
doi: 10.1111/j.1467-9469.2006.00535.x
© Board of the Foundation of the Scandinavian Journal of Statistics 2006. Published by Blackwell Publishing Ltd, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA, 2006

Non-parametric Analysis of Covariance –
The Case of Inhomogeneous and
Heteroscedastic Noise
AXEL MUNK

Institute for Mathematical Stochastics, Georg-August Universität Göttingen

NATALIE NEUMEYER

Department Mathematik, Schwerpunkt Stochastik, Universität Hamburg

ACHIM SCHOLZ

Institute for Mathematical Stochastics, Georg-August Universität Göttingen

ABSTRACT. The purpose of this paper was to propose a procedure for testing the equality of
several regression curves fi in non-parametric regression models when the noise is inhomogeneous
and heteroscedastic, i.e. when the variances depend on the regressor and may vary between groups.
The presented approach is very natural because it transfers the maximum likelihood statistic from
a heteroscedastic one-way analysis of variance to the context of non-parametric regression. The
maximum likelihood estimators will be replaced by kernel estimators of the regression functions fi.
It is shown that the asymptotic distribution of the obtained test-statistic is nuisance parameter free.
Asymptotic efficiency is compared with a test of Dette & Neumeyer [Annals of Statistics (2001) Vol.
29, 1361–1400] and it is shown that the new test is asymptotically uniformly more powerful. For
practical purposes, a bootstrap variant is suggested. In a simulation study, level and power of this
test will be briefly investigated and compared with other procedures. In summary, our theoretical
findings are supported by this study. Finally, a crop yield experiment is reanalysed.

Key words: ANOVA, efficacy, goodness-of-fit, heteroscedasticity, non-parametric regression,
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1. Introduction

A classical theme of statistical analysis is the comparison of two (or more) groups, which
are measured under different experimental conditions. As an example consider, for instance,
the comparison of wage functions in different groups defined by gender or location (see
Lavergne, 2001, for more examples). To simplify notation we will restrict, for the moment,
to the case of two groups, the extension to three and more groups will be presented later on.
In the context of regression, one observes independent real-valued data Yij , which follow the
model

Yij = fi(tij)+�i(tij)�ij , j =1, . . ., ni , i =1, 2, (1)

where tij are fixed locations of measurements, fi denote the unknown regression functions,
fi(tij)=E[Yij ], and �2

i the unknown variance functions, �2
i (tij)=var(Yij) of the ith group

(i =1, 2). The errors �ij are assumed to be independent random variables with mean 0 and
variance 1. Our aim is to test the equality of the regression functions f1 and f2.

Under a parametric assumption on the error �ij and the functions fi and �2
i this leads to

the analysis of covariance (see Scheffé, 1959 or Chow, 1960). Without these assumptions,
in particular, when the functional form of fi is not specified, this is denoted as the non-
parametric analysis of covariance (Young & Bowman, 1995) and has received much attention
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(see Hall & Hart, 1990; Delgado, 1993; Kulasekera, 1995; Munk & Dette, 1998; Yatchew,
1999, among many others). As pointed out by Gørgens (2002) many tests in the literature
for

H0 : f1 = f2 versus H1 : f1 �= f2 (2)

cannot be applied in the general model (1) because often it is assumed that sample sizes
are equal, the regressors follow the same distribution between populations, or that there is a
homoscedastic error, i.e. the variances �2

i are independent of the regressor t. For the general
setting (1), there are only a very few tests available, see Cabus (1998), Dette & Neumeyer
(2001), Lavergne (2001), Gørgens (2002) and Neumeyer & Dette (2003). Whereas Lavergne
(2001) and Gørgens (2002) consider a stochastic regressor, Cabus (1998) and Neumeyer &
Dette (2003) use test-statistics, which are based on the associated marked empirical process.
Recently, Pardo-Fernández et al. (2006) proposed a test based on a comparison of the empir-
ical distributions of estimated errors in the two models.

The presented method is related to Dette & Neumeyer’s (2001) test and Fan et al.’s (2001)
test in the case of a one-dimensional predictor. Dette & Neumeyer (2001) compared, theo-
retically as well as using Monte Carlo study, their test with various tests from the literature
and came to the conclusion that their test outperforms their competitors in terms of power.
In this paper, we present a test, which will be shown to be superior to Dette & Neumeyer’s
(2001) test with respect to power.

More specifically, our test is based on the idea to compare a weighted ‘least squares’ esti-
mator under the assumption of equal regression curves with an estimator, which is based on
non-parametric estimators f̂ i for fi , exactly as in a parametric analysis of covariance. To moti-
vate the procedure assume for the moment the regression functions to be constant fi(t)≡�i ,
the variance functions to be constant and known �2

i (t)≡�2
i and the errors �ij to be normally

distributed. In other words, consider testing the equality of the means H0 : �1 =�2 in two
samples

Yij
i.i.d.∼ N(�i , �

2
i ), j =1, . . ., ni , i =1, 2.

The maximum likelihood method leads to the estimates �̂i = 1
ni

∑ni
j =1 Yij in the individual

samples (i =1, 2), and

�̂=a�̂1 + (1−a)�̂2, where a = �−2
1 n1

�−2
1 n1 +�−2

2 n2
,

in the pooled sample (under H0). The logarithm of the likelihood ratio has the form

1
N

2∑
i =1

ni∑
j =1

(Yij − �̂)2�−2
i − 1

N

2∑
i =1

ni∑
j =1

(Yij − �̂i)
2�−2

i , (3)

where N =n1 +n2 denotes the total sample size. Now, we transfer this statistic to a non-
parametric set-up and consider in the non-parametric regression model (1) the class of pooled
estimators

f̃ (x)=a(x)f̂ 1(x)+ (1−a(x))f̂ 2(x), (4)

where f̂ i denote kernel-based estimators of the regression functions fi (i =1, 2). In this class,
minimization of the asymptotic mean-squared error

AMSE[ f̃ ]=a2(x)
∫

K 2(u) du
�2

1(x)
n1hr1(x)

+ (1−a(x))2
∫

K 2(u) du
�2

2(x)
n2hr2(x)

,
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where h denotes a smoothing parameter that fulfils conditions (14) stated in section 2, and
K denotes a proper kernel function, gives the weight

a(x)= �−2
1 (x)n1r1(x)

�−2
1 (x)n1r1(x)+�−2

2 (x)n2r2(x)
, (5)

where ri denotes the design density in the ith sample. Now, we replace �2
i and ri by appro-

priate kernel-based estimators �̂2
i , r̂i (i =1, 2) and denote by f̂ the resulting pooled estimator

f̃ as in (4). Hence, as a test-statistic for hypotheses (2), we consider in analogy of (3),

TN = 1
N

2∑
i =1

ni∑
j =1

(Yij − f̂ (tij))2�̂−2
i (tij)− 1

N

2∑
i =1

ni∑
j =1

(Yij − f̂ i(tij))2�̂−2
i (tij). (6)

Note that the motivation of our procedure is similar to the method of generalized likelihood
ratio statistics introduced by Fan et al. (2001), confer Remark 1. We will show that under
the null hypothesis the standardized test-statistic

N
√

h
(

TN − C
Nh

)

is asymptotically centred normal, where the asymptotic variance as well as C only depend on
the kernel function K . This feature has been phrased by Fan et al. (2001) as the new Wilks
phenomenon and might be particularly appealing for practical purposes because asymptoti-
cally the resulting test does not depend on any nuisance parameter, such as fi , �2

i or on the
distribution of the �ij , in contrast to most procedures suggested in the literature (a notable
exception is Gørgens, 2002).

The rest of the paper is organized as follows. In section 2, we present the required
theory. The asymptotic behaviour under fixed and local alternatives is discussed and it is
shown that the test of Dette & Neumeyer (2001) is outperformed in general. Only in special
cases asymptotically these tests achieve the same power. We show that in particular, when
the variances are inhomogeneous, i.e. unequal in both groups, or when they are heterosced-
astic, i.e. dependent on the regressor, the new test gains significantly in power. We mention
that from a practical point of view the case of inhomogeneous variances is very common
in applications. For analysis of variance (ANOVA) models, this is well known as the cele-
brated Behrens–Fisher problem (see, for example, Weerahandi, 1987); in our context of non-
parametric analysis of covariance, we refer to Gørgens (2002) for an econometric example.
Hence, our method may be regarded as an approach, which adapts automatically to inhomo-
geneous and heteroscedastic variability. In section 3, we address the selection of smoothing
parameters from a theoretical (section 3.1) and practical point of view (section 3.2). In partic-
ular, we investigate the power and level of the proposed test numerically, and we find the test
to be superior to Dette & Neumeyer’s (2001) test with respect to power. A sensitivity analysis
of the bandwidth required in the estimators f̂ i and f̂ in (6) is performed and we find that
the actual level of our test is robust for a large scale of bandwidths but quite sensitive with
respect to power. Finally, in section 4, we illustrate the performance of our method by an
example where we investigate whether there is a difference in the onion yield as a function
of plant density in two locations in South Australia. Section 5 contains some concluding re-
marks. Proofs are postponed to Appendix to keep the paper more readable. We mention that
because of the additional estimation of the optimal weighting function a in (5) the proofs
are technically much more involved as it is the case for the statistic considered in Dette &
Neumeyer (2001).

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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2. Asymptotic theory

2.1. Notation and main results

In this section, we will start with extending TN in (6) to the case of k samples, i.e. we are
concerned with the model

Yij = fi(tij)+�i(tij)�ij , j =1, . . ., ni , i =1, . . ., k, (7)

and the testing problem is

H0 : f1 = · · ·= fk versus H1 : fi /= fj for some i /= j. (8)

Further, assume for the sample sizes that

ni

N
=�i +O

(
1
N

)
, i =1, . . ., k, (9)

where �i ∈ (0, 1) and N =∑k
j =1 nj denotes the total sample size. The fixed design points tij

can be modelled by a so-called design density ri on [0, 1] such that∫ tij

0
ri(t) dt = j

ni
, j =1, . . ., ni , i =1, . . ., k, (10)

see Sacks & Ylvisaker (1970). We further assume the densities ri and the variance functions
�2

i to be bounded away from zero, i.e.

inf
t∈[0, 1]

ri(t) > 0, inf
t∈[0, 1]

�2
i (t) > 0, i =1, . . ., k. (11)

The densities, regression and variance functions are assumed to be d-times continuously differ-
entiable, i.e.

ri , fi , �i ∈Cd (0, 1), i =1, . . ., k, (12)

where d ≥2. As mentioned in section 1 our approach is based on kernel estimators of fi and
�2

i . To this end, we require a symmetrical kernel K : R → R, which is compactly supported
and of order d (cf. Gasser et al., 1985), i.e.

(−1) j

j!

∫
K (u)uj du =

⎧⎨
⎩

1, j =0
0, 1≤ j ≤d −1,

∫
K 2(u) du <∞.

kd /=0, j =d
(13)

Let h=hN denote a sequence of bandwidths, such that

Nh2d →0 and Nh2/(log h)2 →∞ for N →∞. (14)

In the following, we require various estimators for ri , fi and �2
i . To be concise, the theory will

be presented for Nadaraya–Watson-type estimators. However, we mention that local poly-
nomial estimators of higher order will work as well, of course, and because of their better
performance at the boundary of the regressor space even better performance is to be expected
(Fan & Gijbels, 1996). However, because the suggested test-statistic is an integrated quantity
of these function estimators, the boundary behaviour will be of minor importance in the
present context. To estimate the design densities ri , we use

r̂i(x)= 1
nih

ni∑
j =1

K
(

x − tij

h

)
, (15)

which yields an estimator for fi ,

f̂ i(x)= 1
nih

ni∑
j =1

K
(

x − tij

h

)
Yij

1
r̂i(x)

, i =1, . . ., k. (16)

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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Following the same idea as in section 1, we end up with a k-sample generalization of the
ANOVA-Welch statistic (Welch, 1937)

TN = 1
N

k∑
i =1

ni∑
j =1

(Yij − f̂ (tij))2�̂−2
i (tij)− 1

N

k∑
i =1

ni∑
j =1

(Yij − f̂ i(tij))2�̂−2
i (tij), (17)

where a pooled estimator of f is obtained as (when f1 = f2 = · · ·= fk = f ),

f̂ (x)=
∑k

i =1

∑ni
j =1 K ( x−tij

h )Yij �̂
−2
i (tij)∑k

i =1

∑ni
j =1 K ( x−tij

h )�̂−2
i (tij)

, (18)

and f̂ i was defined in (16), for i =1, . . ., k. Finally, the variances �2
i have to be estimated by

a non-parametric estimator, in general (see section 3.1 for a more detailed discussion). We
propose an estimator which is similar in spirit to those estimators in Ruppert et al. (1997),
Fan & Yao (1998) and Härdle & Tsybakov (1997). In the present context, we define

�̂2
i (x)= 1

nih

ni∑
j =1

K
(

x − tij

h

)
(Yij − f̂ i(tij))2 1

r̂i(x)
, i =1, . . ., k. (19)

Note that for k =2, f̂ equals f̃ defined in (4) using the weights (5) with estimators (15)
and (16), that is

f̂ (x)= â(x)f̂ 1(x)+ (1− â(x))f̂ 2(x), where â(x)= �̂−2
1 (x)n1r̂1(x)

�̂−2
1 (x)n1r̂1(x)+ �̂−2

2 (x)n2 r̂2(x)
.

Theorem 1 gives the asymptotic distribution of the test-statistic TN .

Theorem 1
Assume model (7), where the �ij are independent centred random variables with variance
var(�ij)=1 and E[�4

ij ]≤M <∞ ∀i, j. Then under assumptions (9)–(14) and H0 : f1 = · · ·= fk = f ,
for TN defined in (17) it holds that

N
√

h
(

TN − C
Nh

)
D−→

N→∞
N (0, �2),

where N (0, �2) denotes a centred normal random variable with variance

�2 =2(k −1)
∫

(2K −K ∗K )2(u) du,

where ∗ denotes convolution. The constant C is defined as C =2K (0)−∫ K 2(u) du.

Remark 1. Fan et al. (2001) introduced the method of generalized likelihood ratio test-
statistics in the context of various non-parametric one-sample problems. This method has a
similar motivation as is given in section 1 for our test-statistic. In spirit of these authors to
show the coherence to parametric maximum likelihood ratio tests, we can write our asymp-
totic result as

rK �N −bN√
2bN

D−→
N→∞

N (0, 1),

where �N =NTN /2,

rK = K (0)− 1
2

∫
K 2(u) du

(k −1)
∫

(2K −K ∗K )2(u) du
,

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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bN = rK [K (0)− 1
2

∫
K 2(u) du]/h (compare Th. 5 of Fan et al., 2001). We also observe what the

aforementioned authors refer to as the new Wilks phenomenon, i.e. the asymptotic distribu-
tion does not depend on unknown parameters.

To test the hypotheses stated in (8), one rejects H0 at a nominal level �, whenever

N
√

h
(
TN − C

Nh

)
�

> u1−�, (20)

where u1−� =�−1(1−�) denotes the (1−�)-quantile of the standard normal distribution. Note,
that C and � are known constants. The consistency of the testing procedure (20) against any
non-parametric alternative follows from the next result.

Theorem 2
Assume that fi /= fj on a set of positive Lebesgue measure for some i and j in {1, . . ., k}. Under
the assumptions of Theorem 1 we have

√
N
(
TN −�

) D−→
N→∞

N (0, 	2),

where the constants are defined as

�=
k∑

j =1

k∑
l =1
l < j

∫
( fj − fl )2(x)

�−2
l (x)�l rl (x)�−2

j (x)�j rj(x)∑k
l =1 �−2

l (x)�l rl (x)
dx and 	2 =4�. (21)

Theorem 2 can be utilized in various ways. First, a power approximation can be obtained
via

PH1

(
N

√
h
(
TN − C

Nh

)
�

> u1−�

)
=�

(
�
√

N
	

− �u1−�

	
√

Nh
− C

	
√

Nh

)
+o(1)

=�

(
�
	

√
N
)

+o(1). (22)

We will use this result in section 2.2 to compare the presented test with a procedure of Dette
& Neumeyer (2001) in terms of power, see Lemma 1.

Second, a simple one-sided (1 − �) confidence interval for the discrepancy measure � in
(21) between the functions fi (i =1, . . ., k) is obtained as (0 <�< 1/2)

CI1−� =
[

0, TN +
√

TN c + c2

4
+ c

2

]
(23)

where c =4u2
1−(�/2)/N . The confidence interval (23) might be of some practical appeal because

it gives a more accurate insight into how much the true regression functions f1, . . ., fk deviate
from equality in terms of the discrepancy measure �. In contrast, a simple decision based
on (20) leaves the experimenter in the difficult situation whether rejection of H0 is based on
a significantly relevant difference between the fi , or in the case of acceptance, whether there
is really evidence in favour of f1 = · · ·= fk or just a lack of power, e.g. because of too small
sample sizes. For a careful discussion of these issues, cf. Munk & Dette (1998). Similarly,
Theorem 2 allows one to test precise L2-neighbourhoods

H�0 : �>�0 versus K�0 : �≤�0,

where �0 is a preassigned discrepance the experimenter is willing to tolerate.
Finally, we mention that the test in (20) can detect local alternatives of the form

H1N : fi = f + gi

(N
√

h)1/2
for i =1, . . ., k, where gi /=gj for some i /= j, (24)

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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where f , gi ∈ Cd (0, 1), that tend to the null hypothesis at a rate 1/(N
√

h)1/2. Under the local
alternatives H1N , the test-statistic

N
√

h
(

TN − C
Nh

)

converges in distribution to a normal distribution N (�, �2) with mean

�=
k∑

j =1

k∑
l =1
l < j

∫
(gj −gl )2(x)

�−2
l (x)�l rl (x)�−2

j (x)�j rj(x)∑k
l =1 �−2

l (x)�l rl (x)
dx.

The constants C and �2 are defined in Theorem 1. Under (24) we obtain the following first-
order approximation of the power,

PH1N

(
N

√
h
(

TN − C
Nh

)
> �u1−�

)
=�

(
�
�

−u1−�

)
+o(1). (25)

2.2. Comparison with a procedure of Dette & Neumeyer (2001)

To simplify the presentation, we restrict to the case k =2 in this section. The presented test-
statistic TN is an enhancement of Dette & Neumeyer’s (2001) test-statistic

T (1)
N = 1

N

2∑
i =1

ni∑
j =1

(Yij − f̃ (tij))2 − 1
N

2∑
i =1

ni∑
j =1

(Yij − f̂ i(tij))2, (26)

where the pooled regression estimator is defined as

f̃ (x)=
∑2

i =1

∑ni
j =1 K ( x−tij

h )Yij∑2
i =1

∑ni
j =1 K ( x−tij

h )
. (27)

T (1)
N does not take into account explicitly the potentially inhomogeneous or heteroscedastic

variance functions in the two samples, albeit the test is consistent in these cases. The com-
bined regression estimator f̃ and the test-statistic T (1)

N conform with the definitions of f̂ in
(18) and TN in (6) but with replacing the variance estimates �̂2

i (·) by the constant value 1
(i =1, 2). Under the assumptions of Theorems 1 and 2, the statistic T (1)

N has an asymptotic
normal law, similar to TN , but with different constants, i.e.

N
√

h
(

T (1)
N − C̃

Nh

) D−→
N→∞

N (0, �̃2) (under H0)
√

N(T (1)
N − �̃) D−→

N→∞
N (0, 	̃2) (under H1),

where

C̃ =
[
2K (0)−

∫
K 2(u) du

](∫
�2

1(x) dx +
∫

�2
2(x) dx −

∫
�2

1(x)�1r1(x)+�2
2(x)�2r2(x)

�1r1(x)+�2r2(x)
dx
)

�̃2 =2
∫

(2K −K ∗K )2(u) du
∫

(�2
2(x)�1r1(x)+�2

1(x)�2r2(x))2

(�1r1(x)+�2r2(x))2
dx

�̃=
∫

( f1 − f2)2(x)
�1r1(x)�2r2(x)

�1r1(x)+�2r2(x)
dx

	̃2 =4
∫

( f1 − f2)2(x)
�1r1(x)�2r2(x)(�2

2(x)�1r1(x)+�2
1(x)�2r2(x))

(�1r1(x)+�2r2(x))2
dx.

Note, that Dette & Neumeyer’s (2001) result holds under slightly less restrictive assump-
tions on the bandwidth, however, at the price of an additional bias term. A similar general-
ization could be shown for our statistic as well.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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The power approximation (22) (which is analogously valid for T (1)
N ) motivates that a large

value of the ratio of the mean to the asymptotic standard deviation under the alternative
yields large power. This gives us the possibility to compare the two competing procedures
and leads to the following result.

Lemma 1
Under the assumptions of Theorem 2 (for k =2) we obtain for the asymptotic signal-to-noise
ratio of TN and T (1)

N that

�̃
	̃

≤ �
	
. (28)

Proof. From Cauchy–Schwarz’s inequality, we obtain

�̃=
∫

( f1 − f2)2(x)
�1r1(x)�2r2(x)

�1r1(x)+�2r2(x)
dx

≤
(

4
∫

( f1 − f2)2(x)
�1r1(x)�2r2(x)(�2

2(x)�1r1(x)+�2
1(x)�2r2(x))

(�1r1(x)+�2r2(x))2
dx
)1/2

×
(

1
4

∫
( f1 − f2)2(x)

�1r1(x)�2r2(x)
�2

2(x)�1r1(x)+�2
1(x)�2r2(x)

dx
)1/2

= 	̃

(
1
2

)
�1/2 = 	̃

�
	

,

which gives the assertion.

It follows from the Cauchy–Schwarz inequality that one obtains equality in (28) if and only
if there exists a constant c such that a.e.

�2
2�1r1 +�2

1�2r2

�1r1 +�2r2
≡ c.

This holds in the case of homoscedastic and equal variances in the two samples or in the
case of equal design densities and homoscedastic variances. However, from Lemma 1, we
also see that Dette & Neumeyer’s (2001) statistic becomes inefficient compared with that of
our approach, when �/	 is large compared with �̃/	̃. As an example, assume that �1 =�2 = 1

2

(equal sample sizes), ri ≡1 (uniform designs) and let f1 − f2 ≡1. Then

�̃= 1
4

, 	̃= 1√
2

{∫
(�2

1(x)+�2
2(x)) dx

}1/2

, �= 1
2

∫
(�2

1(x)+�2
2(x))−1 dx, �/	= 1

2
√

�.

Hence inequality (28) in Lemma 1 becomes equivalent to(∫
(�2

1(x)+�2
2(x)) dx

)−1/2

≤
(∫

(�2
1(x)+�2

2(x))−1 dx
)1/2

.

For example, if �2
1(x)+�2

2(x)=x, the RHS is infinity, and it is expected that in this case our
test outperforms the test of Dette & Neumeyer (2001) significantly. We will investigate this
in more detail in section 3.2 where a simulation study is presented.

Remark 2. Under the local alternatives H1N considered in (24) (for k =2) the statistic T (1)
N

of Dette & Neumeyer (2001) shows a similar behaviour like TN but with asymptotic variance
�̃2 and mean

�̃=
∫

(g1 −g2)2(x)
�1r1(x)�2r2(x)

�1r1(x)+�2r2(x)
dx.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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Because of the power approximation in (25) an inequality of the form �̃/�̃ ≤ �/� as in Lemma
1 for local alternatives would be desirable but is not valid in general.

Remark 3. In the random design case, the design points tij (j =1, . . ., ni) are i.i.d. realiza-
tions of a random variable Xi with design density ri (i =1, 2). In this setting, the asymptotic
distribution under the null hypothesis H0 stated in Theorem 1 remains valid; but under the
fixed alternative H1, the asymptotic variance changes to

	2 +
2∑

i =1

�ivar
(

( f1 − f2)2(Xi)
�2

3−i r
2
3−i(Xi)�4

i (Xi)+2�i ri(Xi)�3−i r3−i(Xi)�4
3−i(Xi)

(�1r1(Xi)�2
2(Xi)+�2r2(Xi)�2

1(Xi))2

)
,

where 	2 is defined in Theorem 2 (k =2).

3. Bandwidth selection and additional prior information on the variances

3.1. Theoretical considerations

All results can be generalized to the use of different bandwidths in the three regression esti-
mates, i.e. bandwidths hi in f̂ i(·) defined in (16), i =1, . . ., k, and a bandwidth h in the pooled
estimator f̂ (·) defined in (18), cf. Remark 2.7 in Dette & Neumeyer (2001). However, we
will not pursue this here. Note that the bandwidth conditions (14) required here are slightly
more restrictive than the bandwidth conditions used by Dette & Neumeyer (2001), who also
obtained slightly different asymptotics. This is because of the appearance of an additional
bias that originates from the variance estimation (19). An advantage of our statistic is that it
can be modified in various ways because of prior knowledge on the variances to weaken these
bandwidth conditions and to simplify the required estimators. On the one hand, if homo-
scedasticity of the variances can be assumed, i.e. �2

i (·) ≡�2
i , i =1,…, k, then for the estima-

tion of the constant variance within the ith sample every estimator that satisfies

�̂2
i −�2

i = Op

(
1√
N

)
, i =1, . . ., k

can be used, see, for example, Rice (1984) and Hall & Marron (1990) for an estimator which
is asymptotically efficient. The bandwidth conditions (14) can then be weakened to the con-
ditions used by Dette & Neumeyer (2001),

h=O(N−2/(4d +1)) and Nh2 →∞ for N →∞ (29)

and under these conditions we obtain the following limit distributions. Under the null
hypothesis H0 of equal regression functions we have

N
√

h
(

TN −Bh2d − C
Nh

)
D−→

N→∞
N (0, �2),

where the constant B is defined by

B =k2
d

(∫ {∑k
i =1 �−2

i �i( f1r(d)
i − ( f1ri)(d))(x)}2∑k

i =1 �−2
i �i ri(x)

dx

−
k∑

i =1

�i

∫
{( f1ri)(d)(x)− ( f1r(d)

i )(x)}2 1
�2

i ri(x)
dx
)

,

kd is defined in (13) and C and �2 are defined in Theorem 1.
Under the fixed alternative H1, the same limit distribution as in Theorem 2 holds. If addi-

tionally, equality of the variances �2
i =�2

0, i =1,…, k, can be assumed, �2
0 could be estimated
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from the pooled sample, of course. However, in this case weighting by the variances is
not necessary at all and our test-statistic essentially reduces to the statistic by Dette &
Neumeyer (2001).

On the other hand, the less restrictive bandwidth conditions (29) can also be sufficient in
the case where we have extra information about the smoothness of the variance functions.
We consider the following setting. Condition (12) is replaced by the assumption

ri , fi ∈Cd (0, 1), �2
i ∈Cs(0, 1), i =1, . . ., k,

where s > d . Moreover, instead of K and h we use a kernel K̃ of order s and a bandwidth
b=bN in the definition (19) of the variance estimate. In place of the bandwidth conditions
(14), we assume

Nb2s →0, Nb2 →∞, h2d +1/2 =o(b) and
b√
h

=O(1) as N →∞

for bandwidth b and the conditions (29) for the bandwidth h used for the regression esti-
mators. Under these assumptions, the same limit distributions for TN under H0 and H1 as
stated above for the homoscedastic case hold. In section 3.2, we will investigate numerically
the difficult issue of a proper bandwidth selection and we mention that in general a differ-
ent choice of bandwidth for the estimation of �2

i and fi might be appropriate, provided it is
expected that they differ much in smoothness. Further, it is recommended that for the esti-
mation of the residuals Yij − f̂ i(tij) required in �̂2

i in (19) undersmoothing may be advisable,
to control the bias of �̂2

i (see Munk & Ruymgaart, 2002, for an explanation).

3.2. Wild bootstrap and finite sample properties

Although the testing procedure (20) is distribution free and therefore applicable directly with-
out any estimation of nuisance parameters, our simulations indicated that for small and
moderate sample sizes the performance of the test can be improved by the bootstrap tech-
nique. Hence, in this section, we present the finite sample behaviour of a wild bootstrap ver-
sion of the proposed testing procedure. We compare it in terms of power with the procedure
of Dette & Neumeyer (2001). These authors already compared their test to various proce-
dures and we will show that the new test outperforms the testing procedure of the afore-
mentioned authors in almost all cases. The gain in power may be substantial and has been
observed up to twice. For the sake of brevity, we do not present level simulations, but our
simulations show that the new procedure keeps the level just as well as Dette & Neumeyer’s
(2001) test. Moreover, we investigate how sensitive the performance of the procedure is with
respect to the choice of the smoothing parameter h. Finally, at the end of this section, we
compare the new test to a test by Neumeyer & Dette (2003). According to our simulations,
we restrict the following presentation to the comparison of two regression functions, k =2.
The general case is analogue. We consider the following wild bootstrap approach based on
the residuals

�̂ij =Yij − f̂ (tij), j =1, . . ., ni , i =1, 2,

where f̂ is the pooled regression estimator defined in (18). Let Vij denote i.i.d. random vari-
ables, independent of the sample {Yij}, with masses (

√
5+1)/(2

√
5) and (

√
5 − 1)/(2

√
5) at

the points 1
2 (1−√

5) and 1
2 (1+√

5) respectively. We define bootstrap observations

Y ∗
ij = f̂ (tij)+Vij �̂ij , j =1, . . ., ni , i =1, 2,

and denote by T ∗
N the test-statistic defined in (6) but based on the bootstrap sample {Y ∗

ij }. A
test of asymptotic level � rejects the null hypothesis whenever the statistic TN (based on the
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original sample {Yij}) is larger than the (1−�)-quantile of the distribution of T ∗
N conditioned

on the sample {Yij}. The consistency of this bootstrap procedure can be shown in the same
spirit as in the proof of Dette & Neumeyer (2001, section 4.4). In each of the 1000 simula-
tions we resampled B =200 times and estimated the bootstrap quantile by T ∗

N(B(1−�)�), where
T ∗

N(`) denotes the `th order statistic of the bootstrap sample T ∗
N , 1, . . ., T ∗

N , B.
For all kernel-based estimators we used the Epanechnikov kernel. The bandwidths are

chosen according to the ‘rule of thumb’ (cf. Dette & Neumeyer, 2001), hi = (ŝ2
i /ni)0.3 in the

estimators f̂ i and �̂2
i (i =1, 2) and h= [(n1ŝ2

1 +n2 ŝ2
2)/N2]0.3 in the pooled regression estimator

f̂ . Here ŝ2
i denotes Rice’s (1984) estimator

ŝ2
i = 1

2(ni −1)

ni−1∑
j =1

(Yij +1 −Yij)2

of the integrated variance s2
i =∫ �2

i (t)ri(t) dt in the ith sample (i =1, 2).
The analogous bootstrap procedure was also simulated for Dette & Neumeyer’s (2001)

test-statistic T (1)
N defined in (26). We restrict in the following our presentation to normal errors

�ij ∼N (0, 1) (various other settings have been simulated and yielded similar results) and pre-
sent the results for different combinations of sample sizes (n1, n2) and nominal levels �. First,
we consider the case of equidistant design points (i.e. ri ≡ 1, i =1, 2) in three settings cor-
responding to the cases of equal homoscedastic, equal heteroscedastic and inhomogeneous
heteroscedastic variances. The results for the following regression functions and equal homo-
scedastic variances,

f1(x)= exp(x), f2(x)= exp(x)+ sin(4
x), �2
i ≡0.5, i =1, 2, (30)

can be depicted in Table 1 for the new test-statistic TN and for Dette & Neumeyer’s (2001)
procedure for the sake of comparison. The new procedure turns out to be uniformly more
powerful in this case.

Table 1. Simulated power of the wild bootstrap version of the new test-statistic TN defined in (6) (left
panel) and T (1)

N defined in (26) (right panel), according to setting (30)

TN T (1)
N

(n1, n2) �=2.5% �=5% �=10% �=2.5% �=5% �=10%

(10,10) 0.020 0.043 0.083 0.017 0.028 0.054
(10,20) 0.106 0.158 0.232 0.046 0.077 0.126
(10,30) 0.166 0.237 0.340 0.075 0.132 0.211
(10,40) 0.201 0.291 0.402 0.119 0.194 0.301
(10,50) 0.295 0.373 0.510 0.157 0.247 0.357
(20,20) 0.109 0.165 0.262 0.058 0.109 0.162
(20,30) 0.197 0.285 0.399 0.138 0.210 0.298
(20,40) 0.344 0.427 0.545 0.278 0.354 0.459
(20,50) 0.433 0.533 0.645 0.349 0.447 0.543
(30,30) 0.272 0.364 0.484 0.189 0.267 0.377
(30,40) 0.416 0.501 0.624 0.326 0.419 0.530
(30,50) 0.532 0.639 0.739 0.465 0.550 0.644
(40,40) 0.458 0.564 0.663 0.370 0.470 0.567
(40,50) 0.607 0.708 0.797 0.525 0.633 0.728
(50,50) 0.663 0.750 0.822 0.592 0.664 0.755
(100,100) 0.989 0.997 0.997 0.984 0.989 0.993
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Table 2. Simulated power of the wild bootstrap version of the new test-statistic TN defined in (6) (left
panel) and T (1)

N defined in (26) (right panel), according to setting (31)

TN T (1)
N

(n1, n2) �=2.5% �=5% �=10% �=2.5% �=5% �=10%

(10,10) 0.030 0.054 0.084 0.019 0.033 0.059
(10,20) 0.102 0.149 0.214 0.033 0.059 0.100
(10,30) 0.175 0.234 0.322 0.071 0.132 0.198
(10,40) 0.248 0.328 0.430 0.112 0.183 0.282
(10,50) 0.296 0.379 0.493 0.162 0.239 0.341
(20,20) 0.099 0.152 0.225 0.061 0.089 0.131
(20,30) 0.197 0.267 0.366 0.130 0.181 0.279
(20,40) 0.292 0.401 0.518 0.214 0.301 0.383
(20,50) 0.355 0.449 0.573 0.288 0.376 0.476
(30,30) 0.252 0.328 0.430 0.190 0.257 0.340
(30,40) 0.373 0.473 0.579 0.313 0.407 0.503
(30,50) 0.461 0.590 0.717 0.418 0.522 0.626
(40,40) 0.401 0.513 0.620 0.336 0.416 0.528
(40,50) 0.521 0.648 0.754 0.475 0.563 0.673
(50,50) 0.651 0.734 0.832 0.567 0.662 0.751
(100,100) 0.991 0.995 1.000 0.984 0.990 0.996

The results for equal heteroscedastic variances according to the following setting,

f1(x)=x2, f2(x)=x2 + sin(4
x), �2
i (x)=x, i =1, 2, (31)

are presented in Table 2. In all cases, we observe a better power of the new test.
Results for the case of inhomogeneous and heteroscedastic variances,

f1 ≡1, f2 ≡0, �2
1(x)=x2, �2

2(x)=5x −x2 (32)

are presented in Table 3. In this case, we observe slightly better power of Dette & Neu-
meyer’s (2001) test for equal and nearly equal sample sizes, but the new procedure out-
performs their test, when the sample sizes are rather different, e.g. when n1 =10, n2 =50.
This phenomenon presumably originates from the interplay of sample size and variance in
the weight 1 − a =�−2

2 n2/(�−2
1 n1 +�−2

2 n2) from (5) that is assigned to the observations from
the second sample in the pooled regression estimate in the definition of test-statistic TN . In
contrast, the corresponding weight used in test-statistic T (1)

N is 1− ã =n2/(n1 +n2).
Finally, we present simulations for the setting where both the design densities and the vari-

ances are different in the two samples,

r1 ≡1, r2(x)=0.5+x, f1 ≡1, f2 ≡0, �2
1 ≡2, �2

2 ≡3. (33)

The results are shown in Table 4, and the new test turns out to be uniformly more powerful
in this case, where for equal sample sizes the gain in power is remarkable. This is perfectly in
accordance with our theoretical findings in Lemma 1 and the explanations given in section
2.2.

To investigate how sensitive the performance of the test TN is with respect to the choice
of the smoothing parameters h1, h2 and h, we compare results for the choices

hi = c(s2
i /ni)0.3 and h= c((n1s2

1 +n2s2
2)/N2)0.3, (34)

where in the definitions of the ‘rule of thumb’ bandwidths above we have replaced the
estimators ŝ2

i by the true integrated variances s2
i and the constant c varies within {0.5, 0.75, 1,
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Table 3. Simulated power of the wild bootstrap version of the new test-statistic TN defined in (6) (left
panel) and T (1)

N defined in (26) (right panel), according to setting (32)

TN T (1)
N

(n1, n2) �=2.5% �=5% �=10% �=2.5% �=5% �=10%

(10,10) 0.254 0.314 0.396 0.302 0.366 0.457
(10,20) 0.381 0.483 0.604 0.313 0.427 0.543
(10,30) 0.501 0.603 0.724 0.325 0.446 0.576
(10,40) 0.585 0.692 0.801 0.350 0.482 0.613
(10,50) 0.660 0.764 0.849 0.354 0.501 0.635
(20,20) 0.402 0.511 0.637 0.524 0.611 0.704
(20,30) 0.522 0.664 0.780 0.628 0.722 0.810
(20,40) 0.684 0.784 0.873 0.707 0.795 0.872
(20,50) 0.741 0.837 0.921 0.724 0.807 0.868
(30,30) 0.614 0.727 0.845 0.761 0.829 0.890
(30,40) 0.704 0.803 0.899 0.784 0.858 0.904
(30,50) 0.826 0.892 0.956 0.866 0.918 0.948
(40,40) 0.762 0.848 0.913 0.852 0.909 0.938
(40,50) 0.873 0.922 0.966 0.892 0.935 0.963
(50,50) 0.867 0.923 0.962 0.929 0.955 0.981
(100,100) 0.998 0.999 1.000 0.998 0.999 0.999

1.25, 1.5}. We display results for level �=5% and sample sizes (n1, n2)= (50, 50). We consider
setting (30) as well as a setting corresponding to (30), but according to the null hypothesis, i.e.

f1(x)= exp(x)= f2(x), �2
i ≡0.5, i =1, 2. (35)

In the first two rows of Table 5 the simulation results are shown. We observe here that the
choice of the constant c does not affect the level approximation very much. The power value
we have obtained in Table 1 in this setting is 0.750, which is very similar to the value obtained
when the estimators ŝ2

i are replaced by there true values, i.e. 0.763. Further, the results show
that in this setting with smaller bandwidths even better detections of the alternative can be

Table 4. Simulated power of the wild bootstrap version of the new test-statistic TN defined in (6) (left
panel) and T (1)

N defined in (26) (right panel), according to setting (33)

TN T (1)
N

(n1, n2) �=2.5% �=5% �=10% �=2.5% �=5% �=10%

(10,10) 0.071 0.109 0.175 0.005 0.008 0.029
(10,20) 0.175 0.234 0.347 0.134 0.225 0.310
(10,30) 0.217 0.287 0.410 0.205 0.282 0.371
(10,40) 0.281 0.355 0.466 0.244 0.341 0.446
(10,50) 0.259 0.346 0.452 0.226 0.323 0.451
(20,20) 0.082 0.139 0.220 0.010 0.021 0.056
(20,30) 0.244 0.311 0.398 0.182 0.239 0.314
(20,40) 0.315 0.421 0.532 0.302 0.386 0.494
(20,50) 0.391 0.496 0.615 0.384 0.477 0.584
(30,30) 0.103 0.157 0.246 0.026 0.051 0.083
(30,40) 0.278 0.366 0.472 0.191 0.257 0.346
(30,50) 0.393 0.500 0.611 0.337 0.432 0.540
(40,40) 0.125 0.195 0.288 0.030 0.050 0.099
(40,50) 0.286 0.378 0.476 0.188 0.266 0.352
(50,50) 0.131 0.193 0.287 0.035 0.067 0.113
(100,100) 0.162 0.243 0.348 0.062 0.111 0.173
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Table 5. Sensitivity of level and power approximations of the wild bootstrap version of TN defined in (6)
for nominal level �=5%

c 0.5 0.75 1.0 1.25 1.5

Setting (35) (level) 0.060 0.060 0.049 0.064 0.043
Setting (30) (power) 0.941 0.912 0.763 0.464 0.216
Setting (36) (level) 0.063 0.061 0.055 0.053 0.062
Setting (32) (power) 0.726 0.715 0.707 0.707 0.729

The constant c determining the bandwidth is defined in (34). The first two rows display results accord-
ing to settings (30) and (35) for sample sizes (n1, n2)= (50, 50), the last two rows correspond to settings
(32) and (36) for sample sizes (n1, n2)= (30, 30).

obtained, and as to be expected, for too large values of the bandwidth the power decreases.
The two last rows of Table 5 show corresponding results for setting (32) and a similar model
under the null hypothesis, i.e.

f1 ≡1≡ f2, �2
1(x)=x2, �2

2(x)=5x −x2 (36)

for sample sizes (n1, n2)= (30, 30). In this model, the power and level results are not sensitive
to the changes in the bandwidth.

As was motivated by a referee, finally, we compare the new testing procedure to a test pro-
posed by Neumeyer & Dette (2003). These authors consider a Kolmogorov–Smirnov-type test
K (2)

N based on a marked empirical process of estimated residuals. We simulated the perfor-
mance of the new testing procedure TN in settings (4.11) of Neumeyer & Dette (2003) with
uniformly distributed random design and homoscedastic normally distributed errors with vari-
ances �2

1 =0.5, �2
2 =0.25 (compare Table 2 in the aforementioned paper). The performances of

both tests are similar except for oscillating regression functions. For example, the simulated
power with respect to 5% level in setting (v), i.e. f1(x)= exp(x), f2(x)= exp(x)+x is 0.958 for TN

and 0.996 for K (2)
N . For setting (vii) with oscillating alternative, i.e. f1(x)=1, f2(x)=1+ sin(2
x),

we obtain a power of 0.996 for TN and 0.574 for K (2)
N . The approximated levels were very sim-

ilar for both tests. It is well known, mainly from testing the goodness-of-fit of distribution
functions, that tests based on kernel or orthogonal series estimators outperform tests based
on empirical processes such as the Cramer von Mises or the Kolmogorov–Smirnov test for
most alternatives (for a discussion see Neuhaus, 1976; Eubank & LaRiccia, 1992, among many
others). However, for a very few alternatives, which are directed towards the principal eigen-
functions of the Karhunen–Loeve expansion of the underlying stochastic process, the oppo-
site can happen. It is to be expected that a similar situation happens in our context and our
simulations support this finding. Settings (30)–(33) give good examples. We display in Table 6
simulated power values of Neumeyer & Dette’s (2003) test K (2)

N in these settings. For the sake
of brevity, we only show results for sample sizes (n1, n2)= (20, 20), (20, 40) and (50, 50). We
observe in a comparison with the corresponding values in Tables 1–4 a far better performance
of TN compared with K (2)

N in settings (30) and (31) with oscillating regression functions, but
the opposite performance in settings (32) and (33). However, here the differences in power are
minor. We finally mention, that our results suggest that Neumeyer & Dette’s (2003) tests [and
Pardo-Fernández et al.’s (2006) test as well], which are based on the pooled regression esti-
mator defined in (27) could be further improved when using the pooled regression estimator
(18) instead, but these investigations are clearly beyond the scope of this paper.

4. A data example from crop yield

We will reanalyse an experiment provided by Ratkowsky (1983), later analysed in Bowman
& Azzalini (1997) and Mammen et al. (2001). It was designed to investigate the relationship
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Table 6. Simulated power of Neumeyer & Dette’s (2003) test K (2)
N according to settings (30)–(33)

Setting (30) Setting (31)

(n1, n2) �=2.5% �=5% �=10% �=2.5% �=5% �=10%

(20,20) 0.013 0.030 0.070 0.017 0.046 0.074
(20,40) 0.022 0.044 0.101 0.013 0.031 0.080
(50,50) 0.046 0.077 0.064 0.023 0.055 0.133

Setting (32) Setting (33)

(20,20) 0.723 0.800 0.883 0.485 0.580 0.689
(20,40) 0.879 0.934 0.971 0.655 0.755 0.843
(50,50) 0.983 0.989 0.997 0.888 0.934 0.958

between the yield of onion plants and the density of planting. To this end measurements were
taken at two different locations, Purnong Landing (×) and Virginia (◦), in South Australia.
Figure 1(a) shows the data (plant density versus mean yield per plant) at these locations
together with a local linear smoother and Figure 1(b) displays local linear fits after recen-
tring both samples by its mean, respectively, to adjust for a possible constant location effect
as described in Bowman & Azzalini (1997). Note, that asymptotically this correction does
not affect the distribution of TN , because the overall mean can be estimated

√
N-consis-

tently. In Figure 1(c), a local linear fit of the standard deviation is displayed (cf. Ruppert
et al., 1997). From this we draw that the SDs are decreasing, hence heteroscedastic, further
in both locations they differ significantly (i.e. they are inhomogenous), in particular when
the plant density is smaller than 75 (cf. Figure 1(c) again). An application of our test yields
TN =0.35326 and the following critical values were bootstraped for the levels �=0.025, 0.05
and 0.10, respectively (B =200), c0.025 =0.082, c0.05 =0.064 and c0.1 =0.05. Hence, TN exceeds
all these values and the assumption of equality is rejected at any of these levels. To investigate
whether the result is sensitive with respect to the choice of the bandwidths, we repeated the
same calculations for different bandwidths, but the hypothesis was always rejected. Bowman
& Azzalini (1997) performed a similar analysis for their test, also based on smoothed curve
estimators of the regression functions f1 and f2. Their test-statistic relies on the assumption of
equal and constant variances in both groups and they found that for a smaller bandwidth a
significant rejection of equality resulted, whereas for larger bandwidth this failed to hold.
This slightly different finding may be because of a gain in power of our test when non-
constant and unequal variances are present.

5. Conclusion

In this paper, we have suggested a new procedure for testing the equality of regression curves
in different non-parametric regression models. The new test generalizes naturally the method
of analysis of covariance to the setting of non-parametric regression. The asymptotic normal
distribution of the proposed test-statistic under the null hypothesis of equal regression func-
tions as well as under fixed and local alternatives is shown. Under the null hypothesis, the
test turns out to be asymptotically distribution free. Our procedure is similar in spirit to a
test based on a difference of variance estimators recommended by Dette & Neumeyer (2001).
We have shown that the new test gains in power particularly in the case of inhomogeneous
and heteroscedastic variances and for different sample sizes or design densities, respectively.
We found that the actual level of the test is robust for a large scale of bandwidths, whereas
the power may change significantly as to be expected because of the different resolution
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Fig. 1. (a) Scatter plot and local linear fit of the yield at Purnong Landing (×) and Virginia (◦).
(b) Local polynomial regression of the yield at Purnong Landing (dashed line) and Virginia (solid
line) after adjustment. (c) Local polynomial regression of the standard deviation functions at Purnong
Landing (dashed line) and Virginia (solid line).
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levels. On a fine scale, smaller changes will be more likely to be detected leading to a larger
rejection rate.
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Appendix A: Proofs

A.1. Proof of Theorems 1 and 2

The strategy of the proof is related to the proof of Theorem 2.1 of Dette & Neumeyer (2001).
However, technically it becomes much more involved because of the additional variance esti-
mators in TN . For the sake of brevity, we will only state the main differences because of the
additional variance estimation, and further assume k =2. With the definition of weights

w(i)
jk =

K
(

tij −tik
h

)
∑ni

l =1 K
(

tij −til
h

) and wlk, ij = 1
Nh

K
(

tlk − tij

h

)
�̂2

3−l (tij)
1

R̂(tij)
, (37)

where R̂(t)= [n1r̂1(t)�̂2
2(t)/N ]+[n2 r̂2(t)�̂2

1(t)/N ] is an estimator for R(t)=�1r1(t)�2
2(t)+

�2r2(t)�2
1(t), the regression estimators defined in (16) and (18), respectively, are f̂ i(tij)=∑ni

k =1 w(i)
jk Yik (i =1, 2) and f̂ (tij)=

∑2
l =1

∑ni
k =1 wlk, ijYlk . Now with the notations ( j =1, . . ., ni ,

i =1, 2)

�ij = fi(tij)−
2∑

l =1

nl∑
k =1

wlk, ij fl (tlk) =
2∑

l =1

nl∑
k =1

wlk, ij( fi(tij)− fl (tlk)) (38)

�ij = fi(tij)−
ni∑

k =1

w(i)
jk fi(tik) =

ni∑
k =1

w(i)
jk ( fi(tij)− fi(tik)) (39)

we decompose TN in (6) as

TN = 1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)

{
�2

ij −�2
ij −2�ij

2∑
l =1

nl∑
k =1

wlk, ij�l (tlk)�lk +2�ij

ni∑
k =1

w(i)
jk �i(tik)�ik

+
(

2∑
l =1

nl∑
k =1

wlk, ij�l (tlk)�lk

)2

−
(

ni∑
k =1

w(i)
jk �i(tik)�ik

)2

+2�i(tij)�ij(�ij −�ij)

−2�i(tij)�ij

2∑
l =1

nl∑
k =1

wlk, ij�l (tlk)�lk +2�i(tij)�ij

ni∑
k =1

w(i)
jk �i(tik)�ik

}
. (40)
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Lemma 2
Under the assumptions of Theorem 1 we obtain an expansion of the test-statistic under the null
hypothesis H0, TN = T̄N +op(1/(N

√
h)), where E[T̄N ]=C/(Nh)+o(1/(N

√
h)). Under the alter-

native H1, we have TN = ¯̄T N +op(1/
√

N), where E[ ¯̄T N ]=�+o(1/
√

N) and where the constants
C and � are defined in the Theorems 1 and 2.

Proof. We use the above definitions and the decomposition (40) of the test-statistic TN . A
Taylor expansion together with (37) and (38) gives

�ij =
2∑

l =1

�̂2
3−l (tij)

R̂(tij)

1
Nh

nl∑
k =1

K
(

tij − tlk

h

)
( fi(tij)− fl (tlk))

=
2∑

l =1

�̂2
3−l (tij)

R̂(tij)

{
( fi(tij)− fl (tij))�l rl (tij)+O(hd )+O

(
1

Nh

)}
(41)

= �̂2
i (tij)

R̂(tij)
( fi(tij)− f3−i(tij))�3−i r3−i(tij)+

{
O(hd )+O

(
1

Nh

)}
Op(1) (42)

where the last line only holds under the alternative H1. For the sake of brevity, we explain
our argumentation in detail only for the first term on the RHS in (40). For this, we obtain
under the alternative H1,

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�

2
ij /N =AN +BN +CN +op(1/

√
N),

where

AN = 1
N

2∑
i =1

ni∑
j =1

�2
i (tij)

R2(tij)
( fi(tij)− f3−i(tij))2�2

3−i r
2
3−i(tij)

BN = 1
N

2∑
i =1

ni∑
j =1

�̂2
i (tij)−�2

i (tij)
R2(tij)

( fi(tij)− f3−i(tij))2�2
3−i r

2
3−i(tij)

CN = 1
N

2∑
i =1

ni∑
j =1

�̂2
i (tij)

( 1

R̂2(tij)
− 1

R2(tij)

)
( fi(tij)− f3−i(tij))2�2

3−i r
2
3−i(tij).

For the (non-random) AN , we have by a Riemann-sum approximation

AN =
2∑

i =1

∫
�2

i (t)
R2(t)

( fi(t)− f3−i(t))2�2
3−i r

2
3−i(t)�i ri(t) dt +o

(
1√
N

)
= �+o

(
1√
N

)
.

With an application of Proposition 1 in Section A.2 and some tedious calculations of
expectations and variances we obtain BN =op(1/

√
N). To show CN =op(1/

√
N), we use the

decomposition

CN = 1
N

2∑
i =1

ni∑
j =1

[(
�̂2

i (tij)−�2
i (tij)

)(
R(tij)− R̂(tij)

)( 1

R̂(tij)
+ 1

R(tij)

) 1

R̂(tij)R(tij)

+(R(tij)− R̂(tij)
)2 �2

i (tij)

R2(tij)R̂(tij)

( 1

R̂(tij)
+ 2

R(tij)

)]
( fi(tij)− f3−i(tij))2�2

3−i r
2
3−i(tij)

+ 1
N

2∑
i =1

ni∑
j =1

(
R(tij)− R̂(tij)

) 2�2
i (tij)

R3(tij)
( fi(tij)− f3−i(tij))2�2

3−i r
2
3−i(tij).
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We have uniform almost sure convergence of R̂ to R and �̂2
i to �2

i with rates O((log h−1/
(Nh))1/2), see, for instance, Silverman (1978), Müller (1985) and Akritas & Van Keilegom
(2001). Therefore, the first sum in the decomposition of CN is of order Op(log h−1/(Nh))=
op(1/

√
N) by assumption (14). By definition of R̂, we have

R(t)− R̂(t)=−
2∑

i =1

[
r̂3−i(t) (�̂2

i (t)−�2
i (t))+�2

i (t) (r̂3−i(t)− r3−i(t))
]
,

where r̂3−i(t) is deterministic and converges to r3−i(t) with rate o(1/
√

N). Now, the expansion
of �̂2

i (t) −�2
i (t) from Proposition 1 (see Section A.2) can be used to deduce that the second

sum in the decomposition of CN has an expectation of order O(hd )+O(1/(Nh))=o(1/
√

N).
Under the null hypothesis H0, we directly obtain from (41)

1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�

2
ij =Op(1)

{
O(hd )+O

(
1

Nh

)}2

= op

(
1

N
√

h

)
.

With similar considerations as above, we obtain for the terms

1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�

2
ij ,

1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�ij

2∑
l =1

nl∑
k =1

wlk, ij�l (tlk)�lk ,

and
1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�ij

ni∑
k =1

w(i)
jk �i(tik)�ik

respective decompositions of the form DN + D̃N where E[DN ]=o(1/
√

N), D̃N =op(1/
√

N)
under H1 and E[DN ]=o(1/(N

√
h)), D̃N =op(1/(N

√
h)) under H0. With (37) and Proposition

1, we further obtain

1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)

(
2∑

l =1

nl∑
k =1

wlk, ij�l (tlk)�lk

)2

= 1
N3h2

2∑
i =1

ni∑
j =1

2∑
l =1

nl∑
k =1

�̂−2
i (tij)

R̂2(tij)
�̂4

3−l (tij)K 2

(
tij − tlk

h

)
�2

l (tlk)�2
lk

+ 1
N3h2

2∑
i =1

ni∑
j =1

2∑
l =1

nl∑
k =1

2∑
l ′ =1

nl′∑
k′ =1

(l, k)�=(l′ , k′ )

�̂−2
i (tij)

R̂2(tij)
�̂2

3−l (tij)�̂
2
3−l ′ (tij)

×K
(

tij − tlk

h

)
K
(

tij − tl ′k′

h

)
�l (tlk)�l ′ (tl ′k′ )�lk�l ′k′ .

The expectation of the dominating term is

1
Nh2

2∑
i =1

2∑
l =1

∫ ∫
�−2

i (t)
R2(t)

�4
3−l (t)K

2

(
t −x

h

)
�2

l (x)�i ri(t)�l rl (t) dt dx

= 1
Nh

∫
K 2(u) du +o

(
1

N
√

h

)
.

An analogous calculation yields for the dominating term of

− 1
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)

(
ni∑

k =1

w(i)
jk �i(tik)�ik

)2

the expectation [−2/(Nh)]
∫

K 2(u)du +o(1/(N
√

h)). Similarly, we obtain for
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− 2
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�i(tij)�ij

2∑
l =1

nl∑
k =1

wlk, ij�l (tlk)�lk

an expectation −2K (0)/(Nh) of the dominating term. Further, we have a decomposition

2
N

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�i(tij)�ij

ni∑
k =1

w(i)
jk �i(tik)�ik =DN + D̃N

where D̃N =op(1/(N
√

h)) and E[DN ]=4K (0)/(Nh)+o(1/(N
√

h)). Analogous to the previous
calculations, we obtain that

2∑
i =1

ni∑
j =1

�̂−2
i (tij)�i(tij)�ij(�ij −�ij)/N

is of order Op(1/(Nh))=op(1/
√

N) under H1 and of order

Op(1/(Nh)) (O(hd )+O(1/(Nh)))=op(1/(N
√

h))

under H0. From the decomposition (40) of TN and the above calculation the assertion
follows.

A.1.1. Proof of Theorem 2
Analogous to the proof of Theorem 2.1, Dette & Neumeyer (2001), the following expan-
sion of the test-statistic holds under the alternative H1: TN −E[TN ]=T (1)

N +T (2)
N +op(1/

√
N),

where

T (i)
N = 1

N

ni∑
j =1

�ij�ij , i =1, 2

and the coefficients are defined by �ij =2�ij�i(tij)/�̂i
2(tij), j =1, . . ., ni (i =1, 2).

Lemma 3
Under the assumptions of Theorem 1 and under the alternative H1, it holds that T (i)

N =
T̄ (i)

N +op(1/N) where

var(T̄ (i)
N )= 4

N

∫
( f1 − f2)2(x)

�i ri(x)�2
3−i r

2
3−i(x)�2

i (x)
(�1r1(x)�2

2(x)+�2r2(x)�2
1(x))2

dx, i =1, 2.

Proof. We only consider the case i =1. With �1j from (42) we obtain

T (1)
N = 2

N

n1∑
j =1

( f1(t1j)− f2(t1j))�2r2(t1j)
�1(t1j)

R̂(t1j)
�1j +op

(
1√
N

)
.

Now for calculating the variance of the dominating term we can substitute R̂(t) by R(t).
The remainder of the expansion of 1/R̂(t) around 1/R(t) is equal to

R(t)− R̂(t)

R̂(t)R(t)
=− 1

R2(t)

2∑
i =1

{
r̂3−i(t) (�̂2

i (t)−�2
i (t))+�2

i (t) (r̂3−i(t)− r3−i(t))
}

(1+op(1)).
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This yields the rest of the terms T (1, i)
N (i =1, 2) in the expansion T (1)

N = T̄ (1)
N +T (1,1)

N +T (1,2)
N +

op(1/
√

N), where

T̄ (1)
N = 2

N

n1∑
j =1

( f1(t1j)− f2(t1j)) �2r2(t1j)
�1(t1j)
R(t1j)

�1j

and the remainders are of the form

T (1, i)
N = 1

N

n1∑
j =1

�(t1j)�1j

{(
r3−i(t1j)+o(1)

)
(�̂2

i (t1j)−�2
i (t1j))+o(1)

}
= op

(
1√
N

)
.

The last equality can be obtained by inserting the decomposition of the variance estimator
�̂2

i (t) from Proposition 1 (see Section A.2) and a tedious calculation of the variance
var(T (1, i)

N ) = o(1/N) (i =1, 2). We obtain for the variance of T̄ (1)
N ,

var(T̄ (1)
N )= 4

N

∫
( f1 − f2)2(x)

�1r1(x)�2
2r2

2(x)�2
1(x)

R2(x)
dx

and this completes the proof of Lemma 3.
From the proof of Lemma 2, we additionally obtain under the alternative H1:

√
N(TN −E[TN ])= 1√

N

2∑
i =1

ni∑
j =1

�ij( fi(tij)− f3−i(tij))�3−i r3−i(tij)
�i(tij)
R(tij)

+op(1)

with the asymptotic variance (of the dominating term)

4
∫

( f1 − f2)2(x)
�1r1(x)�2

2r2
2(x)�2

1(x)
R2(x)

dx +4
∫

( f1 − f2)2(x)
�2r2(x)�2

1r2
1(x)�2

2(x)
R2(x)

dx = 	2.

An application of the central limit theorem using Lyapunov’s condition yields the asymp-
totic normality and completes the proof of Theorem 2.

A.1.2. Proof of Theorem 1
Under the hypothesis H0 of equal regression functions in the two models, we obtain simi-
lar to the proof of Theorem 2.1 of Dette & Neumeyer (2001) the decomposition TN −E[TN ]=∑5

j =3 T ( j)
N +op(1/(N

√
h)), where

T (2+k)
N = 1

N

nk∑
i =1

nk∑
j =1
j �= i

�(k)
ij �ki�kj , k =1, 2, T (5)

N = 1
N

n1∑
i =1

n2∑
j =1

	ij�1i�2j

and the coefficients are defined by

�(1)
ij =

{
2∑

l =1

nl∑
k =1

w1i, lkw1j, lk

�̂2
l (tlk)

− 2w1j, 1i

�̂2
1(t1i)

−
n1∑

k =1

w(1)
ki w(1)

kj

�̂2
1(t1k)

+ 2w(1)
ij

�̂2
1(t1i)

}
�1(t1i)�1(t1j)

�(2)
ij =

{
2∑

l =1

nl∑
k =1

w2i, lkw2j, lk

�̂2
l (tlk)

− 2w2j, 2i

�̂2
2(t2i)

−
n2∑

k =1

w(2)
ki w(2)

kj

�̂2
2(t2k)

+ 2w(2)
ij

�̂2
2(t2i)

}
�2(t2i)�2(t2j)

	ij =
{

2
2∑

l =1

nl∑
k =1

w1i, lkw2j, lk

�̂2
l (tlk)

− 2w2j, 1i

�̂2
1(t1i)

− 2w1i, 2j

�̂2
2(t2j)

}
�1(t1i)�2(t2j).
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Lemma 4
Under the assumptions of Theorem 1 and under the null hypothesis H0, it holds that T (2+k)

N =
T̄ (2+k)

N +op(1/(N
√

h)) (k =1, 2, 3) where

var(T̄ (2+k)
N )= 2

N2h

∫
(2K −K ∗K )2(u) du

×
[
1+
∫ 1

0

�2
kr2

k(x)�4
3−k(x)

R2(x)
dx −2

∫ 1

0

�krk(x)�2
3−k(x)

R(x)
dx
]
+o
(

1
N2h

)
, k =1, 2,

var(T̄ (5)
N )= 4

N2h

∫
(2K −K ∗K )2(u) du

∫ 1

0

�2
1(x)�2

2(x)�1r1(x)�2r2(x)
R2(x)

dx +o
(

1
N2h

)
.

Proof. For simplicity, we only consider T (5)
N , the other two terms are treated similarly. By

the definition of the weights in (37), the coefficients 	ij can be rewritten as 	ij = 	̃ij + ˜̃	ij , where

	̃ij =
{

2
N2h2

2∑
l =1

nl∑
k =1

K
(

t1i − tlk

h

)
K
(

t2j − tlk

h

)
1

R̂2(tlk)
�2

3−l (tlk)

− 2
Nh

K
(

t2j − t1i

h

)
1

R̂(t1i)
− 2

Nh
K
(

t2j − t1i

h

)
1

R̂(t2j)

}
�1(t1i)�2(t2j)

˜̃	ij =
2

N2h2

2∑
l =1

nl∑
k =1

K
(

t1i − tlk

h

)
K
(

t2j − tlk

h

)
1

R̂2(tlk)
�1(t1i)�2(t2j)

(
�̂2

3−l (tlk)−�2
3−l (tlk)

)
.

First, we consider the term T̃ (5)
N defined as T (5)

N , but with 	ij replaced by 	̃ij . Using the same
argument as in the proof of Lemma 3, we find that asymptotically the estimator R̂(t) can be
replaced by the true R(t) with a remainder term that is negligible in probability to calculate
the variance of the dominating term. We then obtain T̃ (5)

N = T̄ (5)
N +op(1/(N

√
h)) with

var(T̄ (5)
N )= 1

N2

n1∑
i =1

n2∑
j =1

{
2

N2h2

2∑
l =1

nl∑
k =1

K
(

t1i − tlk

h

)
K
(

t2j − tlk

h

)
1

R2(tlk)
�2

3−l (tlk)

− 2
Nh

K
(

t2j − t1i

h

)
1

R(t1i)
− 2

Nh
K
(

t2j − t1i

h

)
1

R(t2j)

}2

�2
1(t1i)�2

2(t2j)

= 4
N2h

∫
(2K −K ∗K )2(u) du

∫ 1

0

�2
1(x)�2

2(x)�1r1(x)�2r2(x)
R2(x)

dx +o
(

1
N2h

)
.

Finally, the asymptotic negligibility of the second term (defined as T (5)
N , but with 	ij

replaced by ˜̃	ij) can be shown by some tedious calculations of expectations and variances.
This completes the proof of Lemma 4.

With similar calculations as in the proof of Lemma 4, we can rewrite T̄ (5)
N as

T̄ (5)
N = 2

N3

n1∑
i =1

n2∑
j =1

�1i�2j�1(t1i)�2(t2j)

{
1
h2

∫
K
(

t1i − z
h

)
K
(

t2j − z
h

)
1

R(z)
dz

− 1
h

K
(

t2j − t1i

h

)
1

R(t1i)
− 1

h
K
(

t2j − t1i

h

)
1

R(t2j)

}
+op

(
1

N
√

h

)
.

Applying the same arguments to the terms T̄ (3)
N and T̄ (4)

N we obtain

N
√

h(TN −E[TN ])=N
√

h
(

T̄ (3)
N + T̄ (4)

N + T̄ (5)
N

)
+op(1),
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where the dominating part can be written as a quadratic form WN = �T
N AN �N of the random

variable �N = (�11, . . ., �1n1 , �21, . . ., �2n2 )T with a symmetric matrix AN with vanishing diagonal
elements. From Lemma 4, we obtain for the asymptotic variance var(WN )= �2 +o(1). Asymp-
totic normality of WN can be proved by an application of Theorem 5.2 of de Jong (1987)
and this gives the conclusion of Theorem 1.

A.2. Auxiliary result

Proposition 1
Assume model (1) where the �ij are independent centred random variables with variance 1, such
that assumptions (9)–(14) hold. For the heteroscedastic variance estimators defined in (19),
we obtain the expansion (i =1, 2)

�̂2
i (t)−�2

i (t)=
6∑

k =1

S(k)
ni

(t)

where

S(1)
ni

(t)= 1
nih

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
�2

i (til )(�2
il −1) = Op

(
1√
nih

)

S(2)
ni

(t)= 1
nih

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
(�2

i (til )−�2
i (t)) = O(hd )+O

(
1

nih

)

S(3)
ni

(t)= 2
nih

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
�i(til )�il

( 1
nih

ni∑
k =1

K
(

til − tik

h

)
fi(til )− fi(tik)

r̂i(til )

)

=Op

(
hd

√
nih

)
+Op

(
1

(nih)3/2

)

S(4)
ni

(t)=− 2
nih

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
�i(til )�il

( 1
nih

ni∑
k =1
k �= l

K
(

til − tik

h

)
�i(tik)�ik

r̂i(til )

)
= Op

(
1

nih

)

S(5)
ni

(t)=− 2
(nih)2

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
K (0)
r̂i(til )

�2
i (til )�2

il = Op

(
1

nih

)

S(6)
ni

(t)= 1
nih

1
r̂i(t)

ni∑
l =1

K
(

t − til

h

)
( fi(til )− f̂ i(til ))2 = Op

(
1

nih

)
+Op(h2d ).

The dominating part in the expansion is S(1)
ni (t) and S(2)

ni (t) is deterministic. For the expec-
tations we have E[S(1)

ni (t)]=E[S(3)
ni (t)]=E[S(4)

ni (t)]=0, E[S(5)
ni (t)]=O(1/(nih)) and E|S(6)

ni (t)|=
O(1/(nih))+O(h2d ).
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