TESTING PARAMETRIC ASSUMPTIONS ON BAND- OR TIME-LIMITED SIGNALS UNER NOISE 1

Testing parametric assumptions on band- or
time-limited signals under noise
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Abstract

We consider the problem of testing parametric assumptions on si¢jriedsn which only noisy observationg, = f(7k) + ¢
are available, and where the signal is assumed to be either band-limitedeslirtiited. To this end the signal is reconstructed
by an estimator based on the Whittaker-Shannon sampling theorem witbaoygling. As test statistic the minimalk, distance
between the estimated signal and the parametric model is used. To cbgtpuopriate tests, the asymptotic distribution of the
test statistic is derived both under the hypothesis of the validity of the p&iiamedel and under fixed local alternatives. As a
byproduct we derive the asymptotic distribution of the integrated squaoe & the estimator, which is of interest by itself, e.g.
for the analysis of a cross validated bandwidth selector.

Index Terms

asymptotic normality, band-limited signals, non-band-limited signals, gesxdaf fit, oversampling, rate of convergence, signal
recovery, Whittaker-Shannon (WS) sampling theorem.

I. INTRODUCTION

HE problem of reconstructing a nonparametric sigfiafrom data which is corrupted by random noise, has been

investigated intensively in recent years both in statisfitO], [11] and [12] as well as in engineering [20], [29]. In
a number of applications in communication theory, the dighds a function of timet and assumed to be in the class of
band-limited signals, i.e. signals for which the Fouriemtn‘orm has compact support. Throughout the following winde
the Fourier transform of a signdl € LQ(]R) asF =F(f fR e~ dt, and write f € BL(Q) if the support of the
Fourier transform off is contained ir{—ﬂ Q] From the Paley W|ener theorem, band-limited signalsrekte entire functions
on the complex plain, and thus can never have compact suppisrtvell-known that they can be recovered from a countable
number of samples, i.e. if € BL(Q) andr < 7/, then

t) =" f(rk)sinc(n /7 (t — Tk)). )
kez
Here sin€x) = sin(z)/x, and sin€0) = 1. The expansion (1) is called the Whittaker-Shannon (WS) samheorem or
simply the cardinal expansion ¢f, convergence in (1) is uniform on bounded intervals. Werredg4], [16], [23], [24], [37]
for further information on the WS sampling theorem.

The aim of this paper is twofold. First, we derive the disitibnal limit of the integrated square error of an estimaibr
f, which was introduced by Pawlak & Stadiiter [29] and second this will be used to check parametrguamptions onf.
Examples include exponentially damped sinusoid modelf@s dccur in acoustics [17] or sinusoidal models as they roiccu
system identification problems [35]. The simplest case te$dwhether there is a signal at all, ife= 0 (see [32]). Following
[29] we introduce the model

yp = f(7k) + e, k€Z, T>0, (2)

where we observe a finite number g@f; |k| < n. Here (e;)rez is an independent identically distributed noise procesh wi
Ee, = 0, Ee} < oo. We seto? = Ee}. If the signal f is band-limited withf € BL(Q2) and if 7 < 7/9, a first natural
possibility for estimatingf, based on the cardinal expansion, is given as

Fut) =" yesind(r/7 (t - 7k)).
|k|<n

Although this estimator is evidently asymptotically urdsd, its asymptotic variance is equal to that of the origiteslervation
since it interpolates noise, see [23] or [31]. In order toagbt consistent estimator, the method of oversampling eanskd.
Recall that the cardinal series expansion with oversargp'ﬁrgiven by
sm Tk)) -
= — Q>Q, 7<7/Q 3
=T ;Z t _ Tk) ? — ) T — 71'/ ) ( )
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where Qr /7 corresponds to the sampling rate. Convergence in (3) isnagaiform on bounded intervals. Based on the
expansion (3), the estimator ¢{¢) is given by
5111 Qt — Tk‘))
=T g TS (@)

[k|<n

cf. [23], [29], [30] and [31]. It can be shown for band-limitesignals f(¢) that fn(t) is pointwise consistent if — 0 and
nt — 00, i.e. f,(t) — f(t). Moreover, under certain assumptions on the tail behavigf, @stimates on the mean integrated
square error (MISE)

MISE(f?L) = E/]R (fn(t) - f(t)>2 dt.

are derived in [28], [30]. It has been further shown there tha band-limited signals in model (2), the rate of decay fué t
MISE of the estimatorf,, is reasonably fast.

In this paper the distributional limit of the integrated acgi error (ISE) of the estimatdf,,

ISE(f,) = / (Fult) — £(1))? dt

is investigated. This is a classical theme in the statistiterature, because the asymptotics of the ISE yieldsrinadion

on the variability of cross-validation when used as an aatmrselector of the smoothing parameterin fact, asymptotic
normality of the ISE was first obtained for kernel densityireators (see [2], [13]) and for kernel regression estinsiar

a random design ([14], [22]). For a regression model on a emijmterval with fixed design, asymptotic normality of the
ISE was proved in [19] by arguing via a central limit theoreon fartingales. However, all these results cannot be applie
to the model (2). First, in regression models theory for abhoumded time domain has not been developed, and second, the
sinc kernel K (t) = sin(t)/(wt) is not integrable. In fact, we show that asymptotic norngadit the ISE for f,, in the signal
recovery model (2) can be obtained more easily and direddycentral limit theorems for quadratic forms, cf. [6], [25]
Many of our computations have to be performed in the frequeloenain, which makes the analysis completely differentrifro
computations in the time domain as they occur for estimabased on kernels of finite order in nonparametric regression
models on a compact interval. Those are essentially basedTaylor expansion of the ISE and estimation of the remainder
terms.

The paper is organized as follows. In Section 2 we estabsigmptotic normality of the ISE ofn in case of band-limited signal
f(t) as well as for more general signals, which have Fourier toams that satisfy certain tail conditions. In Section 3 we
develop statistical tests for checking whether a bandtdidhsignal f in (2) belongs to a given parametric finite-dimensional
sub-model. These tests are based on fthalistance between the estimator and the parametric sulelm®de asymptotic
distribution of the test statistic is derived under both tlodl hypothesis of the validity of the parametric sub-modetl under
fixed alternatives. This will be used to construct a test Wwaef follows a specific parametric form, similarly as in [7], [8jé&
[15]. In Section 4 we give a corresponding result in the cxnté regression on a compact interval. To this end asyngsoti
of the ISE for the kernel regression estimator with the walbwn sinc kernel for time-limited signalg(t) is exploited. It

is shown that the proposed method outperforms common dstimavith compactly supported kernels with respect to the
asymptotic relative efficiency ARE. A simulation study wihitvestigates the finite sample behavior of the proposead ies
presented in Section 5.

To conclude the introduction, let us point out that the eaton (4) can also be regarded as a spectral cut-off estinratibie
direct regression model (2) (see [34]). Hence this examelges as a prototype of the asymptotics of the ISE for sgectra
cut-off estimators, which naturally occur in inverse reggien problems.

All proofs are deferred to an Appendix.

Il. ASYMPTOTIC NORMALITY OF THEISE
Throughout this section we assume that observations frermthdel (2) are available. Straightforward computatiodgie

ISE(,) ~ MISE(F,) = [ (Fult) - EJ.(0)*

R

+2/]R (f”(t) - Efn(t)) (E]En(t) - f(t)) dt. (5)

First let us consider the quadratic term in (5). It turns datttit is in fact independent of the signAl
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Proposition 1: For any f € Lo(R) of finite energy in model (2) we have that

/R (fn(t) - Efn(t))Q dt = % Z €j €k SinC(QT(j — /41)) (6)

il [kI<n
If Qr — 0, 73Q3n — 0 andlog(n)/n = o(Qr) in (4), then

Var[/R (Fu(®) —Efn(t)fdt] - iﬁﬁm(uou)).

As for the linear term in (5), since it contains the biEg%(t) — f(t) as a factor, it should be asymptotically negligible as
compared with the quadratic term. In order to estimate ths hie need the following tail behavior of the sigrfal

There existc, > 0 such thatl f(t)| < c|t|~"*Y, teR. 7

This tail behavior is implied by certain smoothness assionpton the Fourier transform’ of f, see [30]. Note that, by
assumption (7),f € L;. Now let us describe the asymptotic distribution of the IFist we consider the case of a band-
limited signal.

Theorem 1: Suppose thaf € BL(Q) satisfies (7) with some > 1/2. If Q > Q and if 72n — 0 andn?" 72" ! — oo, then

1
VTin
where N (u, 0?) denotes the normal law with meanand variancer?.
Remark 1: In [30] it is shown that forr = an—("+1)/(27+2)) "the optimal rate
MISE(f,) = O(n~"/ 1) 8

is obtained. However, the assumptions of Theorem 1 are nisfied for theser. This phenomenon, frequently observed in
nonparametric regression, is due to the fact that for thénagpbtrate for the MISE, the integrated bias and the integrate
variance have to decay equally fast. However, for the litean in (5) to be asymptotically negligible as compared wtite
guadratic term, we need that the integrated bias decaysedter frate than the integrated variance. In our situatibopsing

7 = an~tD/(r+3)  the conditions of Theorem 1 are satisfied and from the estsnia [30], we obtain the rate

MISE(f,) = O(n=r=1/2/0+3/2))

(ISE(fn) - MISE(fn)) £ N(0, 40 /7),

For larger this is close to (8).
Now let us consider non-band-limited signals. Following thethod proposed in [28], [30], we |& — oo for the estimator
in (4), and impose additional assumptions on the tail beftasfi the Fourier transform of:

The Fourier transfornt” of f satisfies
|F(W)| < dw|~@F/2 0w >1, a>1. 9)
Then we can state the following theorem.

Theorem 2: Suppose thaff € L(R) satisfies (7) and (9) with- > 1/2, « > 1 and (2r — 1)(2a — 1) > 2. If 7 — 0,
0291 — 0o, 7202 — 0, 73030 — 0 andn?"72"+1/Q — oo, then

1
V13nQ

Notice that Theorem 1 could be interpreted as limit versibiiteeorem 2 for whicho = co and {2 is constant.

(ISE(fn) - MISE(fn)) £ N(0, 40 /7).

Ill. TESTING FOR A PARAMETRIC FORM OF A BANBLIMITED SIGNAL

In this section we develop a consistent test for a parambypothesis in form of a moddV in the signal recovery model
(2). Applications of estimators to reconstruct bandlimiségnals include, among many other applications in signdliemage
processing, channel estimation and equalization in weset®mmunications [33],[36]. To keep the presentation isenin the
following we will assume that/ is a linear model, i.eU = span{g,...,gmn} for some basis functiong,, I = 1,...,m.
Nonlinear models can be treated similarly, see [26]. As adtsgistic we will use the (squared),-distance of the estimator
fn from the parametric sub-model.

Ly-based methods for model tests in regression have beerefrdgemployed in the statistics literature. In a randomigtes
regression model, the (weighted}-distance of a nonparametric kernel estimator of the signdl a smoothed version of a
parametric estimate was used in [15] to test the validity peametric model. Also in a random design, the (weighted)
norm of the signal and its derivatives was estimated in [38ijnbegrating the corresponding coefficients of a local polwial
estimator. In case of a regression model with fixed design oongpact interval, a test statistic can be based on the eliféer
of a nonparametric kernel-based estimator and a paranestifoator for the variance (cf. [7], where the asymptotgtriiution
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of the test statistic under both the hypothesis of a lineadehand under fixed alternatives is derived). Typically iis tontext
it is assumed that the signal is sufficiently smooth, i.e.ais+ continuous derivatives for some> 1.
In this section we obtain an analogous result in the sigravwery model (2) on the whole real line under stronger smuegh
assumptions. In fact, we restrict ourselves to band-lidnggnals, and our arguments are based extensively on tdenahr
series expansion with oversampling (3). In the general,dageerror in the expansion (3) has to be estimated. For Eiitypl
we start by considering a simple hypothe&is f = fo. By centering the datg; = y; — fo(7j) we may assume tha = 0.
In this case our test statistic is

N A 2 20 .

N2 — / (Fu®)?dt = T2 S yesindQr( — k). (10)

R ™

l7l; |kl <n

Observe that\/2 can be evaluated directly using (6) without performing a atoal integration. The next theorem gives the
asymptotic behavior ofi/2.
Theorem 3: Under the hypothesig = 0, if 73n — 0 andlog®(n)/n = o(7), then

1
Vrom

Under the alternativef # 0, suppose thaf € BL(Q) satisfies (7) withr > 1. If Q > Q, n73/2 — 0 andn?" 721 — oo,
then

(]\;[72, —Qr?e’n ! (2n + 1)) £ N(0,40Q /7). (11)

B ~ L
V28 - 1£17) 5 N (0,407 £]),

where|| - | denotes thd.;(R)-norm.

Remark 2: Note that different rates appear under the hypothesis addruadternatives in Theorem 3, respectively. A similar
phenomenon was observed in [7] in the context of nonpara&metgression on a compact interval. In that model, the non-
parametric ratevh occurs under the hypothesis, whérés a bandwidth that satisfigs'n — oo, and the parametric rate'/?
under a fixed alternative. Further, in Theorem 3 under anrelt&e, we get the same rate as was obtained in [31] in a CLT
for the pointwise error. Thus in our model the!/? rate corresponds to the parametric rate'/2 in [7].

Remark 3: In general, the variance? will be unknown and thus has to be estimated (cf. Theorem@}hit end the following
simple difference-based estimator can be used (for a ddtdilscussion of such estimators on a compact interval agid th
MSE-properties cf. [9])

&2 . > (wi—yi)” 12)

T in—2
j=—n+1

It can be shown that in model (2),
E6% = 0? +0(r/n), Var(6?) =0(1/n). (13)

Observe that (13) implies that> = o2 + Op(n~'/?). Therefore Theorems 3 and 4 remains true if we replacdy 52 in
(12). )
If we wish to test whether the signgl in model (2) lies in some finite dimensional subspétef BL(f2), following the
method proposed in [8] we can use the test statistic
M2 = inf ||f, — g*
n = Inf [fn =gl
Choosing any orthonormal basfg, ..., g, } of U, this can be expressed as

m
My = Sl =)< faa > P

=1

= % Z yjyksinC(QT(j—k‘))

[5]:| k| <n
_Z (7‘ Z ykgl(Tk:))Q.
=1 |k|<n

Notice that)Z,, can still be evaluated directly without numerical integrat Let M? =infyep || f — g%
Theorem 4: Let U be a finite dimensional subspace of BL) such that every € U satisfies (7) with > 1. If in model (2),
f € BL(Q) also satisfies (7) witht > 1 andn73/2 — 0 andn?" 72"+ — oo, thenM? is asymptotically unbiased far/2 and

1
Vo

(M2 - Q20?7 (2n + 1)) 5 N(0,40Q/7) (14)
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if M2 =0, and .

F(Mg — M?) 5 N(0,40%M?), (15)

if M2 > 0.
The proof is a rather straightforward extension of the pmfoTheorem 3 and will be omitted.
Remark 4: The limit distribution (14) under the hypothesis allows ntmxcheck the moddl by means of testing the hypothesis

:felU versus Ky: f&U (16)

at a controlled error rate before analyzing the data via the modeél To this ends? in (12) has to be used as an estimator
for o2 in (14) andH is rejected if
\/:Tn (]\Z/,QL - Q%% (2n + 1))

262/Q/m
whereU;_, denotes the upper — o« quantile of the standard normal distribution. Note, thas tfields a consistent test by
(13).

Finally, the asymptotic normality in (15) can be used for téifferent purposes, testing hypotheses of the type

Ha: M >A versus Ka: M <A,

> Ulfou

and the construction of confidence intervals far. We will not pursue this issue further and refer to [8].

IV. TESTS FOR TIMELIMITED SIGNALS

In this section we extend our method to testing assumptiongime-limited signals, as they appear e.g. in the detection
of acoustically evoked potentials by EEG measuremePritsThis is the classical context of non-parametric regm@ssin a
compact interval. Suppose that the sigiiél) has supportupp(f) C [—1,1]. Assume now that noisy data of the following
form are available

yi = f(k/n) +ex,  |k| <n. (17)

In this situation we can use the estimator (4) wite= 1/n. Notice that except for the normalization, this estimaimresponds
to a kernel regression estimator with kerfé(z) = sin(x)/(7wx) and inverse bandwidtf. This kernelK is sometimes referred
to as the sinc-kernel. Note that, in contrast to the settin§ection 3, the signal cannot be band-limited, excegt# 0 (see
[23],[37]). In the following we obtain similar results fointe-limited signals as in Sections 2 and 3 for the band-échitase.
However, additional significant technical difficulties accwhich are due to the fact that the integrals involved ardomger
taken over the whole real line. Thus the Fourier isometrynoae applied to integrals over sinc and indicator funajon
as in Sections Il and lll. This complicates proofs signifitarand we will only sketch the main steps in the Appendix. A
comprehensive proof can be found in [3]. The next theoreregyiyniform pointwise convergence of the mean square error
(MSE) of the estimator.
Theorem 5. Suppose that in model (17), the sigrfakatisfies (9) withe > 2. If Q = o(n?/3) for n, Q — oo, then uniformly
ni[-1,1],

E [(fn@(t) - f(t))z}—O(Qmwl) +0(Q%/n?) + 0(Q/n),

where

Fra(t) Z ykSID t;fé;))~
\k|<

Remark 5. Assumption (9) on the tails of the Fourier transformfofmplies continuity off on the whole real line, in particular
we havef(1) = f(—1) = 0. This allows to show uniform convergence of our estimatorf-ei, 1]. Without such a condition
kernel regression estimators without boundary correatmmverge tof (x)/2 at the boundary points, and not to the signal [10].
Remark 6: The sinc-kernel estimator achieves asymptotic (rate)nogdiy. This can be seen as follows. Lgtbe an ;-
function which satisfies (9) foo = m + 1/2, m > 2 an integer. Then, according to Theorem 5, the pointwise MStHhe®
sinc-kernel estimator i§) (n=2™/(2m+1))_ The class of signals for which (9) holds with= m + 1/2 (see [5]) is closely
related to the clas§,, defined in [12] if some additional regularity assumptionstlogm!” derivative of f are made. For the
classC,, the rate of convergence of the linear minimax risk is knowtéo, 2"/ (2m+1) ([12], pp. 84-88).

The next result describes the asymptotic distribution ef f8E for kernel regression with the€nc-kernel for time-limited
signals, in an analogous way to Theorem 3. Consider thestitati

~ 1 N -
My =/ (fu(t))* dt = YT Ay,
-1
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whereY = (y_,,...,y,)? and

A= (@5.1) 15, k| <ns

ajr = (9)2/1 sinc(Q(t — %)) sinc(Q(t — %))dt.

nm -1
Theorem 6. Under the hypothesig = 0, if log(n)/vQ — 0, andQ3/2/n — 0 asn, Q — oo, then
nQ 1?2 (]V[,QL - 2902/(7rn)) £ N(0,40% /7). (18)

Under the alternative, suppose thatZ 0 satisfies (9) witha > % If In(n)/vVQ — 0, Q%/n — 0 andQ~2*/n — 0 as
n, 0 — oo, then

VI (B2 = 11 egry) 5 N(O, 4021 I3e ).
Remark 7: The potential power of our test based on the stati8fi¢ with the Fourier estimate kernel, is indicated by the
consideration of local alternatives. To this end consiberdaseH : f = 0. Similar as in [7] we obtain for the limiting variance
under local alternatives of the typg, = (v/Q/n)g the value4o* /7 as in (18). The result in [7] closely resembles (18), if
the smoothing parameter of the nonparametric estimatofjiris[ replaced by the multiplicative inverse of our smoothin
parameter2. However, the regression model in [7] i§., = y(t;n) = m(tjn) +€jn, § = 1,...,n for design points
tin, .- tnn € [0,1]. This differs slightly from our setting, both in the numbérdesign points 4 instead2n + 1) and the
size of the support of the design densiy, (] instead of[—1, 1]). A close inspection of our proofs shows that if our regressi
model is changed inta equally spaced observations {fh 1], the variance of (18) becomeg := 20* /7 ~ 0.640*.
The asymptotic variancg? in [7] (eq. (2.13)) depends on the kernel used for the nompardc variance estimator. In the
numerical simulations in [7] the Epanechnikov kernel isdugéor this kernel? ~ 1.700*. Furthermore, for the GauR kernel
ué ~ 0.8104, and for the sinc kernel as discussed in this paget 20* /7, thus the variance for our test based on the sinc
kernel is formally recovered by eq. (2.13) in [7]. Howevetethat for the Gaul3 kernel and the sinc kernel the assumpfion
a compactly supported kernel does not hold, so the resulg icannot be applied to these kernels. Hence our resulhdste
the theory by sampling-based methods to the sinc kernelhmbitperforms tests based on the kernels mentioned above. In
particular, the asymptotic relative efficiency of the teasdd on the sinc kernel s 2.67 as compared to the test based on
the Epanechnikov kernel, and 1.27 if the Gaul kernel is used. Note, that asymptotically thigesponds to the ratio of
sample sizes required to achieve the same power, i.e. use airic kernel reduces the required sample size comparéxe to t
Epanechnikov kernel by a relative amount~ef2.67 and to the Gaul3 kernel by 1.27, respectively.

V. SIMULATION RESULTS

In this section we investigate the finite-sample behaviotheftests presented in Section I, which are based on asjimpt
theory. In Section V-A we comment on the selection of the patars2, - which occur in the estimatofn. Furthermore,
in Section V-B we present simulations of the distribution]\&ﬁ for finite sample size, both under the hypothegis- 0 and
under the alternative of a particular non-zero band-lichgegnal.

A. Choosing the parameters

In order to compute the estimatgy,, the parameters and ) have to be chosen. These need to be fixed prior to application
of the estimator to a given set of observations. In this eactve consider noisy data of the form (2), where the sigh&
the band-limited function

f1(t) = (sincQt)* € BL(49;), whereQ; = 0.1,

and determine suitable values forand (2. As sample size we consid&sample = 2 + 1 = 201 and2001, and the errors;
are taken as i.i.d. normally distributed with zero mean aadances? = 0.01.

Firstly, we chose2 = 0.4, which is the smallest value such that € BL(2). Now let us consider how to choose which
depends om. The left plot in Fig. 1 presents the simulated MISE for estilon of f;(¢) from 20 sets of artificial data with
n = 100 for a range of different values af. We chooser, = 0.2, subsequently writingy for the value ofr for samples
with n = 100. The very good quality of recovery of the signAl in these simulations is shown in the right plot of Fig. 1,
where typical estimateg based onr, = 0.1 for n = 100 andn = 1000 are shown. Since depends om we scaler, for
simulations withn # 100 as7(n) = 7 - (100/n)*/®, in accordance with the conditions in Theorems 2 and 3.
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Fig. 1. Left: Logarithm of the simulated MISE between truensigand estimated signal versuag. Right: Test signal (solid curve) versus estimator based
onn = 100 (dotted curve) anch = 1000 (dashed curve). The dots show the set of artificial data with 1000. Note that all three curves are visually
indistinguishable.
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Fig. 2. (Theoretical) asymptotic normal density]@[,% (solid curve) versus simulated density for sample size 100 (dashed curve) and = 1000 (dotted
curve). The left plot shows the distribution under the hyaesis f = 0, the right plot under the alternative if the test sigifalis present in the data.
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B. Finite sample behavior of M2

In this subsection simulations of the distribution]@fﬁ for finite sample size are reported. Firstly we consider moise, i.e.
generated from the signgl= 0. In the left plot in Fig. 2 the theoretical asymptotic norrdadtribution together with simulated
finite sample distributions OM,QL for n = 100 (dashed curvej = 1000 (dotted curve) is displayed. The approximation of
the asymptotic normal distribution is not too satisfactewgn for the already rather large sample size (n=1000). Jdmiallels
findings for related test statistics (see [8], [26]). Heretstrap approximations or second order corrections cansked to
improve (see eg. [26]). Under the alternatifg as shown in the right plot in Fig. 2, the approximation by theoretical
asymptotic distribution is rather accurate already at aerame sample sizei(= 100).

VI. CONCLUDING REMARKS

In this paper, tests for parametric assumptions on banitelirand time-limited signals which are observed underenbisve
been constructed. As a test statistic thgdistance of an estimator based on the WS sampling theoremaowv#érsampling
to the parametric model is used. The asymptotic distrilbbutdthe test statistic is derived both under the hypothekith®
validity of the parametric model and under fixed alternaivehis allows in particular to test whether the sigifiak close in
the L, distance to the parametric model, at a controlled error. fEtte asymptotics are valid under certain rates> 0 and
Q — oo, however, it is not immediately clear how to choose the patans for some fixed sample size. In Section V some
suggestions are given, but it would be interesting to ingagt fully data-driven methods like cross-validationm8lations of
the finite sample behavior of the test indicate that whileaurtie alternative, the approximation by the normal limit les
rather accurate already for moderate sample sizes, thistithe case under the hypothesis. It would be of interest proxe
the approximation under the hypothesis by some resampliocepdure.

There are several possible extensions of the methodolapoped in this paper. An important one is the comparisongofeds
under various input conditions. In this case independehttijfferent samples

Urj = [i(Tk) +exg, |k <n, j=1,....d
are observed and it is to be tested whetfier= ... = f4. This can be based on the pairwise comparison between afilsam
(cf. [27]). Ford = 2, e.g., the observations;; — Y5; will simply be used in the statistidZ? in (10).
For further investigations it might be of interest to wealtka assumptions on the tail behavior of the signal. Basechisn t

tests for signals which are neither band-limited nor tiingited could be constructed in a similar fashion. As an examp
consider the problem to decide whether an exponentiallypgahsinusoidal model holds ([1], [21], or [35]), where

Fk) =" e, (19)
=1

Hereq; ands; are unknown (complex) numbers, such tRa{s;) < 0. Note that this implies integrability of the signafs-).
Furtherm is assumed to be fixed. In our terminology this would be a patacmmodel with parameters;, s;; the «; are
linear parameters, thg nonlinear.

It would also be of interest to consider a more general depetgbise process. Finally, let us stress that all signaisidered
in this paper are of finite energy (i.e. i (R)). However, several frequently encountered signals likéneofunctions do not
satisfy this requirement, and a theory that covers suchatigmould be of much practical interest.

Acknowledgment. We would like to thank M. Pawlak and U. Staditier for pointing out some helpful references.

APPENDIX

Recall that the Fourier transform of a signéle Ly(R) is given by F = F(f)(w) = [, f(t)e”"“ dt, so that the inverse
transform is given byF ~(F)(t) = 5= [ F(w)e™ dw. Hence the Fourier transform of the estimafqrt) in (4) is given by

Fn(w) =7 Z Uk l—a,0 (w)eii“’]”. (20)
[k|<n

Proof of Proposition 1From Parseval’'s equation and (20),

/R(fn(t) — Ef,(t)? dt
1

_ 5 (W) — BE ()2 dw — - 27
= /. Fo(w) = BF,(w)| dw = 5 ZnAn, (21)

where Z,, = (e_p,..., )T and A = (a; 1) ;1. k1<ns @j = 272QsInC(Q7(j — k)), |j], |k| < n, which proves (6). The
expectation of the quadratic form in (21) is given by

EZTAZ, =7%022Q(2n +1), (22)
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and thus we can write
Zr'AzZ, - EZYAZ,
= Z a; p€j€r + 2072 Z (ef - 02) =T +Ts.

\.7’\5%9 l71<n
Evidently
ETl = ET2 = 0, CO’U(Tl,TQ) = ET1T2 =0
and
ET? = 40%74(2n 4+ 1)E(€3 — 0%)2. (23)
Moreover,

ET} =20 ) a,
7L 1kI<n,j#k
2n
— 16044 Q2 <(2n +1) ) siné(Qrj)
j=1
2n
—stint?(er)). (24)
j=1
In order to compute the asymptotic varianceTaf in a first step we replace the sums in (24) by integrals and secand
step we estimate the approximation error. For the first susgives

2n+1/2 1 (2n+1/2)Q7
/ sinc (Qrt) dt = —/ sinc (u) du. (25)
1/2 Qr Qr/2
SinceQr — 0 andnQr — oo,
(2n+1/2)Qr [eS)
/ siné (u) du — / siné (u) du = 7 /2. (26)
Qr/2 0
For the second sum we obtain
2n+1/2
/ tsinc (Qrt) dt
1/2
1 (2n+1/2)Q7 ) C2
= o3 /QT/2 usinc (u) du
= O(log(Qrn)/(Q%7?)). (27)

The approximation errors are estimated in Lemma 1. Coligdierms from (23) -(29) gives
Var(ZFAZ,) = 160*7Q(2n + 1) (77/2 +o(1)
+0(log(Qrn)/(Qrn))
+0((nr203)H2) + O(logn/(QTn))).

Taking into account the factor in (21) yields the propositio O
The following lemma provides the missing estimates of theraximation errors used in the above proof.

Lemma 1: We have
2n 2n+1/2

’ > siné (Qrk) — / sinc (Qrt) dt’ = 0((nT)"/?) (28)
k=1 1/2

and

2n+1/2
tsinc (Qrt) dt‘

2n
‘ kZ:l ksiné (Qrk) — /1/2

= O(log(n)/(Q7%)). (29)
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Proof. For n > 0, we apply Lemma 4 in [31] to the functiofi(t) = sinc(n(t +n)) € BL(n) with 7 = 1 and obtain

2n

3 /k o (sinc{ot) — sinc(nk) ) "t

k=1/k—1/2
<n? / siné(nt) dt/=? = n/~. (30)
R

Thus
2n 2n+1/2
’Zsincz(QTk) - / siné (Qrt) dt’
k=1 1/2

2n k+1/2

< Z/ r(Q, 7, t, k)|sinc(Qrt) + sinc(Qrk) | dt

k=1 k—1/2

k+1/2

< 28up|S|nC(:L’ |\/7 Z/ r(Q,7,t, k)? dt) i

= O((nTQ)l/Q),

wherer(Q, ¢, k) = [sinc(Qrt) — sinc(Qrk)| and we used (30) in the last step with= Q7. Moreover,

‘ iksin@ (Qrk) — /

1/2

1/2

2n+1/2
tsinc (Qrt) dt‘

2n

k+1/2
< / |tsinc (Qrt) — ksinc (Qrk) | dt
k—1/2
1 & pktl/2 sin® QTt sm2 (QTt)
=D AL( )
2

N <‘ sin? (QTt) sin (QTk) ’)} dt

O
In the next lemma we estimate the linear part in (5). }
Lemma 2: In the band-limited case, suppose tifag BL(f2) satisfies (7) for some > 1/2. If Q > Q in the estimator (4)
and if 72n — 0 andn?" 72"t — oo, then

/R (Fult) = Efa(®)) (Efu(t) — F(1)) dt = op ((+*n)1/2).

In the non band-limited case, suppose tfiat L,(R) satisfies (7) and (9) with > 1/2 anda > 1. If 7 — 0, Q27 — o0,
72nQ — 0, 7400 — 0 andn? 72" +1 /Q — oo, then

(fat) = Efa(t)) (Efu(t) — f(t)) dt = op((r°Qn)/?).

Proof. From the Cauchy-Schwarz inequality,
| [ (0= BA@) (B0 - @)
< (V(f)"(BIAS(f2),
whereV(f,) = [, (fa(t) — Ef. ()" dt, and [IBIAS fn} = [ (Ef(t) — £(t))” dt. From (22),

V(fn) = Op(?nQ).

Furthermore, from the estimates of the integrated bias @ (Bheorem 2 for the band-limited and Theorem 3 for the non
band-limited case) we get

[IBIAS(fn)r = o (7).
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Proofs of Theorems 1 and 2.From Lemma 2, it follows that the Ilinear part in (5) is
op ((m3Qn)'/2). Furthermore, from (23) the diagonal pdtof the quadratic form in (23) i®p ((1Q2n)'/2) = op ((r3Qn)*/?)
as well. Moreover, in both cases from the assumptions, ibva thatlog?(n)/n = o(7), and Proposition 1 applies. Thus it
remains to prove asymptotic normality @f. To this end we apply Theorem 5.2 in [6]. By a straightforwaadculation,

1
S e >, aj=0(1/n), (31)
TS | bt

therefore Assumptions 1) and 2) of Theorem 5.2 in [6] aresBatl with K (n) = 7~ /4. Next we use the fact that the spectral
radiusp(A) of a symmetric matrixA is bounded from above by any matrix operator norm. Therefore

1
Voma P = \/7'37|J|<n 2 laixd

T |kISn,k#j
= O(log(n)/(n7)'/?) = o(1), (32)
which yields Assumption 3) in [6]. This concludes the probflbeorems 1 and 2. O

Proof of Theorem 3Notice that for f = 0, the estimatorf,, is unbiased. The assumptions of Proposition 1 are satisfied,
moreover both terms in (31) and (32) tend to zero, and Thedémin [6] applies again. Now let us consider the case
of f # 0. Similarly as in the proof of Proposition 1,

. 9 1
/R (fut)"dt = %Yf AY,,, (33)
where A is as before and;, = (y_,,...,y.)?. We have
EYTAY, = 2Qr%¢%*(2n+1) (34)
+ 2072 Z f(74) f(rk) sinc(Qr(j — k).
5] |k|<n
From the sampling theorem (3) and the tail behavioif pfve get uniformly in|j| < n,

r > sk Wwﬂm’)]

|k|<n

_ ‘7’ Z e sm QT( k)k))‘

|k|>n

IN

Or > |f(rk)| = o((m)—r). (35)

|k|>n
Therefore

sm (Qr(j — k)
| S

711k <n

= 27 Z f(rj ( (17 —Q—O((m—) r))

l71<n

=2t Y f(m5)* + O((nT)™")

l71<n
= 27|l f|* + O(V73n) + O((n7)™"), (36)
where we used Lemma 4 in [30] in the last step. Next, we decempite quadratic form into
YT AY, — EY,T AY,
= > ak(yme — F(T)f(Th))

|71: |k <n,j#k

+2072 Z (y?—aQ—f(Tj)Q)

From (23), T, = Op(7?y/n). Setting f,, = (f(—=7n),..., f(n))", Zn = Y, — fo @nd B = (bj )|, jx|<n With bjx =
ajr(1—0;), whered; , denotes the Kronecker symbol, we decompdses follows

T, =ZI'BZ, +2Z 'Bf, =Ti1 + 2T 5. (37)
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Evidently,
ETL]_ = ETLQ = CO’U(TLl,TLQ) =0.

From Proposition 1711 = Op((73n)/?). We have
Tio = Z € Z a; i f(Tk).
lFl<n |kI<n,j#k

Using (35) once again we get

Var(Tis) = 202( > aj,kf(Tk))2

[71<n |k|<n,j#k
2
= 4o?r? Z( (tj)m+ O((n7)~ 7))
l7l<n

= 40277 fI]° + o(r)
+O( —-r 177‘)_‘_0( 1727"7_2727")

= w27 £1* (1 + o(1)).
From (33), (34), (36) and the above estimatesiorand T} 1,
M,% = O(T*n) + ||f||* + o(T) + O((m‘)fr)

+  Op(T*V/n) + Op(V73n) + 71T} 5,

therefore it will suffice to show asymptotic normality &% »//7. To this end we apply Lyapounov’s theorem. From (35)
together with a straightforward calculation

Var T12 Var(T,2)? Z ( Z aj,kf(Tk’))Al

j<n k|<m gk
4
—Z ( Tj)m + O((n7)~ T)) — 0.
l7|<n

O
Remark 8: Note that under the hypothesis the teffn, in (37) vanishes. Thus the quadratic teffin; determines the
asymptotics and a result like Theorem 5.2 in [6] for randoradyatic forms has to be applied. However, under the altemat
the linear terml}; , dominates the asymptotics. Therefore it is no longer ptssiduse the above mentioned result, instead
one simply applies Lyapunov’'s CLT.
Proof of Theorem 5The proof follows mostly along the lines of the proof of Thewr 1 in [31], which deals with the band-
limited case. Their estimates are based on a lemma (Lemmaidhwnly applies to band-limited signals, and which theref
cannot be used in our setting. Instead we invoke Lemma 3 ih BOwever, the details are rather cumbersome and can be
found in [3]. O
Proof of Theorem 6.
The expectation oﬂZfﬁ is given by

EM}= > a;pf(t;)f(ts) + o*tr(A)

7],k <n

Tedious but straightforward computations yield that
tr(A) = 29/ (mn) + 0(\/@/71)

and that
S G ) ) = 112y + o(n 72,

l7];[ k| <n

The variance of Mﬁ is computed as in the proofs of Proposition 1 and
Theorem 3. If f = 0, the dominating termTin the variance 8 37 1<, ik @5 Otherwise it isdo®(Af,)" (Afy),
where f,, = (f(=1), f((=n +1)/n),..., f(1))".

Technical difficulties arise since the entries 4fcan no longer be calculated explicitely by Fourier transfation, because
we integrate over a finite interval. Therefore we have tomeitee the asymptotic behavior of surhy, ;<, over the squares
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of integrals of type

/ sinc(Q(t — E))sinc(Q(t - i))dt

-1 n n
I Q Q
=0 » sinc(t — %)sinc(t - Zl)dt
1 oo Qk . . Qk
=0 (/_Oo sinc(t — 7)81nc(t - T)dt

_ /t|>Q sinc(t — %)Sinc(t - ?f)dt)
<sinc (S (k+ 1)> 4 cij) .

> sine? (Z (k+l)> = 4%2 +o0 (’g)

K], [l <n

Q=

To this end we show that

and hence

Z c?j =0 (n*/Q).

k], [1|<n

Thus the tails are negligible. Finally, asymptotic noriyalinder the hypothesis follows again from Theorem 5.2 in {@ile
under the alternative the Lyapounov CLT is applied. O
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