e. QHi ⊂ Hi for every i. Here I is a countable index
set. Evidently, this is the case if Q is normal with discrete spectrum and the Hi correspond
to eigenspaces of different eigenvalues. However, there are several other interesting examples,
even of coisometries, for which such invariant splittings exist. In Section 3 we prove two
conditions, adapted to invariant splittings, under which f is asymptotically normal. The first
is related to the condition derived in Section 2, the second to (10) as introduced by Maxwell
& Woodroofe [15]. It is shown that these are indeed improvements as compared to the
original conditions. Finally, in Section 4, we consider two examples, namely endomorphisms
of compact Abelian groups and random walks on compact homogeneous spaces. Let us
mention that using invariant splittings, Denker and Gordin [2] proved the FCLT for a certain
class of transformations of the two-dimensional torus.
In the present paper we consider only discrete splittings. In principle, similar results can be
obtained for some splittings with a nontrivial continuous part which is a direct integral of
Q−invariant subspaces. For example, this is the case if one considers a random walk on a
non compact homogeneous space of finite invariant measure such as SL(2, R)/SL(2, Z).

2 A sufficient condition for the CLT

In this section we will prove asymptotic normality for functions f ∈ L0
2 which satisfy

|Qnf |2 →
n→∞

0 (12)

and
∞∑

n=0

(∣∣Qnf
∣∣2
2
−

∣∣Qn+1f
∣∣2
2

)1/2
< ∞. (13)

Our discussion is based on the following well-known result, which is contained implicitly in
[9], [18] and [1].

Theorem 2.1. Let (ξk)k∈Z be a stationary ergodic Markov chain. Assume that f ∈ L0
2

satisfies

lim
n→∞

sup
m≥0

(∣∣∣ n+m∑
k=n

Qkf
∣∣∣2
2
−

∣∣∣ n+m+1∑
k=n+1

Qkf
∣∣∣2
2

)
= 0 (14)

and

lim
n→∞

1
n

∣∣∣ n−1∑
k=0

Qkf
∣∣∣2
2

= 0. (15)

Then f is asymptotically normal with limit variance

σ(f)2 = lim
n→∞

(∣∣∣ n∑
k=0

Qkf
∣∣∣2
2
−

∣∣∣ n+1∑
k=1

Qkf
∣∣∣2
2

)
. (16)

This will be used to prove the following

Theorem 2.2. Let (ξk)k∈Z be a stationary ergodic Markov chain. Assume that f ∈ L0
2 satis-

fies (12) and (13). Then it also satisfies (14) and (15) and consequently, f is asymptotically
normal with limit variance σ2(f) given in (16).
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First let us prove two lemmas.

Lemma 2.3. For any f ∈ L2, n, m ≥ 0,∣∣∣ n+m−1∑
k=m

Qkf
∣∣∣2
2
−

∣∣∣Q n+m−1∑
k=m

Qkf
∣∣∣2
2
≤

( n+m−1∑
k=m

(∣∣Qkf
∣∣2
2
−

∣∣Qk+1f
∣∣2
2

)1/2)2
. (17)

Proof. The map (f, g) 7→< f, g > − < Qf, Qg > is a non-negative, symmetric bilinear form
since Q is a contraction, and hence gives rise to the seminorm

(
|f |22−|Qf |22

)1/2. Relation (17)
now follows by applying the triangle inequality.

Lemma 2.4. Assume that f ∈ L2 satisfies (12). Then for every n ≥ 0,∣∣∣ n−1∑
k=0

Qkf
∣∣∣2
2

=
∞∑
l=0

(∣∣∣ n−1∑
k=0

Qk+lf
∣∣∣2
2
−

∣∣∣ n−1∑
k=0

Qk+l+1f
∣∣∣2
2

)
. (18)

Proof. For N > 0 we have∣∣∣ n−1∑
k=0

Qkf
∣∣∣2
2

=
N−1∑
l=0

(∣∣∣ n−1∑
k=0

Qk+lf
∣∣∣2
2
−

∣∣∣Q n−1∑
k=0

Qk+lf
∣∣∣2
2

)
+

∣∣∣QN
n−1∑
k=0

Qkf
∣∣∣2
2
.

The remainder term vanishes as N →∞ due to (12).

Proof of Theorem 2.2. We want to show that the conditions of Theorem 2.1 hold. From
Lemma 2.3 it follows directly that (13) implies (14). In order to show (15), we compute

n−1
∣∣∣ n−1∑

k=0

Qkf
∣∣∣2
2

= n−1
∞∑
l=0

(∣∣∣ n−1∑
k=0

Qk+lf
∣∣∣2
2
−

∣∣∣Q n−1∑
k=

Qk+lf
∣∣∣2
2

)
≤ n−1

∞∑
l=0

( n−1∑
k=0

(∣∣∣Qk+lf
∣∣∣2
2
−

∣∣∣Qk+l+1f
∣∣∣2
2

)1/2)2

≤ n−1
n−1∑
k=0

( ∞∑
l=0

(∣∣Qk+lf
∣∣2
2
−

∣∣Qk+l+1f
∣∣2
2

)1/2
)2

= n−1
n−1∑
k=0

( ∞∑
r=k

(∣∣Qrf
∣∣2
2
−

∣∣Qr+1f
∣∣2
2

)1/2
)2

. (19)

Since
∑∞

r=k

(∣∣Qrf
∣∣2
2
−

∣∣Qr+1f
∣∣2
2

)1/2 → 0, (15) follows. This proves the theorem.

Example 2.1 (Linear processes). Let (ηk)k∈Z be a sequence of independent identically dis-
tributed random variables with values in R. Let us form a sequence (ξk)k∈Z by setting
ξk = (. . . , ηk−1, ηk). This is a Markov sequence with transition operator satisfying (11). As-
sume that the variables ηk have second moments and expectation 0. Set

f(ηk) =
∞∑

j=0

ajηk−j ,
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where (aj)j≥0 is a real sequence satisfying
∑∞

j=0 a2
j < ∞. Then (6) means that

∞∑
n=0

( ∞∑
k=n

a2
k

)1/2
< ∞,

while (13) only requires
∞∑

n=0

|ak| < ∞.

3 CLT under invariant splittings

In this section we study the situation in which there is an orthogonal splitting of the L2-space
invariant under the Markov operator. First let us give a general sufficient condition, adapted
to an orthogonal splitting, for convergence of a series in a Hilbert space.
Let H be a real or complex Hilbert space with norm denoted by ‖·‖ and let H = ⊕i∈IHi be a
splitting into closed, orthogonal subspaces, where I is a countable index set. For x ∈ H, i ∈ I
let xi denote the orthogonal projection of x onto Hi, so that x =

∑
i∈I xi.

Lemma 3.1. If (xn)n≥1 ⊂ H satisfies∑
i∈I

( ∑
n≥1

‖xi
n‖

)2
< ∞, (20)

then the series
∑

n≥1 xn converges. �

This is easily proved using the Cauchy criterion. The next lemma shows that taking into
account the orthogonal splitting indeed brings an improvement.

Lemma 3.2. ∑
i∈I

( ∑
n≥1

‖xi
n‖

)2
≤

( ∑
n≥1

‖xn‖
)2

.

Proof. Since ‖xn‖ =
( ∑

i∈I ‖xi
n‖2

)1/2, after expanding both sides, we have to show that∑
n1,n2≥0

∑
i∈I

‖xi
n1
‖‖xi

n2
‖︸ ︷︷ ︸

A

≤
∑

n1,n2≥0

( ∑
i∈I

‖xi
n1
‖2

)1/2( ∑
i∈I

‖xi
n2
‖
)1/2

︸ ︷︷ ︸
B

.

This follows since A ≤ B from the Schwarz inequality.

Corollary 3.3. If there are two splittings H = ⊕i∈IHi = ⊕i′∈I′Hi′ such that for each i ∈ I
there is a i′ ∈ I ′ with Hi ⊂ Hi′, then∑

i∈I

( ∑
n≥1

‖xi
n‖

)2
≤

∑
i′∈I′

( ∑
n≥1

‖xi′
n‖

)2
. (21)
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Now consider once more a stationary ergodic Markov chain (ξn)n∈Z on (Ω,B, Pµ) with state
space (S,A, µ), transition operator Q and stationary initial distribution µ. Since we have to
deal with complex-valued functions, observe that Q also acts as a contraction on LC

2 (S,A, µ)
and that Qf = Qf̄ , where¯denotes complex conjugation. Assume that there is a splitting

LC
2 (S,A, µ) = ⊕i∈IHi

of LC
2 (S,A, µ) into closed orthogonal subspaces Hi that are invariant under Q, i.e. QHi ⊂

Hi. We denote by Qi the restriction of Q to Hi and by fi the orthogonal projection of
f ∈ LC

2 (S,A, µ) onto Hi. An application of Lemma 3.1 immediately gives

Proposition 3.4. If f ∈ L0
2 satisfies∑

i∈I

( ∑
n≥0

|Qn
i fi|2

)2
< ∞, (22)

then the series (5) converges and consequently, f is asymptotically normal.

This result will be improved in two ways. Firstly, we give a criterion analogously to (13)
modified to the context of invariant splittings. Observe that Lemmas 2.3 and 2.4 remain true
for complex valued f .

Theorem 3.5. Let (ξk)k∈Z be a stationary ergodic Markov chain. Assume that LC
2 (S,A, µ) =

⊕i∈IHi is a splitting into orthogonal closed subspaces Hi that are invariant under the transi-
tion operator Q. If f ∈ L0

2, f =
∑

i∈I fi with fi ∈ Hi satisfies (12) and

∑
i∈I

( ∞∑
n=0

(∣∣Qn
i fi

∣∣2
2
−

∣∣Qn+1
i fi

∣∣2
2

)1/2)2
< ∞, (23)

then it also satisfies (14) and (15) and consequently, f is asymptotically normal with limit
variance σ2(f) given by (16).

Remark 3.1. If there exists an invariant splitting, Lemma 3.2 means that (23) is a weaker
condition than (13), where this splitting is not taken into account. Furthermore, by (21), the
finer the splitting in (23), the weaker the condition. If the splitting is finite (i.e. I is finite),
(23) and (13) are in fact equivalent. Similar comments apply to (24) as compared with (10).

Proof of Theorem 3.5. If (23) holds, then using Lemma 2.3

sup
n≥1

(∣∣∣ n+m−1∑
k=m

Qkf
∣∣∣2
2
−

∣∣∣Q n+m−1∑
k=m

Qkf
∣∣∣2
2

)
= sup

n≥1

∑
i∈I

(∣∣∣ n+m−1∑
k=m

Qk
i fi

∣∣∣2
2
−

∣∣∣Qi

n+m−1∑
k=m

Qk
i fi

∣∣∣2
2

)
≤

∑
i∈I

sup
n≥1

(∣∣∣ n+m−1∑
k=m

Qk
i fi

∣∣∣2
2
−

∣∣∣Qi

n+m−1∑
k=m

Qk
i fi

∣∣∣2
2

)
≤

∑
i∈I

( ∞∑
k=m

(∣∣Qk
i fi

∣∣2
2
−

∣∣Qk+1
i fi

∣∣2
2

)1/2)2
,
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and this tends to 0 as m →∞. If in addition (12) holds, then from (19) it follows that

n−1
∣∣∣ n−1∑

k=0

Qkf
∣∣∣2
2

= n−1
∑
i∈I

∣∣∣ n−1∑
k=0

Qk
i fi

∣∣∣2
2

≤ n−1
∑
i∈I

n−1∑
k=0

( ∞∑
r=k

(∣∣Qr
i fi

∣∣2
2
−

∣∣Qr+1
i fi

∣∣2
2

)1/2
)2

= n−1
n−1∑
k=0

∑
i∈I

( ∞∑
r=k

(∣∣Qr
i fi

∣∣2
2
−

∣∣Qr+1
i fi

∣∣2
2

)1/2
)2

which once more tends to 0. This proves the theorem.

Now we will put (10) into the context of invariant splittings. Consider the subspaces of
LC

2 (Ω,A, Pµ) defined by

H ′
i = {f(X1)−Qf(X0), f ∈ Hi, i ∈ I}.

From

E
((

f(X1)− (Qf)(X0)
)(

g(X1)− (Qg)(X0)
))

=< f, g > − < Qf,Qg >, f, g ∈ LC
2 (S,A, µ),

it follows that for different i ∈ I these spaces are orthogonal in LC
2 (Ω,A, Pµ), and hence so

are their closures. Denote

Vn(f) =
n−1∑
k=0

Qkf, f ∈ LC
2 (S,A, µ).

For the proof of the next theorem we rely heavily on results from Maxwell & Woodroofe [15].

Theorem 3.6. Let (ξk)k∈Z be a stationary ergodic Markov chain. Assume that LC
2 (S,A, µ) =

⊕i∈IHi is a splitting into orthogonal closed subspaces Hi that are invariant under the transi-
tion operator Q. Assume that f ∈ L0

2, f =
∑

i∈I fi with fi ∈ Hi satisfies∑
i∈I

( ∑
n≥1

|Vn(fi)|2/n3/2
)2

< ∞. (24)

Then f is asymptotically normal.

Proof. For the proof we depend on several facts from Maxwell & Woodroofe [15]. Our goal
is to obtain a representation Sn(f) = Mn + An, n ≥ 1, where (Mn) is a martingale with
stationary increments w.r.t. Fn = σ(ξk, k ≤ n), and EA2

n/n → 0. Asymptotic normality of
f is then immediate. Given ε > 0 set gε = ((1 + ε)I − Q)−1f , so that (1 + ε)gε − Qgε = f.
Then

Sn(f) = Mn,ε + εSn(gε) + An,ε, (25)

where

Mn,ε =
n∑

k=1

(
gε(Xk)− (Qgε)(Xk−1)

)
,

An,ε = (Qgε)(X0)− (Qgε)(Xn).

8



We want to show that

ε · Sn(gε) → 0, Mn,ε → Mn and An,ε → An, ε → 0 in L2(Ω,A, Pµ), (26)

where (Mn)n≥1 and (An)n≥1 have the properties specified above. For this it suffices to show
that

1. ε‖gε‖2 → 0, ε → 0,

2. (M1,δn)n≥1, with δn = 1/2n, converges as n →∞ in L2(Ω,A, Pµ),

see [15]. To show ε|gε|22 → 0, observe that

gε =
∑
i∈I

gi
ε, gi

ε = ((1 + ε)I −Q)−1f i ∈ Hi.

In [15] it is shown that with δk = 1/2k,∑
k≥1

√
δk sup

δk≤ε<δk−1

|gi
ε|2 ≤ C

∑
n≥1

|Vnfi|2/n3/2 (27)

where C > 0 from now on denotes a generic constant. In particular, ε|gi
ε|22 → 0, ε → 0 and

√
ε|gi

ε|2 ≤ C
∑
n≥1

|Vnf i|2/n3/2 ∀ ε > 0. (28)

Since
ε|gε|22 =

∑
i∈I

ε|gi
ε|22, (29)

it follows from (28) and (24) that the right side of (29) is dominated by a convergent series.
Therefore

lim
ε→0

ε |gε|22 =
∑
i∈I

lim
ε→0

ε |gi
ε|22 = 0.

Next we want to show that M1,ε = gε(X1) − Qgε(X0) converges to a limit in L2(Ω,A, Pµ)
along the sequence δn. To this end notice that

M1,ε =
∑
i∈I

M i
1,ε, M i

1,ε = gi
ε(X1)−Qgi

ε(X0) ∈ H ′
i,

is an orthogonal decomposition in LC
2 (Ω,A, Pµ). We have

M1,δn =
n∑

k=1

(M1,δk
−M1,δk−1

) + M1,δ0 .

In [15] it is shown that

∞∑
n=1

‖M i
1,δn

−M i
1,δn−1

‖LC
2 (Ω,A,Pµ) ≤ C

∑
n≥1

|Vn(fi)|2/n3/2. (30)
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From (30) and (24) it follows that∑
i∈I

( ∑
n≥1

‖M i
1,δn

−M i
1,δn−1

‖LC
2 (Ω,A,Pµ)

)2
< ∞,

and therefore we can apply Lemma 3.1 to obtain convergence of the series
∑

n≥1(M1,δn −
M1,δn−1) and hence that of M1,δn . This concludes the proof of the theorem.

The following corollary is easily deduced.

Corollary 3.7. A function f ∈ L0
2 satisfies (24) if∑
i∈I

( ∑
n≥0

|Qn
i fi|2√
n + 1

)2
< ∞. (31)

Remark 3.2. It can be shown that if (24) holds, the limits σ2(fi) = limn→∞E|M i
1,δn

|2, i ∈ I,
exist and

σ2(f) =
∑
i∈I

σ2(fi).

4 Examples

In this section we consider two examples in which the Markov operator admits an invariant
splitting in the sense of Section 3. In case of a normal operator with discrete spectrum and
the canonical decomposition of LC

2 (S,A, µ) into eigenspaces of distinct eigenvalues, (23), (24)
and (31) are stronger requirements than (7). However, there are other interesting examples
of such invariant splittings. Firstly we consider exact endomorphisms of compact Abelian
groups. Here the transfer operator, evidently a coisometry, plays the role of the Markov
operator Q. Furthermore we study random walks on compact homogeneous spaces.
Recall that a measure-preserving transformation T of a probability space (S,A, µ) is called
exact (cf. Rohlin [16]) if the σ-field

⋂∞
n=0 T−nA is trivial.

Example 4.1 (Exact group endomorphisms). The central limit theorem for the following
class of transformations was studied by Leonov [14] using moment-based arguments. Let
T : G → G be an endomorphism of a compact separable Abelian group G. Denote by µG

the normalized Haar measure. Let Γ be the dual group consisting of characters, which form
an orthonormal basis of LC

2 (G, µG) (cf. Rudin [17]). Denote T ∗χ = χ ◦ T , then T ∗ is a
homomorphism of Γ. We have the following relations between T and T ∗.

• T surjective ⇔ T ∗ injective.

• T exact ⇔
⋂

n≥1 T ∗
n
Γ = {0}.

Indeed, if T is onto, then T ∗ is evidently injective. On the other hand, T is onto if and only
if

f ◦ T = g ◦ T ⇒ f = g ∀ f, g ∈ LC
2 (G, µG).

10



Since T ∗ is injective, the equality

f ◦ T =
∑
χ∈Γ

< f, χ > T ∗χ =
∑
χ∈Γ

< g, χ > T ∗χ = g ◦ T

implies < f, χ >=< g, χ > and hence f = g. Furthermore exactness of T is equivalent to

E(f |T−nB) → Ef in LC
2 (G, µG),

where f is considered as a random variable on (G,A, µG), and A denotes the Borel sigma-
algebra of G. But if f =

∑
χ∈Γ < f, χ > χ we have that

E(f |T−nB) =
∑

χ∈T ∗nΓ

< f, χ > χ,

and the second equivalence follows.

From now on we assume that T is onto and exact. The group Γ can be partitioned into grand
orbits defined by

O(χ) = {γ ∈ Γ : ∃ n, m ≥ 0 : T ∗
n
χ = T ∗

m
γ}.

We assume that G is infinite, so that Γ is countably infinite. We claim that there exists a
countably infinite set Γ̃ such that the different grand orbits (except for the trivial orbit {1})
are given by

{γ̃, T ∗γ̃, T ∗
2
γ̃, . . .}, γ̃ ∈ Γ̃. (32)

In fact, set Γ̃ = Γ \ T ∗Γ (here \ is the set-theoretic difference). Since T ∗Γ is an infinite
subgroup 6= Γ, Γ̃ must also be infinite. Since T ∗ is injective, the sets in (32) are indeed grand
orbits. If χ has no first predecessor, then for every n ≥ 0 there is a γ ∈ Γ such that T ∗

n
γ = χ,

which would imply χ ∈
⋂

n≥0 T ∗
n
Γ, a contradiction to exactness. We obtain a splitting

L0
2 = ⊕γ̃∈Γ̃L2(γ̃), (33)

where L2(γ̃) denotes the closure of the subspace generated by O(γ̃). Let

UT : LC
2 (G, µG) → LC

2 (G, µG), UT f = f ◦ T.

Evidently, UT preserves the splitting (33), and hence the same holds for its dual, the transfer
operator, denoted by VT . On the components of the splitting, VT acts as left shift. More
precisely, if

f =
∑
n≥0

< f, T ∗
n
γ̃ > T ∗

n
γ̃

for some γ̃ ∈ Γ̃, then
VT f =

∑
n≥0

< f, T ∗
n+1

γ̃ > T ∗
n
γ̃.

Let (ξn)n∈Z be a Markov chain with stationary distribution µG and transition operator VT .
Then (Un

T f)n≥0 is a time reversal of
(
f(ξn)

)
n≥0

, i.e.(
f(ξ0), . . . , f(ξn)

)
∼

(
Un

T f, . . . , f
)
, n ≥ 0,

where ∼ means that the random vectors are equal in distribution. Therefore an application
of Theorem 3.5 with Q = VT gives

11



Theorem 4.1 (Leonov, 1964). Suppose that f ∈ L0
2 satisfies∑

O

( ∑
χ∈O

| < f, χ > |
)2

< ∞ (34)

where the first sum is taken over all grand orbits. Then the sequence n−1/2
∑n−1

k=0 f ◦ Tn is
asymptotically normal with variance

σ2(f) =
∑
O

∣∣∣ ∑
χ∈O

< f, χ >
∣∣∣2.

The formula for the limit variance is deduced using (16). Leonov [14] in fact considered
general ergodic group endomorphisms. Theorem 4.1 can be derived from his results when
restricting to the case of an exact endomorphism. As a particular example, consider G = T1,
the 1-torus, and let Tx = 2x mod 1. Then the dual group is isomorphic to Z, and grand
orbits can be indexed by odd numbers and {−2, 2}.

Example 4.2 (Random walks on compact homogeneous spaces). Let G be a locally compact
second countable group and let K be a closed subgroup such that the homogeneous space
X = G/K of left cosets with the quotient topology is compact. We assume that K is a
unimodular group and that the left invariant Haar measure on G is also invariant with respect
to the right action of K (in particular, this is the case if both G and K are unimodular).
Under these assumptions, there exists a unique probability measure µ on X invariant with
respect to the natural action of G on X given by (g, x) 7→ gx, x = hK. Denote by π = πX

the unitary representation of G in LC
2 (X, µ) defined by(

π(g)f
)
(x) = f(g−1x), x ∈ X, f ∈ LC

2 (X, µ).

Assume that for every continuous function φ on G with compact support the operator∫
G φ(g)π(g)dg is a compact operator on LC

2 (X, µ) (the integration over g is performed re-
spective to the left invariant Haar measure on G). This holds true e.g. for discrete K (cf.
[10], p. 21) and for compact G. Then the representation π can be decomposed into a sum of
countably many irreducible unitary representations of G where any such representation occurs
with finite multiplicity. The proof for the case of discrete K can be found in ([10], Sect. 2.3),
however, discreteness is only used to obtain compactness of the operators

∫
G φ(g)π(g)dg and

therefore the proof also works under our assumptions.
In principle our results apply to this splitting of π into irreducible representations. However,
since this splitting is not canonic, our conditions from Section 3 for a specific function f ∈ L0

2

to satisfy the CLT depend on the particular choice of the splitting. A more satisfactory way
is to pass to a coarser splitting of πX given by

πX = ⊕α∈Irr(πX)πα. (35)

Here Irr(πX) denotes the set of equivalence classes of irreducible unitary representations of
G which realize as subrepresentations of πX , and πα = πX,α is the primary (or isotipic)
subrepresentation of π of type α, that is, πα is a maximal subrepresentation of π every
irreducible subrepresentation of which is equivalent to α. Every πα can be decomposed into
some number mα (called multiplicity) of copies of α. Unlike the decomposition of π into
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irreducible representations, its decomposition (35) into primary components is canonic. Let
Hπα denote the subspace of LC

2 (X, µ) the representation πα acts on, and denote by fα the
orthogonal projection of f onto Hπα .
If Q is a Borel probability measure on G, then it induces a Markov operator on LC

2 (X, µ)
given by

Qf(x) =
∫

G
f(g−1x)dQ(g), x ∈ X, f ∈ LC

2 (X, µ).

This Markov operator preserves µ, and since the spaces Hπα are invariant under the rep-
resentation πX , they are also invariant under Q. Therefore an application of Corollary 3.7
gives

Theorem 4.2. Let (ξn)n∈Z be a random walk on the compact homogeneous space X = G/K
with transition operator Q and stationary distribution µ, as specified above. If Q is ergodic
and if f ∈ L0

2 satisfies ∑
α∈Irr(πX)

( ∑
n≥0

|Qnfα|2√
n + 1

)2
< ∞, (36)

then the sequence
√

n
−1 ∑n−1

k=0 f(ξk) is asymptotically normal with variance

σ2(f) = lim
n→∞

1
n

E
( n−1∑

k=0

f(ξk)
)2

.

Let us consider more explicitly the case of a compact group G. We denote by µG the nor-
malised Haar measure on G and by Ĝ the set of equivalence classes of unitary irreducible
representations of G. Since G is compact, each α ∈ Ĝ is finite dimensional (cf. [8], p. 74).
We let α ∈ Ĝ also stand for some representative of its equivalence class, acting on the vector
space Vα of dimension nα. The character χα of α is given by χα(g) = tr

(
α(g)

)
, where tr

denotes the trace of the corresponding automorphism of Vα.
Let σ be a subrepresentation of the left regular representation πG of G (where πG(g)f(·) =
f(g−1·), f ∈ LC

2 (G, µG), g ∈ G). It decomposes canonically into a sum σ = ⊕α∈Irr(σ)σα

of isotipic subrepresentations, and the orthogonal projection of f ∈ H to Hσα is given by
fα = nα f ∗ χα.
Now consider a closed subgroup K of G (possibly the trivial subgroup {1}), and as above let
X = G/K be corresponding compact homogeneous space. The spaces LC

2 (X, µ) and

LK
2 (G, µG) = {f ∈ LC

2 (G, µG) : f(gk) = f(g) for all k ∈ K},

the subspace of LC
2 (G, µG) consisting of functions which are right-invariant under K, are

isometric (cf. [8], p. 101). Therefore LC
2 (X, µ) may be considered as a subspace of LC

2 (G, µG),
and πX as a subrepresentation of πG. Thus we have the above formula for the orthogonal
projections fα of f ∈ LC

2 (X, µ) onto HπX,α . A representation α ∈ Ĝ occurs in Irr(πX) if and
only if dim V K

α > 0, where

V K
α = {v ∈ Vα : α(k)v = v for all k ∈ K}.

In fact, the multiplicity of α in πX,α is given by mα = dim V K
α . On LK

2 (G, µG), the operator
Q is simply the convolution Qf = Q ∗ f .
Finally let us mention that for Q having finite support, the CLT for a random walk on a
compact homogeneous space was established by Dolgopyat ([7], p. 193).
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