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Testing parametric assumptions on band- or
time-limited signals under noise

Nicolai Bissantz, Hajo Holzmann, and Axel Munk

Abstract

We consider the problem of testing parametric assumptions on signalsf from which only noisy observationsyk = f(τk)+εk

are available, and where the signal is assumed to be either band-limited or time-limited. To this end the signal is reconstructed
by an estimator based on the Whittaker-Shannon sampling theorem with oversampling. As test statistic the minimalL2 distance
between the estimated signal and the parametric model is used. To construct appropriate tests, the asymptotic distribution of the
test statistic is derived both under the hypothesis of the validity of the parametric model and under fixed local alternatives. As a
byproduct we derive the asymptotic distribution of the integrated square error of the estimator, which is of interest by itself, e.g.
for the analysis of a cross validated bandwidth selector.

Index Terms

asymptotic normality, band-limited signals, non-band-limited signals, goodness of fit, oversampling, rate of convergence, signal
recovery, Whittaker-Shannon (WS) sampling theorem.

I. I NTRODUCTION

THE problem of reconstructing a nonparametric signalf from data which is corrupted by random noise, has been
investigated intensively in recent years both in statistics [10], [11] and [12] as well as in engineering [20], [29]. In

a number of applications in communication theory, the signal f is a function of timet and assumed to be in the class of
band-limited signals, i.e. signals for which the Fourier transform has compact support. Throughout the following we define
the Fourier transform of a signalf ∈ L2(R) asF = F(f)(ω) =

∫

R
f(t)e−itω dt, and writef ∈ BL(Ω̃) if the support of the

Fourier transform off is contained in[−Ω̃, Ω̃]. From the Paley-Wiener theorem, band-limited signals extend to entire functions
on the complex plain, and thus can never have compact support. It is well-known that they can be recovered from a countable
number of samples, i.e. iff ∈ BL(Ω̃) andτ ≤ π/Ω̃, then

f(t) =
∑

k∈Z

f(τk) sinc
(

π/τ (t − τk)
)

. (1)

Here sinc(x) = sin(x)/x, and sinc(0) = 1. The expansion (1) is called the Whittaker-Shannon (WS) sampling theorem or
simply the cardinal expansion off ; convergence in (1) is uniform on bounded intervals. We refer to [4], [16], [23], [24], [37]
for further information on the WS sampling theorem.

The aim of this paper is twofold. First, we derive the distributional limit of the integrated square error of an estimatorof
f , which was introduced by Pawlak & Stadtmüller [29] and second this will be used to check parametric assumptions onf .
Examples include exponentially damped sinusoid models as they occur in acoustics [17] or sinusoidal models as they occur in
system identification problems [35]. The simplest case is totest whether there is a signal at all, i.e.f ≡ 0 (see [32]). Following
[29] we introduce the model

yk = f(τk) + εk, k ∈ Z, τ > 0, (2)

where we observe a finite number ofyk; |k| ≤ n. Here (εk)k∈Z is an independent identically distributed noise process with
Eεk = 0, Eε4k < ∞. We setσ2 = Eε2k. If the signalf is band-limited withf ∈ BL(Ω̃) and if τ ≤ π/Ω̃, a first natural
possibility for estimatingf , based on the cardinal expansion, is given as

f̃n(t) =
∑

|k|≤n

yk sinc
(

π/τ (t − τk)
)

.

Although this estimator is evidently asymptotically unbiased, its asymptotic variance is equal to that of the originalobservation
since it interpolates noise, see [23] or [31]. In order to obtain a consistent estimator, the method of oversampling can be used.
Recall that the cardinal series expansion with oversampling is given by

f(t) = τ
∑

k∈Z

f(τk)
sin

(

Ω(t − τk)
)

π(t − τk)
, Ω ≥ Ω̃, τ ≤ π/Ω, (3)
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where Ωτ/π corresponds to the sampling rate. Convergence in (3) is again uniform on bounded intervals. Based on the
expansion (3), the estimator off(t) is given by

f̂n(t) = τ
∑

|k|≤n

yk

sin
(

Ω(t − τk)
)

π(t − τk)
, τ ≤ π/Ω, (4)

cf. [23], [29], [30] and [31]. It can be shown for band-limited signalsf(t) that f̂n(t) is pointwise consistent ifτ → 0 and
nτ → ∞, i.e. f̂n(t) → f(t). Moreover, under certain assumptions on the tail behavior of f , estimates on the mean integrated
square error (MISE)

MISE(f̂n) = E

∫

R

(

f̂n(t) − f(t)
)2

dt.

are derived in [28], [30]. It has been further shown there that for band-limited signals in model (2), the rate of decay of the
MISE of the estimator̂fn is reasonably fast.

In this paper the distributional limit of the integrated square error (ISE) of the estimator̂fn,

ISE(f̂n) =

∫

R

(

f̂n(t) − f(t)
)2

dt

is investigated. This is a classical theme in the statistical literature, because the asymptotics of the ISE yields information
on the variability of cross-validation when used as an automatic selector of the smoothing parameterτ . In fact, asymptotic
normality of the ISE was first obtained for kernel density estimators (see [2], [13]) and for kernel regression estimators in
a random design ([14], [22]). For a regression model on a compact interval with fixed design, asymptotic normality of the
ISE was proved in [19] by arguing via a central limit theorem for martingales. However, all these results cannot be applied
to the model (2). First, in regression models theory for an unbounded time domain has not been developed, and second, the
sinc kernelK(t) = sin(t)/(πt) is not integrable. In fact, we show that asymptotic normality of the ISE for f̂n in the signal
recovery model (2) can be obtained more easily and directly via central limit theorems for quadratic forms, cf. [6], [25].
Many of our computations have to be performed in the frequency domain, which makes the analysis completely different from
computations in the time domain as they occur for estimatorsbased on kernels of finite order in nonparametric regression
models on a compact interval. Those are essentially based ona Taylor expansion of the ISE and estimation of the remainder
terms.
The paper is organized as follows. In Section 2 we establish asymptotic normality of the ISE of̂fn in case of band-limited signal
f(t) as well as for more general signals, which have Fourier transforms that satisfy certain tail conditions. In Section 3 we
develop statistical tests for checking whether a band-limited signalf in (2) belongs to a given parametric finite-dimensional
sub-model. These tests are based on theL2-distance between the estimator and the parametric sub-model. The asymptotic
distribution of the test statistic is derived under both thenull hypothesis of the validity of the parametric sub-modeland under
fixed alternatives. This will be used to construct a test whetherf follows a specific parametric form, similarly as in [7], [8] and
[15]. In Section 4 we give a corresponding result in the context of regression on a compact interval. To this end asymptotics
of the ISE for the kernel regression estimator with the well-known sinc kernel for time-limited signalsf(t) is exploited. It
is shown that the proposed method outperforms common estimators with compactly supported kernels with respect to the
asymptotic relative efficiency ARE. A simulation study which investigates the finite sample behavior of the proposed tests is
presented in Section 5.
To conclude the introduction, let us point out that the estimator (4) can also be regarded as a spectral cut-off estimatorin the
direct regression model (2) (see [34]). Hence this example serves as a prototype of the asymptotics of the ISE for spectral
cut-off estimators, which naturally occur in inverse regression problems.
All proofs are deferred to an Appendix.

II. A SYMPTOTIC NORMALITY OF THE ISE

Throughout this section we assume that observations from the model (2) are available. Straightforward computation yields

ISE(f̂n) − MISE(f̂n) =

∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt

−E

∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt

+2

∫

R

(

f̂n(t) − Ef̂n(t)
) (

Ef̂n(t) − f(t)
)

dt. (5)

First let us consider the quadratic term in (5). It turns out that it is in fact independent of the signalf .
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Proposition 1: For anyf ∈ L2(R) of finite energy in model (2) we have that
∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt =
τ2 Ω

π

∑

|j|,|k|≤n

εj εk sinc
(

Ωτ(j − k)
)

. (6)

If Ωτ → 0, τ3Ω3n → 0 and log(n)/n = o(Ωτ) in (4), then

Var
[

∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt
]

=
4σ4

π
τ3Ωn (1 + o(1)).

As for the linear term in (5), since it contains the biasEf̂n(t) − f(t) as a factor, it should be asymptotically negligible as
compared with the quadratic term. In order to estimate the bias we need the following tail behavior of the signalf .

There existc, r > 0 such that|f(t)| ≤ c |t|−(r+1), t ∈ R. (7)

This tail behavior is implied by certain smoothness assumptions on the Fourier transformF of f , see [30]. Note that, by
assumption (7),f ∈ L1. Now let us describe the asymptotic distribution of the ISE.First we consider the case of a band-
limited signal.
Theorem 1: Suppose thatf ∈ BL(Ω̃) satisfies (7) with somer > 1/2. If Ω ≥ Ω̃ and if τ2n → 0 andn2rτ2r+1 → ∞, then

1√
τ3n

(

ISE(f̂n) − MISE(f̂n)
)

L→ N(0, 4σ4Ω/π),

whereN(µ, σ2) denotes the normal law with meanµ and varianceσ2.
Remark 1: In [30] it is shown that forτ = an−(2r+1)/(2r+2)), the optimal rate

MISE(f̂n) = O(n−r/(r+1)) (8)

is obtained. However, the assumptions of Theorem 1 are not satisfied for theseτ . This phenomenon, frequently observed in
nonparametric regression, is due to the fact that for the optimal rate for the MISE, the integrated bias and the integrated
variance have to decay equally fast. However, for the linearterm in (5) to be asymptotically negligible as compared withthe
quadratic term, we need that the integrated bias decays at a faster rate than the integrated variance. In our situation, choosing
τ = an−(2r+1)/(2r+3), the conditions of Theorem 1 are satisfied and from the estimates in [30], we obtain the rate

MISE(f̂n) = O
(

n−(r−1/2)/(r+3/2)
)

.

For larger this is close to (8).
Now let us consider non-band-limited signals. Following the method proposed in [28], [30], we letΩ → ∞ for the estimator
in (4), and impose additional assumptions on the tail behavior of the Fourier transform off :

The Fourier transformF of f satisfies

|F (ω)| ≤ d |ω|−(α+1/2), |ω| ≥ 1, α > 1. (9)

Then we can state the following theorem.
Theorem 2: Suppose thatf ∈ L2(R) satisfies (7) and (9) withr > 1/2, α > 1 and (2r − 1)(2α − 1) > 2. If τ → 0,
Ω2ατ → ∞, τ2nΩ → 0, τ3Ω3n → 0 andn2rτ2r+1/Ω → ∞, then

1√
τ3nΩ

(

ISE(f̂n) − MISE(f̂n)
)

L→ N(0, 4σ4/π).

Notice that Theorem 1 could be interpreted as limit version of Theorem 2 for whichα = ∞ andΩ is constant.

III. T ESTING FOR A PARAMETRIC FORM OF A BAND-LIMITED SIGNAL

In this section we develop a consistent test for a parametrichypothesis in form of a modelU in the signal recovery model
(2). Applications of estimators to reconstruct bandlimited signals include, among many other applications in signal and image
processing, channel estimation and equalization in wireless communications [33],[36]. To keep the presentation concise, in the
following we will assume thatU is a linear model, i.e.U = span{g1, . . . , gm} for some basis functionsgl, l = 1, . . . ,m.
Nonlinear models can be treated similarly, see [26]. As a test statistic we will use the (squared)L2-distance of the estimator
f̂n from the parametric sub-model.
L2-based methods for model tests in regression have been frequently employed in the statistics literature. In a random design
regression model, the (weighted)L2-distance of a nonparametric kernel estimator of the signaland a smoothed version of a
parametric estimate was used in [15] to test the validity of aparametric model. Also in a random design, the (weighted)L2-
norm of the signal and its derivatives was estimated in [18] by integrating the corresponding coefficients of a local polynomial
estimator. In case of a regression model with fixed design on acompact interval, a test statistic can be based on the difference
of a nonparametric kernel-based estimator and a parametricestimator for the variance (cf. [7], where the asymptotic distribution
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of the test statistic under both the hypothesis of a linear model and under fixed alternatives is derived). Typically in this context
it is assumed that the signal is sufficiently smooth, i.e. it hasr continuous derivatives for somer ≥ 1.
In this section we obtain an analogous result in the signal recovery model (2) on the whole real line under stronger smoothness
assumptions. In fact, we restrict ourselves to band-limited signals, and our arguments are based extensively on the cardinal
series expansion with oversampling (3). In the general case, the error in the expansion (3) has to be estimated. For simplicity
we start by considering a simple hypothesisH : f = f0. By centering the datay′

j = yj − f0(τj) we may assume thatf0 = 0.
In this case our test statistic is

M̂2
n =

∫

R

(

f̂n(t)
)2

dt =
τ2Ω

π

∑

|j|,|k|≤n

yjyk sinc
(

Ωτ(j − k)
)

. (10)

Observe thatM̂2
n can be evaluated directly using (6) without performing a numerical integration. The next theorem gives the

asymptotic behavior ofM̂2
n.

Theorem 3: Under the hypothesisf = 0, if τ3n → 0 and log2(n)/n = o(τ), then

1√
τ3n

(

M̂2
n − Ωτ2σ2π−1 (2n + 1)

) L→ N(0, 4σ4Ω/π). (11)

Under the alternativef 6= 0, suppose thatf ∈ BL(Ω̃) satisfies (7) withr > 1. If Ω ≥ Ω̃, nτ3/2 → 0 and n2rτ2r+1 → ∞,
then

τ−1/2
(

M̂2
n − ‖f‖2

) L→ N(0, 4σ2‖f‖2),

where‖ · ‖ denotes theL2(R)-norm.
Remark 2: Note that different rates appear under the hypothesis and under alternatives in Theorem 3, respectively. A similar
phenomenon was observed in [7] in the context of nonparametric regression on a compact interval. In that model, the non-
parametric ratenh occurs under the hypothesis, whereh is a bandwidth that satisfiesh2n → ∞, and the parametric raten1/2

under a fixed alternative. Further, in Theorem 3 under an alternative, we get the same rate as was obtained in [31] in a CLT
for the pointwise error. Thus in our model theτ1/2 rate corresponds to the parametric raten−1/2 in [7].
Remark 3: In general, the varianceσ2 will be unknown and thus has to be estimated (cf. Theorem 3). To this end the following
simple difference-based estimator can be used (for a detailed discussion of such estimators on a compact interval and their
MSE-properties cf. [9])

σ̂2 =
1

4n − 2

n
∑

j=−n+1

(yj − yj−1)
2. (12)

It can be shown that in model (2),
Eσ̂2 = σ2 + O(τ/n), Var(σ̂2) = O(1/n). (13)

Observe that (13) implies that̂σ2 = σ2 + OP (n−1/2). Therefore Theorems 3 and 4 remains true if we replaceσ2 by σ̂2 in
(11).
If we wish to test whether the signalf in model (2) lies in some finite dimensional subspaceU of BL(Ω̃), following the
method proposed in [8] we can use the test statistic

M̂2
n = inf

g∈U
‖f̂n − g‖2.

Choosing any orthonormal basis{g1, . . . , gm} of U , this can be expressed as

M̂2
n = ‖f̂n‖2 −

m
∑

l=1

| < f̂n, gl > |2

=
τ2Ω

π

∑

|j|,|k|≤n

yjyk sinc
(

Ωτ(j − k)
)

−
m

∑

l=1

(

τ
∑

|k|≤n

ykgl(τk)
)2

.

Notice thatM̂n can still be evaluated directly without numerical integration. Let M2 = infg∈U ‖f − g‖2.
Theorem 4: Let U be a finite dimensional subspace of BL(Ω̃) such that everyg ∈ U satisfies (7) withr > 1. If in model (2),
f ∈ BL(Ω̃) also satisfies (7) withr > 1 andnτ3/2 → 0 andn2rτ2r+1 → ∞, thenM̂2

n is asymptotically unbiased forM2 and

1√
τ3n

(

M̂2
n − Ωτ2σ2π−1(2n + 1)

) L→ N(0, 4σ4Ω/π) (14)
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if M2 = 0, and
1√
τ

(

M̂2
n − M2

) L→ N(0, 4σ2M2), (15)

if M2 > 0.
The proof is a rather straightforward extension of the proofof Theorem 3 and will be omitted.
Remark 4: The limit distribution (14) under the hypothesis allows nowto check the modelU by means of testing the hypothesis

H0 : f ∈ U versus K0 : f 6∈ U (16)

at a controlled error rateα before analyzing the data via the modelU . To this endσ̂2 in (12) has to be used as an estimator
for σ2 in (14) andH is rejected if

1√
τ3n

(

M̂2
n − Ωτ2σ̂2π−1(2n + 1)

)

2σ̂2
√

Ω/π
> U1−α,

whereU1−α denotes the upper1 − α quantile of the standard normal distribution. Note, that this yields a consistent test by
(13).
Finally, the asymptotic normality in (15) can be used for twodifferent purposes, testing hypotheses of the type

H∆ : M > ∆ versus K∆ : M ≤ ∆,

and the construction of confidence intervals forM . We will not pursue this issue further and refer to [8].

IV. T ESTS FOR TIME-LIMITED SIGNALS

In this section we extend our method to testing assumptions on time-limited signals, as they appear e.g. in the detection
of acoustically evoked potentials by EEG measurements [?]. This is the classical context of non-parametric regression on a
compact interval. Suppose that the signalf(t) has supportsupp(f) ⊂ [−1, 1]. Assume now that noisy data of the following
form are available

yk = f (k/n) + εk, |k| ≤ n. (17)

In this situation we can use the estimator (4) withτ = 1/n. Notice that except for the normalization, this estimator corresponds
to a kernel regression estimator with kernelK(x) = sin(x)/(πx) and inverse bandwidthΩ. This kernelK is sometimes referred
to as the sinc-kernel. Note that, in contrast to the setting in Section 3, the signal cannot be band-limited, except iff = 0 (see
[23],[37]). In the following we obtain similar results for time-limited signals as in Sections 2 and 3 for the band-limited case.
However, additional significant technical difficulties occur, which are due to the fact that the integrals involved are no longer
taken over the whole real line. Thus the Fourier isometry cannot be applied to integrals over sinc and indicator functions,
as in Sections II and III. This complicates proofs significantly and we will only sketch the main steps in the Appendix. A
comprehensive proof can be found in [3]. The next theorem gives uniform pointwise convergence of the mean square error
(MSE) of the estimator.
Theorem 5: Suppose that in model (17), the signalf satisfies (9) withα > 3

2 . If Ω = o(n2/3) for n, Ω → ∞, then uniformly
on [−1, 1],

E

[

(

f̂n,Ω(t) − f(t)
)2

]

=O(Ω−2α+1) + O(Ω3/n2) + O(Ω/n),

where

f̂n,Ω(t) =
1

n

∑

|k|≤n

yk
sin(Ω(t − k/n))

π(t − k/n)
.

Remark 5: Assumption (9) on the tails of the Fourier transform ofF implies continuity off on the whole real line, in particular
we havef(1) = f(−1) = 0. This allows to show uniform convergence of our estimator on[−1, 1]. Without such a condition
kernel regression estimators without boundary correctionconverge tof(x)/2 at the boundary points, and not to the signal [10].
Remark 6: The sinc-kernel estimator achieves asymptotic (rate) optimality. This can be seen as follows. Letf be anL1-
function which satisfies (9) forα = m + 1/2, m ≥ 2 an integer. Then, according to Theorem 5, the pointwise MSE of the
sinc-kernel estimator isO

(

n−2m/(2m+1)
)

. The class of signals for which (9) holds withα = m + 1/2 (see [5]) is closely
related to the classCm defined in [12] if some additional regularity assumptions onthe mth derivative off are made. For the
classCm the rate of convergence of the linear minimax risk is known tobe n−2m/(2m+1) ([12], pp. 84–88).
The next result describes the asymptotic distribution of the ISE for kernel regression with thesinc-kernel for time-limited
signals, in an analogous way to Theorem 3. Consider the statistic

M̃2
n =

∫ 1

−1

(

f̂n(t)
)2

dt = Y T ÃY,



TESTING PARAMETRIC ASSUMPTIONS ON BAND- OR TIME-LIMITED SIGNALS UNDER NOISE 6

whereY = (y−n, . . . , yn)T and
Ã = (ãj,k)|j|,|k|≤n,

ãj,k =
( Ω

nπ

)2
∫ 1

−1

sinc
(

Ω
(

t − j

n

)

)

sinc
(

Ω
(

t − k

n

)

)

dt.

Theorem 6: Under the hypothesisf = 0, if log(n)/
√

Ω → 0, andΩ3/2/n → 0 asn, Ω → ∞, then

nΩ−1/2
(

M̃2
n − 2Ωσ2/(πn)

)

L→ N(0, 4σ4/π). (18)

Under the alternative, suppose thatf 6= 0 satisfies (9) withα > 3
2 . If ln(n)/

√
Ω → 0, Ω2/n → 0 and Ω−2α

√
n → 0 as

n, Ω → ∞, then √
n

(

M̃2
n − ‖f‖2

L2[−1,1]

)

L→ N(0, 4σ2‖f‖2
L2[−1,1]).

Remark 7: The potential power of our test based on the statisticM̃2
n with the Fourier estimate kernel, is indicated by the

consideration of local alternatives. To this end consider the caseH : f ≡ 0. Similar as in [7] we obtain for the limiting variance
under local alternatives of the typefn = (

√
Ω/n)g the value4σ4/π as in (18). The result in [7] closely resembles (18), if

the smoothing parameter of the nonparametric estimator in [7] is replaced by the multiplicative inverse of our smoothing
parameterΩ. However, the regression model in [7] isyj,n = y(tj,n) = m(tj,n) + εj,n, j = 1, . . . , n for design points
t1,n, . . . , tn,n ∈ [0, 1]. This differs slightly from our setting, both in the number of design points (n instead2n + 1) and the
size of the support of the design density ([0, 1] instead of[−1, 1]). A close inspection of our proofs shows that if our regression
model is changed inton equally spaced observations on[0, 1], the variance of (18) becomesµ2

0 := 2σ4/π ≈ 0.64σ4.
The asymptotic varianceµ2

0 in [7] (eq. (2.13)) depends on the kernel used for the nonparametric variance estimator. In the
numerical simulations in [7] the Epanechnikov kernel is used. For this kernelµ2

0 ≈ 1.70σ4. Furthermore, for the Gauß kernel
µ2

0 ≈ 0.81σ4, and for the sinc kernel as discussed in this paperµ2
0 = 2σ4/π, thus the variance for our test based on the sinc

kernel is formally recovered by eq. (2.13) in [7]. However note that for the Gauß kernel and the sinc kernel the assumptionof
a compactly supported kernel does not hold, so the results in[7] cannot be applied to these kernels. Hence our result extends
the theory by sampling-based methods to the sinc kernel which outperforms tests based on the kernels mentioned above. In
particular, the asymptotic relative efficiency of the test based on the sinc kernel is≈ 2.67 as compared to the test based on
the Epanechnikov kernel, and≈ 1.27 if the Gauß kernel is used. Note, that asymptotically this corresponds to the ratio of
sample sizes required to achieve the same power, i.e. use of the sinc kernel reduces the required sample size compared to the
Epanechnikov kernel by a relative amount of≈ 2.67 and to the Gauß kernel by≈ 1.27, respectively.

V. SIMULATION RESULTS

In this section we investigate the finite-sample behavior ofthe tests presented in Section III, which are based on asymptotic
theory. In Section V-A we comment on the selection of the parametersΩ, τ which occur in the estimator̂fn. Furthermore,
in Section V-B we present simulations of the distribution ofM̂2

n for finite sample size, both under the hypothesisf = 0 and
under the alternative of a particular non-zero band-limited signal.

A. Choosing the parameters

In order to compute the estimator̂fn, the parametersτ andΩ have to be chosen. These need to be fixed prior to application
of the estimator to a given set of observations. In this section we consider noisy data of the form (2), where the signalf is
the band-limited function

f1(t) = (sinc Ωf t)
4 ∈ BL(4Ωf ), whereΩf = 0.1,

and determine suitable values forτ andΩ. As sample size we considerNsample = 2n + 1 = 201 and2001, and the errorsεk

are taken as i.i.d. normally distributed with zero mean and varianceσ2 = 0.01.
Firstly, we choseΩ = 0.4, which is the smallest value such thatf1 ∈ BL(Ω). Now let us consider how to chooseτ , which
depends onn. The left plot in Fig. 1 presents the simulated MISE for estimation of f1(t) from 20 sets of artificial data with
n = 100 for a range of different values ofτ . We chooseτ0 = 0.2, subsequently writingτ0 for the value ofτ for samples
with n = 100. The very good quality of recovery of the signalf1 in these simulations is shown in the right plot of Fig. 1,
where typical estimateŝf based onτ0 = 0.1 for n = 100 and n = 1000 are shown. Sinceτ depends onn we scaleτ0 for
simulations withn 6= 100 asτ(n) = τ0 · (100/n)4/5, in accordance with the conditions in Theorems 2 and 3.
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Fig. 1. Left: Logarithm of the simulated MISE between true signal and estimated signal versusτ0. Right: Test signal (solid curve) versus estimator based
on n = 100 (dotted curve) andn = 1000 (dashed curve). The dots show the set of artificial data withn = 1000. Note that all three curves are visually
indistinguishable.
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Fig. 2. (Theoretical) asymptotic normal density ofM̂2
n (solid curve) versus simulated density for sample sizen = 100 (dashed curve) andn = 1000 (dotted

curve). The left plot shows the distribution under the hypothesisf = 0, the right plot under the alternative if the test signalf1 is present in the data.
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B. Finite sample behavior of M̂2
n

In this subsection simulations of the distribution ofM̂2
n for finite sample size are reported. Firstly we consider purenoise, i.e.

generated from the signalf = 0. In the left plot in Fig. 2 the theoretical asymptotic normaldistribution together with simulated
finite sample distributions ofM̂2

n for n = 100 (dashed curve)n = 1000 (dotted curve) is displayed. The approximation of
the asymptotic normal distribution is not too satisfactoryeven for the already rather large sample size (n=1000). Thisparallels
findings for related test statistics (see [8], [26]). Here bootstrap approximations or second order corrections can be used to
improve (see eg. [26]). Under the alternativef1, as shown in the right plot in Fig. 2, the approximation by thetheoretical
asymptotic distribution is rather accurate already at a moderate sample size (n = 100).

VI. CONCLUDING REMARKS

In this paper, tests for parametric assumptions on band-limited and time-limited signals which are observed under noise have
been constructed. As a test statistic theL2-distance of an estimator based on the WS sampling theorem with oversampling
to the parametric model is used. The asymptotic distribution of the test statistic is derived both under the hypothesis of the
validity of the parametric model and under fixed alternatives. This allows in particular to test whether the signalf is close in
the L2 distance to the parametric model, at a controlled error rate. The asymptotics are valid under certain ratesτ → 0 and
Ω → ∞, however, it is not immediately clear how to choose the parameters for some fixed sample size. In Section V some
suggestions are given, but it would be interesting to investigate fully data-driven methods like cross-validation. Simulations of
the finite sample behavior of the test indicate that while under the alternative, the approximation by the normal limit law is
rather accurate already for moderate sample sizes, this is not the case under the hypothesis. It would be of interest to improve
the approximation under the hypothesis by some resampling procedure.
There are several possible extensions of the methodology proposed in this paper. An important one is the comparison of signals
under various input conditions. In this case independentlyd different samples

ykj = fj(τk) + εkj , |k| ≤ n, j = 1, . . . , d

are observed and it is to be tested whetherf1 = . . . = fd. This can be based on the pairwise comparison between all samples
(cf. [27]). For d = 2, e.g., the observationsY1j − Y2j will simply be used in the statistiĉM2

n in (10).
For further investigations it might be of interest to weakenthe assumptions on the tail behavior of the signal. Based on this,
tests for signals which are neither band-limited nor time-limited could be constructed in a similar fashion. As an example
consider the problem to decide whether an exponentially damped sinusoidal model holds ([1], [21], or [35]), where

f(k) =

m
∑

l=1

αle
slk. (19)

Hereαl andsl are unknown (complex) numbers, such thatRe(sk) < 0. Note that this implies integrability of the signalsf(·).
Furtherm is assumed to be fixed. In our terminology this would be a parametric model with parametersαl, sl; the αl are
linear parameters, thesl nonlinear.
It would also be of interest to consider a more general dependent noise process. Finally, let us stress that all signals considered
in this paper are of finite energy (i.e. inL2(R)). However, several frequently encountered signals like cosine functions do not
satisfy this requirement, and a theory that covers such signals would be of much practical interest.

Acknowledgment. We would like to thank M. Pawlak and U. Stadtmüller for pointing out some helpful references.

APPENDIX

Recall that the Fourier transform of a signalf ∈ L2(R) is given byF = F(f)(ω) =
∫

R
f(t)e−itω dt, so that the inverse

transform is given byF−1(F )(t) = 1
2π

∫

R
F (ω)eitω dω. Hence the Fourier transform of the estimatorf̂n(t) in (4) is given by

F̂n(ω) = τ
∑

|k|≤n

yk 1[−Ω,Ω](ω)e−iωkτ . (20)

Proof of Proposition 1.From Parseval’s equation and (20),
∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt

=
1

2π

∫

R

∣

∣F̂n(ω) − EF̂n(ω)
∣

∣

2
dω =

1

2π
ZT

n AZn, (21)

where Zn = (ε−n, . . . , εn)T and A = (aj,k)|j|,|k|≤n, aj,k = 2 τ2 Ω sinc
(

Ωτ(j − k)
)

, |j|, |k| ≤ n, which proves (6). The
expectation of the quadratic form in (21) is given by

EZT
n AZn = τ2 σ2 2Ω (2n + 1), (22)
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and thus we can write

ZT
n AZn − EZT

n AZn

=
∑

|j|,|k|≤n

j 6=k

aj,kεjεk + 2Ω τ2
∑

|j|≤n

(ε2j − σ2) = T1 + T2.

Evidently
ET1 = ET2 = 0, Cov(T1, T2) = ET1T2 = 0

and
ET 2

2 = 4Ω2τ4(2n + 1)E(ε21 − σ2)2. (23)

Moreover,

ET 2
1 = 2σ4

∑

|j|,|k|≤n,j 6=k

a2
j,k

= 16σ4 τ4 Ω2
(

(2n + 1)
2n
∑

j=1

sinc2
(

Ωτj
)

−
2n
∑

j=1

j sinc2
(

Ωτj
)

)

. (24)

In order to compute the asymptotic variance ofT1, in a first step we replace the sums in (24) by integrals and in asecond
step we estimate the approximation error. For the first sum this gives

∫ 2n+1/2

1/2

sinc2
(

Ωτt
)

dt =
1

Ωτ

∫ (2n+1/2)Ωτ

Ωτ/2

sinc2(u) du. (25)

SinceΩτ → 0 andnΩτ → ∞,
∫ (2n+1/2)Ωτ

Ωτ/2

sinc2(u) du →
∫ ∞

0

sinc2(u) du = π/2. (26)

For the second sum we obtain
∫ 2n+1/2

1/2

t sinc2
(

Ωτt
)

dt

=
1

Ω2τ2

∫ (2n+1/2)Ωτ

Ωτ/2

u sinc2(u) du

= O
(

log(Ωτn)/(Ω2τ2)
)

. (27)

The approximation errors are estimated in Lemma 1. Collecting terms from (23) -(29) gives

V ar
(

ZT
n AZn

)

= 16σ4τ3Ω(2n + 1)
(

π/2 + o(1)

+O
(

log(Ωτn)/(Ωτn)
)

+O
(

(nτ3Ω3)1/2
)

+ O
(

log n/(Ωτn)
)

)

.

Taking into account the factor in (21) yields the proposition.
The following lemma provides the missing estimates of the approximation errors used in the above proof.
Lemma 1: We have

∣

∣

∣

2n
∑

k=1

sinc2
(

Ωτk
)

−
∫ 2n+1/2

1/2

sinc2
(

Ωτt
)

dt
∣

∣

∣
= O

(

(nτΩ)1/2
)

(28)

and
∣

∣

∣

2n
∑

k=1

k sinc2
(

Ωτk
)

−
∫ 2n+1/2

1/2

t sinc2
(

Ωτt
)

dt
∣

∣

∣

= O
(

log(n)/(Ω2τ2)
)

. (29)
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Proof. For η > 0, we apply Lemma 4 in [31] to the functionf(t) = sinc
(

η(t + n)
)

∈ BL(η) with τ = 1 and obtain

2n
∑

k=1

∫ k+1/2

k−1/2

(

sinc
(

ηt
)

− sinc
(

ηk
)

)2

dt

≤ η2

∫

R

sinc2(ηt) dt/π2 = η/π. (30)

Thus
∣

∣

∣

2n
∑

k=1

sinc2
(

Ωτk
)

−
∫ 2n+1/2

1/2

sinc2
(

Ωτt
)

dt
∣

∣

∣

≤
2n
∑

k=1

∫ k+1/2

k−1/2

r(Ω, τ, t, k)
∣

∣sinc
(

Ωτt
)

+ sinc
(

Ωτk
)
∣

∣ dt

≤ 2 sup
x∈R

|sinc(x)|
√

2n
(

2n
∑

k=1

∫ k+1/2

k−1/2

r(Ω, τ, t, k)2 dt
)1/2

= O
(

(nτΩ)1/2
)

,

wherer(Ω, τ, t, k) =
∣

∣sinc
(

Ωτt
)

− sinc
(

Ωτk
)
∣

∣ and we used (30) in the last step withη = Ωτ . Moreover,

∣

∣

∣

2n
∑

k=1

k sinc2
(

Ωτk
)

−
∫ 2n+1/2

1/2

t sinc2
(

Ωτt
)

dt
∣

∣

∣

≤
2n
∑

k=1

∫ k+1/2

k−1/2

∣

∣t sinc2
(

Ωτt
)

− k sinc2
(

Ωτk
)∣

∣ dt

≤ 1

Ω2τ2

2n
∑

k=1

∫ k+1/2

k−1/2

[(

∣

∣

sin2
(

Ωτt
)

t
− sin2

(

Ωτt
)

k

∣

∣

)

+
(

∣

∣

sin2
(

Ωτt
)

k
− sin2

(

Ωτk
)

k

∣

∣

)]

dt

=
1

Ω2τ2

(

O(1) + O(log(n))
)

.

In the next lemma we estimate the linear part in (5).
Lemma 2: In the band-limited case, suppose thatf ∈ BL(Ω̃) satisfies (7) for somer > 1/2. If Ω ≥ Ω̃ in the estimator (4)
and if τ2n → 0 andn2rτ2r+1 → ∞, then

∫

R

(

f̂n(t) − Ef̂n(t)
) (

Ef̂n(t) − f(t)
)

dt = oP

(

(τ3n)1/2
)

.

In the non band-limited case, suppose thatf ∈ L2(R) satisfies (7) and (9) withr > 1/2 andα > 1. If τ → 0, Ω2ατ → ∞,
τ2nΩ → 0, τ4Ω5n → 0 andn2rτ2r+1/Ω → ∞, then

∫

R

(

f̂n(t) − Ef̂n(t)
) (

Ef̂n(t) − f(t)
)

dt = oP

(

(τ3Ωn)1/2
)

.

Proof. From the Cauchy-Schwarz inequality,
∣

∣

∣

∫

R

(

f̂n(t) − Ef̂n(t)
) (

Ef̂n(t) − f(t)
)

dt
∣

∣

∣

≤
(

V (f̂n)
)1/2(

IBIAS(f̂n)
)

,

whereV (f̂n) =
∫

R

(

f̂n(t) − Ef̂n(t)
)2

dt, and
[

IBIAS(f̂n)
]2

=
∫

R

(

Ef̂n(t) − f(t)
)2

dt. From (22),

V (f̂n) = OP (τ2nΩ).

Furthermore, from the estimates of the integrated bias in [30] (Theorem 2 for the band-limited and Theorem 3 for the non
band-limited case) we get

[

IBIAS(f̂n)
]2

= o (τ) .
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Proofs of Theorems 1 and 2. From Lemma 2, it follows that the linear part in (5) is
oP

(

(τ3Ωn)1/2
)

. Furthermore, from (23) the diagonal partT2 of the quadratic form in (23) isOP

(

(τ4Ω2n)1/2
)

= oP

(

(τ3Ωn)1/2
)

as well. Moreover, in both cases from the assumptions, it follows that log2(n)/n = o(τ), and Proposition 1 applies. Thus it
remains to prove asymptotic normality ofT1. To this end we apply Theorem 5.2 in [6]. By a straightforwardcalculation,

1

τ3nΩ
max
|j|≤n

∑

|k|≤n,k 6=j

a2
j,k = O(1/n), (31)

therefore Assumptions 1) and 2) of Theorem 5.2 in [6] are satisfied withK(n) = τ−1/4. Next we use the fact that the spectral
radiusρ(A) of a symmetric matrixA is bounded from above by any matrix operator norm. Therefore

1√
τ3nΩ

ρ(A) ≤ 1√
τ3nΩ

max
|j|≤n

∑

|k|≤n,k 6=j

|aj,k|

= O
(

log(n)/(nτ)1/2
)

= o(1), (32)

which yields Assumption 3) in [6]. This concludes the proof of Theorems 1 and 2.
Proof of Theorem 3.Notice that forf = 0, the estimatorf̂n is unbiased. The assumptions of Proposition 1 are satisfied,
moreover both terms in (31) and (32) tend to zero, and Theorem5.2 in [6] applies again. Now let us consider the case
off 6= 0. Similarly as in the proof of Proposition 1,

∫

R

(

f̂n(t)
)2

dt =
1

2π
Y T

n AYn, (33)

whereA is as before andYn = (y−n, . . . , yn)T . We have

EY T
n AYn = 2Ωτ2σ2(2n + 1) (34)

+ 2Ωτ2
∑

|j|,|k|≤n

f(τj)f(τk) sinc
(

Ωτ(j − k)
)

.

From the sampling theorem (3) and the tail behavior off , we get uniformly in|j| ≤ n,
∣

∣

∣
τ

∑

|k|≤n

f(τk)
sin

(

Ωτ(j − k)
)

τ(j − k)
− πf(τj)

∣

∣

∣

=
∣

∣

∣
τ

∑

|k|>n

f(τk)
sin

(

Ωτ(j − k)
)

τ(j − k)

∣

∣

∣

≤ Ωτ
∑

|k|>n

|f(τk)| = O
(

(nτ)−r
)

. (35)

Therefore

2τ2
∑

|j|,|k|≤n

f(τj)f(τk)
sin

(

Ωτ(j − k)
)

τ(j − k)

= 2τ
∑

|j|≤n

f(τj)
(

πf(τj) + O
(

(nτ)−r
)

)

= 2τπ
∑

|j|≤n

f(τj)2 + O
(

(nτ)−r
)

= 2π‖f‖2 + O(
√

τ3n) + O
(

(nτ)−r
)

, (36)

where we used Lemma 4 in [30] in the last step. Next, we decompose the quadratic form into

Y T
n AYn − EY T

n AYn

=
∑

|j|,|k|≤n,j 6=k

aj,k

(

yjyk − f(τj)f(τk)
)

+ 2Ω τ2
∑

|j|≤n

(

y2
j − σ2 − f(τj)2

)

= T1 + T2.

From (23),T2 = OP (τ2
√

n). Setting fn = (f(−τn), . . . , f(τn))T , Zn = Yn − fn and B = (bj,k)|j|,|k|≤n with bj,k =
aj,k(1 − δj,k), whereδj,k denotes the Kronecker symbol, we decomposeT1 as follows

T1 = ZT
n BZn + 2ZT

n Bfn = T1,1 + 2T1,2. (37)
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Evidently,
ET1,1 = ET1,2 = Cov(T1,1, T1,2) = 0.

From Proposition 1,T1,1 = OP

(

(τ3n)1/2
)

. We have

T1,2 =
∑

|j|≤n

εj

∑

|k|≤n,j 6=k

aj,kf(τk).

Using (35) once again we get

V ar(T1,2) =
∑

|j|≤n

σ2
(

∑

|k|≤n,j 6=k

aj,kf(τk)
)2

= 4σ2τ2
∑

|j|≤n

(

f(τj)π + O
(

(nτ)−r
)

)2

= 4σ2π2τ‖f‖2 + o(τ)

+O
(

n−rτ1−r
)

+ O
(

n1−2rτ2−2r
)

= 4σ2π2τ‖f‖2
(

1 + o(1)
)

.

From (33), (34), (36) and the above estimates onT2 andT1,1,

M̂2
n = O(τ2n) + ‖f‖2 + o(τ) + O

(

(nτ)−r
)

+ OP (τ2
√

n) + OP (
√

τ3n) + π−1T1,2,

therefore it will suffice to show asymptotic normality ofT1,2/
√

τ . To this end we apply Lyapounov’s theorem. From (35)
together with a straightforward calculation

1

V ar(T1,2)2

∑

|j|≤n

E(εj)
4
(

∑

|k|≤n,j 6=k

aj,kf(τk)
)4

≤ C

τ2

∑

|j|≤n

τ4
(

f(τj)π + O
(

(nτ)−r
)

)4

→ 0.

Remark 8: Note that under the hypothesis the termT1,2 in (37) vanishes. Thus the quadratic termT1,1 determines the
asymptotics and a result like Theorem 5.2 in [6] for random quadratic forms has to be applied. However, under the alternative
the linear termT1,2 dominates the asymptotics. Therefore it is no longer possible to use the above mentioned result, instead
one simply applies Lyapunov’s CLT.
Proof of Theorem 5.The proof follows mostly along the lines of the proof of Theorem 1 in [31], which deals with the band-
limited case. Their estimates are based on a lemma (Lemma 4) which only applies to band-limited signals, and which therefore
cannot be used in our setting. Instead we invoke Lemma 3 in [30]. However, the details are rather cumbersome and can be
found in [3].
Proof of Theorem 6.
The expectation ofM̃2

n is given by
EM̃2

n =
∑

|j|,|k|≤n

ãj,kf(tj)f(tk) + σ2tr(Ã)

Tedious but straightforward computations yield that

tr(Ã) = 2Ω/(πn) + o
(
√

Ω/n
)

and that
∑

|j|,|k|≤n

ãj,kf(tj)f(tk) = ‖f‖2
L2[−1,1] + o(n−1/2).

The variance of M̃2
n is computed as in the proofs of Proposition 1 and

Theorem 3. Iff = 0, the dominating term in the variance is2σ4
∑

|j|,|k|≤n,j 6=k a2
j,k, otherwise it is4σ2(Ãfn)T (Ãfn),

wherefn = (f(−1), f((−n + 1)/n), . . . , f(1))T .
Technical difficulties arise since the entries ofÃ can no longer be calculated explicitely by Fourier transformation, because
we integrate over a finite interval. Therefore we have to determine the asymptotic behavior of sumsΣ|k|,|l|≤n over the squares
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of integrals of type
∫ 1

−1

sinc(Ω(t − k

n
))sinc(Ω(t − l

n
))dt

=
1

Ω

∫ Ω

−Ω

sinc(t − Ωk

n
)sinc(t − Ωl

n
)dt

=
1

Ω

(
∫ ∞

−∞
sinc(t − Ωk

n
)sinc(t − Ωk

n
)dt

−
∫

|t|≥Ω

sinc(t − Ωk

n
)sinc(t − Ωl

n
)dt

)

=
1

Ω

(

sinc

(

Ω

n
(k + l)

)

+ cij

)

.

To this end we show that
∑

|k|,|l|≤n

sinc2

(

Ω

n
(k + l)

)

=
4n2

Ω
+ o

(

n2

Ω

)

and hence
∑

|k|,|l|≤n

c2
ij = O

(

n2/Ω
)

.

Thus the tails are negligible. Finally, asymptotic normality under the hypothesis follows again from Theorem 5.2 in [6], while
under the alternative the Lyapounov CLT is applied.
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