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Abstract

In this paper we suggest a completely nonparametric test for the assessment of similar marginals of a multivariate distribution
function. This test is based on the asymptotic normality of Mallows distance between marginals. It is also shown that the n
out of n bootstrap is weakly consistent, thus providing a theoretical justification to the work in Czado, C. and Munk, A. [2001.
Bootstrap methods for the nonparametric assessment of population bioequivalence and similarity of distributions. J. Statist. Comput.
Simulation 68, 243–280]. The test is extended to cross-over trials and is applied to the problem of population bioequivalence,
where two formulations of a drug are shown to be similar up to a tolerable limit. This approach was investigated in small samples
using bootstrap techniques in Czado, C., Munk, A. [2001. Bootstrap methods for the nonparametric assessment of population
bioequivalence and similarity of distributions. J. Statist. Comput. Simulation 68, 243–280], showing that the bias corrected and
accelerated bootstrap yields a very accurate and powerful finite sample correction. A data example is discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many applications the aim is to compare the marginals F and G of a bivariate distribution H by means of an
i.i.d. sample Zi = (Xi, Yi) ∼ H , i = 1, . . . , n. This problem occurs when several measurements under two different
experimental conditions are taken from one observation unit. For the hypothesis of equal marginals, H0 : F = G,
various rank tests have been suggested (Govindarajulu, 1995, 1997; Podgor and Gastwirth, 1996). Often, however, it is
the aim to demonstrate similarity instead of a difference between F and G, i.e. that F and G are sufficiently ‘close’, in a
sense to be made precise below. On the one hand, this is of practical interest in many applications. On the other hand,
surprisingly it turns out that the mathematical analysis becomes often more simple (cf. Theorem 1 and Remark 10).

One example is the investigation of diagnostic procedures where a new measuring method has to be shown as
comparable to a gold standard, e.g. when several sonographic methods are compared to histology for the determination
of skin cancer size (Freitag et al., 2003a). Another application is the assessment of population bioequivalence, where
the aim is to demonstrate similar bioavailability for different formulations of a drug (cf. Sheiner, 1992; Schall, 1995;
Gould, 1997; Shao et al., 2000).
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The aim of this paper is to provide a nonparametric test for the assessment of similar marginals F and G. Extending
Munk and Czado’s (1998) approach, we suggest as a measure to compare F and G a trimmed version of Mallows
distance,

��(F, G) =
{

1

(1 − 2�)

∫ 1−�

�
|F−1(u) − G−1(u)|2 du

}1/2

, � ∈
[

0,
1

2

)
, (1)

where we assume that F and G are in the class of cumulative distribution functions (c.d.f.s) defined by

F2 :=
{
F : F is a continuous c.d.f. and

∫
x2 dF(x) < ∞

}
. (2)

We mention that trimming has several advantages. It leads to a robustification of the suggested methods (see also Chow
and Tse, 1990). Further, it simplifies the mathematical analysis significantly (cf. Section 2.2).

The paper is organized as follows. In Section 2 we propose an estimator for ��(F, G), and its asymptotic normality
will be shown. This allows to construct tests for the hypotheses

H� : ��(F, G) > �0 versus K� : ��(F, G)��0, (3)

where �0 > 0 is a pre-specified bound the experimenter is willing to tolerate between F and G. Note that rejection of
H� allows the assessment of similar F and G at a controlled error rate, in contrast to the more conventional hypothesis
H : F =G. For computational reasons, we suggest in Section 3.1 the use of the bias corrected and accelerated bootstrap
of the proposed test statistic. Furthermore, applications to the assessment of population bioequivalence are discussed
in Sections 3.2–3.4. For this the proposed test is extended to a cross-over design as it is custom in bioequivalence trials.
An example of a bioequivalence study for a vasoactive drug is presented in Section 3.5. Finally, in Section 4 we discuss
various extensions, such as the similarity of more than two marginals and higher order cross-over designs. We mention
that Sections 3 and 4 are understandable without previous reading of the more technical Section 2.2.

2. Asymptotic theory for Mallows distance

2.1. General properties and estimation of Mallows distance

Following the definition (1), the trimmed Mallows distance �� quantifies the trimmed L2-norm between the quantile
functions F−1 and G−1 of F and G. Here F−1(t)= inf{u : F(u)� t} denotes the left continuous inverse of a c.d.f. F. In
the following we often write �� := �2

�. This distance was previously investigated for the situation of two independent
treatment groups by Munk and Czado (1998) and in the context of goodness of fit testing by del Barrio et al. (1999a,b,
2000). Observe that in the untrimmed case for � = 0, we obtain Mallows (1972) L2-distance which is also sometimes
denoted as Wasserstein or Kantorovitch–Rubinstein metric (cf. Dobrushin, 1970). This distance (for �=0) has received
some interest among probabilists, because it can be shown to be equal to inf�∈M(F,G){

∫ |x − y|2�(dx, dy)}, where
M(F, G) denotes the set of distributions with given marginals F and G (cf. Rüschendorf and Rachev, 1990 for a survey).
Some nice properties as a distance between distribution functions reveal �� as a suitable measure for our purposes (cf.
Munk and Czado, 1998, and Section 3.2).

In order to estimate ��(F, G), F and G are replaced by the empirical c.d.f.s Fn and Gn, respectively. Hence we
obtain

�̂� = ��(Fn, Gn) =
{

1

1 − 2�

∫ 1−�

�
|F−1

n (u) − G−1
n (u)|2 du

}1/2

,

where

F−1
n (t) = inf{u : Fn(u)� t} =

n∑
i=1

X(i)1{(i−1)/n<t � i/n}, t ∈ (0, 1) (4)
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denotes the left continuous inverse of the empirical c.d.f. Fn(x) = (1/n)
∑n

i=1 1{Xi �x}, and X(i) the ith-order statistic
of the sample X1, . . . , Xn. Note that from (4) it follows that

�̂� := �̂
2
� = 1

(1 − 2�)n

n−[n·�]∑
i=[n·�]+1

|X(i) − Y(i)|2

+ [n�] − n�

(1 − 2�)n
(|X([n�]+1) − Y([n�]+1)|2 + |X(n−[n�]) − Y(n−[n�])|2)

= 1

(1 − 2�)n

n−[n·�]∑
i=[n·�]+1

|X(i) − Y(i)|2 + Op

(
1

n

)
, (5)

where [x] denotes the largest integer smaller than or equal to x for any x ∈ R. For the case of no trimming this simplifies
to �̂0 = (1/n)

∑n
i=1 |X(i) − Y(i)|2, and for the case � ↗ 1

2 we have �̂ = |medX − medY |2, the squared difference of the
sample medians. For the subsequent test procedures we will consider the test statistic

T�0,�(Fn, Gn) := √
n(�̂� − �2

0) (6)

to establish similarity of F and G for a fixed bound �0 > 0 (cf. (3)).

2.2. Asymptotic theory

For the case of two independent samples X1, . . . , Xm ∼ F and Y1, . . . , Yn ∼ G and under some smoothness and
growth conditions on F and G, Munk and Czado (1998) derived the asymptotic normality of the test statistic

(
nm

n + m

)1/2

{��m∧n
(Fm, Gn) − ��(F, G)},

provided that �� > 0. The proof utilizes strong approximation results of Csörgö and Révész (1981) of the weighted
quantile process. Here m ∧ n denotes the minimum of m and n, and �n ↘ 0 is a sequence of trimming bounds which
does not converge too fast to zero, i.e.

�n �c
log log n

n
(7)

for some c > 0. The purpose of this section is to extend this result to the situation where dependencies between X
and Y may occur. We mention that this setup occurs in many experimental designs, such as pre–post comparisons or
cross-over trials. This will be discussed in detail in the next section. In the following we will show the asymptotic
normality of

Tn := √
n(�̂�n

− ��)

as long as �n → � > 0, �� > 0, and H satisfies some smoothness conditions. However, the asymptotic variance of Tn

turns out to be rather complicated, and its estimation would be very cumbersome. Note that for the case of independent
X and Y, as treated in Munk and Czado (1998), this leads already to a rather difficult problem. Therefore, we suggest
in the following bootstrap tests for the hypotheses in (3) which offers an appealing alternative. The second result of
Theorem 1 shows that indeed the n out of n bootstrap distribution P∗ mimics asymptotically the law Pn of Tn. Let Hn

denote the bivariate empirical c.d.f. of the sample Zn = (Zi)i=1,...,n and H ∗
n the corresponding bootstrap c.d.f. obtained

by drawing a sample of size n from Zn with replacement.

Theorem 1. Let Z1, . . . , Zn ∼ H i.i.d., where H denotes a continuously differentiable bivariate distribution function
with marginals F(·) = H(·, ∞) and G(·) = H(∞, ·), such that F and G are continuously differentiable with positive
densities f > 0 and g > 0 on the real line, and let 0 < � < 1

2 and �n → �.
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(1) Then, if 0 < ��(F, G) < ∞, we have that

Tn
D
⇒ N(0, �2

�(H)), (8)

where the limiting variance is calculated as

�2
�(H) = 4

(1 − 2�)2

⎧⎨
⎩
∫ 1−�

0
�2
(F |G)(s) ds −

(∫ 1−�

0
�(F |G)(s) ds

)2

+
∫ 1−�

0
�2
(G|F)(s) ds −

(∫ 1−�

0
�(G|F)(s) ds

)2

+ 2
∫ 1−�

0

∫ 1−�

0
�(F |G)(r)�(G|F)(s)

�2H(F−1(r), G−1(s))

�r�s
dr ds

− 2
∫ 1−�

0
�(F |G)(r) dr

∫ 1−�

0
�(G|F)(s) ds

}
, (9)

which is finite as 0 < � < 1
2 . Here we have used the abbreviations

�(F |G)(s) =
∫ 1−�

�∨s

F−1(t) − G−1(t)

f ◦ F−1(t)
dt, �(G|F)(s) =

∫ 1−�

�∨s

G−1(t) − F−1(t)

g ◦ G−1(t)
dt ,

where x ∨ y := max{x, y}.
(2) Furthermore, we have with �(H) := ��(F, G) that

sup
t∈R

|P∗[n1/2(�(H ∗
n ) − �(Hn))� t] − P[�̇H (BH )� t]| P−→

n→∞ 0,

where BH (·, ·) denotes a two-dimensional Brownian sheet with

Cov[BH (s), BH (t)] = H(t ∧ s) − H(t)H(s),

where s, t ∈ R2, and the minimum is to be understood componentwise. Here �̇H (·) denotes the Hadamard derivative
of � at H. Hence, the n out of n bootstrap is uniformly weakly consistent.

Proof (Sketch). The proof of the first assertion of Theorem 1 follows from the proof of Theorem 2.5 in Freitag et
al. (2003b). There the Hadamard differentiability of the functional � tangentially to a subspace is shown and the
Hadamard derivative �̇H is given. Further, we have the invariance principle for the multivariate empirical process,

n1/2(Hn − H)
D
⇒ BH , on the space D[0, 1]2 equipped with the supremum norm and open ball 	-field (cf. Bickel and

Wichura, 1971). Thus, the functional delta method can be applied, which can then be transferred to the bootstrapped
functional (cf. Section 3 in Freitag et al., 2003b), yielding the second assertion of the theorem. The underlying theory
can be found in Gill (1989) and van der Vaart and Wellner (1996). Note that the limiting random element in (8) is equal
in distribution to �̇H (BH ), i.e. the functional derivative applied to the limiting Gaussian process BH . Lemma 7.1 in
Freitag et al. (2003b) can then be applied to calculate the variance of this normal random variable, which is equal to
�2
�(H) in (9). �

Remark 2. We mention that for the case of independent X and Y the asymptotic variance in (9) reduces to

�2
� = 4

(1 − 2�)2

⎧⎨
⎩
∫ 1−�

0
�2
(F |G)(s) ds −

(∫ 1−�

0
�(F |G)(s) ds

)2

+
∫ 1−�

0
�2
(G|F)(s) ds −

(∫ 1−�

0
�(G|F)(s) ds

)2
⎫⎬
⎭ ,
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because in this case (for r, s ∈ [�, 1 − �]), �2H(F−1(r), G−1(s))/�r�s ≡ 1, which gives Theorem 1 in Munk and
Czado (1998) for � > 0. Observe that the scaling factor 4/(1 − 2�)2 of �2

� is slightly different from Munk and Czado
(1998), because the trimmed Mallows distance in this paper has a different scaling. Interestingly, we did not succeed
in proving a similar result to Munk and Czado’s Theorem 1 for trimming bounds �n ↘ 0 with (7). This is related to
the difficult problem of finding jointly a strong approximation of the bivariate weighted quantile process

qn(·, ·) := n1/2{f ◦ F−1(·)(F−1
n (·) − F−1(·)), g ◦ G−1(G−1

n (·) − G−1(·))}

by Brownian bridges (B
(n)
F (·), B

(n)
G (·)) with copula H(F−1(s), G−1(t)) − st . Nevertheless, observe that in most ap-

plications the trimming bound can still be chosen as � = 0, because the last theorem remains valid for this case when
the support of F and G is compact. This is, e.g. the case for all pharmacokinetic quantities under consideration in
bioequivalence trials.

Remark 3. From the representation of the limiting random element in Theorem 1 as �̇H (BH ), an alternative expression
for the asymptotic variance �2

�(H) can be obtained as

�2
�(H) = 4

(1 − 2�)2

∫ 1−�

�

∫ 1−�

�
KH (s, t) ds dt ,

where

KH (s, t) = (F−1(s) − G−1(s))(F−1(t) − G−1(t))

×
(

s ∧ t − st

f (F−1(s))f (F−1(t))
+ s ∧ t − st

g(G−1(s))g(G−1(t))

+H(F−1(s), G−1(t)) − st

f (F−1(s))g(G−1(t))
+ H(F−1(t)G−1(s)) − st

f (F−1(t))g(G−1(s))

)
.

This might be more convenient for the estimation of �2
�, since it does not involve second derivatives of H.

Remark 4. We would like to stress that the above method of proof of the consistency of the bootstrap transfers to
other metrics, such as Lp-norms (p > 1), as long as they are Hadamard differentiable with nonvanishing derivative.
Furthermore, for the case of independent observations X and Y, the Wilcoxon-functional P(X > Y) is also known to be
Hadamard differentiable (this can even be shown uniformly over (D[−∞, ∞])2, cf. Steland, 1998), which yields the
strong consistency of the bootstrap for the tests suggested by Wellek (1996) or by Schall (1995) as a by-product.

3. Applications

3.1. Bootstrapping Mallows distance

In order to perform the bootstrap test, the percentile (PC) method or Efron and Tibshirani’s (1993) bias corrected
and accelerated (BCa) method for constructing bootstrap confidence intervals can be used (see Efron and Tibshirani,
1993, Chapters 13–14). For this let T�0,B,1−
sig be the (1 − 
sig)th empirical quantile based on (T 1

�0
, . . . , T B

�0
). Here,


sig is the significance level, and T b
�0

denotes the bth bootstrapped test statistic T�0 from (6), where we have suppressed
the dependency on the trimming constant � (b = 1, . . . , B). Details on how to actually obtain the bootstrap samples in
particular cases will be given in Section 3.4.

The PC method consists in rejecting H� from (3) at significance level 
sig if T�0,B,1−
sig �0. For the BCa method
the (1 − 
sig)th PC of the bootstrap sample from the PC method is replaced by the 
upth PC, where 
up is defined as


up = 
up(
sig) = �

(
Ẑ0 + Ẑ0 + z1−
sig

1 − â(Ẑ0 + z1−
sig)

)
.
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Here

Ẑ0 = �−1

(
#{T b

�0
< T�0 , b = 1, . . . , B}

B

)
, â =

∑n
i=1 (T(·) − T(i))

3

6(
∑n

i=1 (T(·) − T(i))
2)3/2 .

zp and � are the p-quantile and the c.d.f. of the standard normal distribution, respectively, and #A is the number of
elements of the set A. Finally, T(i) is the resulting test statistic when the ith observation is removed, and T(·) is the mean
of T(i), i.e. T(·) = (1/n)

∑n
i=1 T(i). Note that if â = Ẑ0 = 0, we have 
up = 1 − 
sig, i.e. the BCa method coincides

with the PC method. This correction allows the bootstrap confidence interval to be second-order accurate (Efron and
Tibshirani, 1993, p. 325). Now it is possible to calculate from this the corresponding p-values for the PC test as

p-value(PC) = min{p : T�0,B,1−p �0} = 1 −
∑B

b=1 1{T b
�0

�0}
B

,

and for the BCa test as

p-value(BCa) = min{p : T�0,B,
up(p) �0} = 
−1
up

⎛
⎝
∑B

b=1 1{T b
�0

�0}
B

⎞
⎠ .

Czado and Munk (2001) have investigated in a comprehensive Monte Carlo study the PC and the BCa method for
testing the similarity of marginals. In summary, we found that the BCa bootstrap outperforms the naive PC bootstrap
(and also the test based on the asymptotic normality with estimated variance; cf. Theorem 2.1) over a broad range of
possible underlying distributions, trimming bounds and sample sizes. The BCa test performs particularly well when
distributions are skewed, a situation which occurs rather often in bioequivalence trials.

3.2. Nonparametric population bioequivalence

In this section we will apply the proposed tests to the problem of population bioequivalence. Bioequivalence studies
are conducted in order to show similar bioavailability for different formulations of a drug, typically a reference formu-
lation and a generic one. In this case it is accepted that the formulations are therapeutically similar, which implies that
the generic one is allowed to replace the standard drug. Until now, three different types of bioequivalence are suggested
by regulatory guidelines: average, individual and population bioequivalence (FDA, 2001). During the past the most
common approach was average bioequivalence, which means a similar absorption of the active ingredient in mean
(FDA, 1992, 2003; CPMP, 1993, 2001). More recently, there has begun a controversial discussion on the use of average
bioequivalence in order to guarantee the so-called prescribability and switchability of two formulations. Hauck and
Anderson (1992) argued forcefully that similar prescribability requires the assessment of population bioequivalence,
which means equivalence with respect to the underlying distribution functions. This is founded in the fact that prescrib-
ability refers to the situation where the patient starts on a new drug, and no individual characteristics are taken into
account (cf. Sheiner, 1992; Schall and Luus, 1993; Schall, 1995; Gould, 1997). Although there is an agreement that the
entire distribution functions of the test and reference formulation should be taken into account for the assessment of
population bioequivalence, the suggested methodology of testing is restricted in most cases to moment-based criteria
(e.g. Bauer and Bauer, 1994; Guilbauld, 1993; Holder and Hsuan, 1993; Hauck et al., 1997; Wang, 1997; Gould, 2000;
Wellek, 2000b). This is also reflected in the corresponding guidelines of the FDA (2001) and of the CPMP (2001).

In a parametric setup (typically it is assumed that the data are log-normally or normally distributed), similarity of the
first two moments implies also similarity of distribution functions, however, in a nonparametric framework this is not
sufficient. Nevertheless, it has been recognized during the past by various authors that the normality assumption is often
questionable (such an example will be discussed in the following). Further, outliers may have drastic consequences on
parametric analyses of bioequivalence studies, as pointed out by Chow and Tse (1990) or Liu and Weng (1991).

Hence, distribution-free methods were proposed in Hauschke et al. (1990), Schall (1995), Munk (1996),Wellek (1996,
2000a), Janssen (2000), where most often the Mann–Whitney measure p := P(XR > XT ) was used. Bioequivalence
is then claimed if |p − 1

2 |�� for some limit �. We would like to stress, however, that a serious lack of the functional
P(XR > XT ) (and related ones) consists in the fact that it does not allow for a rigid assessment of similar marginals
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F and G (XR ∼ F, XT ∼ G) in a completely nonparametric framework. Typically, a valid interpretation of p for
population bioequivalence can only be obtained in semiparametric models, such as location (see Wellek, 1996) or
Lehmann (see Munk and Czado, 1998) families of alternatives. In order to illustrate the difficulties encountered with
the Mann–Whitney functional p we show in the following that ‘perfect equivalence’ of F and G may hold, i.e. p = 1

2 ,
although the shapes of the distributions are completely different. The following result gives sufficient conditions under
which p = 1

2 . For this we assume that XR and XT are independent, i.e.

P(XR > XT ) =
∫

F(x)G(dx) =: �(F, G).

Theorem 5. Assume that g is a transformation such that −g(x) = g(−x) and let F a continuous c.d.f. symmetric
around zero, i.e. F(x) = 1 − F(−x). Then we have �(F ◦ g, F ) = 1

2 .

Proof. We have

�(F ◦ g, F ) =
∫ ∞

−∞
F(g(x)) dF(x) = 1 −

∫ ∞

−∞
F(g(−x)) dF(x),

because 1 − F(g(−x)) = 1 − F(−g(x)) = F(g(x)). By symmetry of F,

�(F ◦ g, F ) =
∫

F(g(−x)) dF(x),

which proves the assertion. �

As an example consider the case when F and G are in the scale family of a c.d.f. F,

FS :=
{
G(·) = F

( ·
	

)
, F is a symmetric c.d.f.

}
.

Here g(X) = X/	, which obviously satisfies the condition −g(x) = g(−x). Hence semiparametric distances will be
in general not suitable for the assessment of population bioequivalence because in particular changes in scale and
hence in the second moment cannot be detected. Roughly speaking, the last theorem shows that in general the quantity
P(XT > XR) measures how often XT exceeds XR , but not how much. Similar arguments apply, of course, to related
measures, such as P(|XT − XR|�) or P(1/(1 + )�XT /XR �1 + ) and individualized versions thereof (cf. e.g.
Schall’s, 1995, definition (2.2)). This has never been recognized in the literature, because in a location scale model
with homoscedastic error �(F, G) is proportional to the mean difference standardized by the scale parameter (cf.
Schall, 1995, for the case of normal distributions). Homoscedasticity, however, is only a valid assumption in cross-over
experiments when the analysis is based on one-dimensional independent observations (such as individual differences
or ratios), provided the variance does not depend on the sequence (which can be excluded in general, Hauschke et
al., 1997). In a nonparametric framework, however, a reduction of the array of observations associated with each
individual under study to a one-dimensional quantity can be completely misleading for the nonparametric assessment
of population bioequivalence. This becomes transparent in Section 3.4, where it is shown that the suggested test statistic
cannot be reduced to a statistic based on individualized quantities. Hence, Theorem 5 explains the somewhat curious
phenomenon observed in various (average) bioequivalence studies during the past that Mann–Whitney-type tests such
as Hauschke et al.’s (1990) procedure have led to a decision in favor of equivalence for a given data set, although the
parametric standard test ‘TOST’ (two one-sided t-tests; cf. Schuirmann, 1987; Berger and Hsu, 1996) does not. This
seems to be a main reason why regulatory agencies, such as the FDA, did prescribe parametric methods in the past (cf.
e.g. the FDA guidance, FDA, 2001, or the CPMP note for guidance, CPMP, 2001).

In contrast to the Mann–Whitney measure, the suggested Mallows distance �� as a measure of similarity combines
various useful aspects which are demanded for a measure of population bioequivalence.

(1) Trimming allows for robustification against outliers.
(2) In location-scale families the Mallows distance �� leads to an aggregate bioequivalence criterion which controls

simultaneously differences in the means, �, �, and in the variances, 	2, �2 (cf. (10); Munk and Czado, 1998). Further,



704 G. Freitag et al. / Journal of Statistical Planning and Inference 137 (2007) 697–711

in a pure location model we find for any � ∈ [0, 1
2 ) that �� = |� − �|, i.e. it coincides with the classical criterion of

average bioequivalence. This has been recently demanded by Hauschke and Steinijans (2000), who proposed for
any criterion of population bioequivalence that it should always contain average bioequivalence as a special case.

(3) Finally, any bioequivalence criterion based on Mallows distance is defined on the original scale (there is even no
need to use logarithmic transforms of the data), which allows a direct comparison of observed drug effects in terms
of the relevant pharmacokinetic quantities such as AUC, Tmax, etc., or transformations of them.

Observe that in a normal setup, the squared Mallows distance reduces to

�0 = (� − �)2 + (	 − �)2. (10)

This is quite similar to the unscaled population bioequivalence measure for standard cross-over designs proposed by
Schall and Luus (1993), which is defined by

Dp = (� − �)2 + (	2 − �2). (11)

However, (11) can take on negative values while (10) is strictly positive. The recent FDA guidance (FDA, 2001)
proposes a (mixed) scaled version of Dp as a criterion for population bioequivalence (cf. (16)). However, this was
criticized by various authors, cf. e.g. Chow (1999), Gould (2000), Hauschke and Steinijans (2000) and Wellek (2000b).
The main issue is the possibility to mask a large mean difference by a comparatively large negative value of 	2 − �2.
Thus, the FDA guidance (FDA, 2001) demands to accompany the test on the criterion for population bioequivalence by
checking whether the point estimate of mean difference falls within the usual bioequivalence region. Still, this does not
guarantee that average bioequivalence follows from population bioequivalence, especially for highly variable drugs.

In general, it is required to conduct bioequivalence trials in a cross-over design, hence we will extend in the following
our testing procedure to this design. For this it is necessary to discuss cross-over designs in a completely nonparametric
framework, including the definition of corresponding effects, such as the main effect and period effects. In order to
make ideas more transparent, we consider in the following only a 2 × 2 cross-over design involving two periods and
two sequences, whereas extensions to higher order designs are outlined briefly in Section 4.

3.3. Population bioequivalence for cross-over designs

The need to allow for nonparametric assumptions in cross-over designs has been recognized by many authors (see,
for example, Jones and Kenward, 1988; Senn, 1993; Vonesh and Chinchilli, 1997). However, these authors consider
only the problem of testing the presence of a treatment effect, adjusting for possible period effects by using modifi-
cations of standard nonparametric point hypothesis tests based on signs or ranks. These can be used to assess average
bioequivalence using corresponding confidence intervals. The nonparametric assessment of population bioequivalence
using interval hypotheses remains, however, an interesting open problem, which we consider now for the case of a
2 × 2 cross-over trial.

Let in the following Yijk denote the response of the ith subject in the kth sequence (k = 1, 2) at the j th period
(j = 1, 2). Hence, in the first sequence we observe n1 bivariate i.i.d. observations

(Y111, Y121), . . . , (Yn111, Yn121) ∼ H1(·, ·),
and independently in the second sequence n2 independent observations

(Y122, Y112), . . . , (Yn222, Yn212) ∼ H2(·, ·),
where we assume that H1(H2) has marginals F1(F2) and G1(G2). In order to simplify notation, in the bivariate sample
for H2 the order of the observations from Table 1 is interchanged. This allows to interpret the first (second) component
of all samples as subjects with treatment T (R). Further Yi1k and Yi2k (k = 1, 2) are dependent, since observations are
drawn from the same subject.

Similar to the parametric situation we have to exclude a carry-over effect, which in practice has to be guaranteed by
a sufficient wash-out period. Note that in this nonparametric framework we cannot identify carry-over effects as fixed
linear effects as it is custom in a parametric model (cf. Chow and Liu, 1992). Therefore, in order to identify the main
effects in a nonparametric 2 × 2 cross-over trial, we make the following basic assumption.
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Table 1
The 2 × 2 cross-over design

Period 1 Period 2

Sequence 1
Treatment T (F1) Treatment R (G1)
Y111 Y121

.

.

.
.
.
.

Yn111 Yn121

Sequence 2
Treatment R (G2) Treatment T (F2)
Y112 Y122

.

.

.
.
.
.

Yn212 Yn222

Assumption A. We assume that the marginals occurring in the second period (G1 and F2) are solely generated by the
direct drug effect, possibly together with an effect which is solely generated by the period.

Hence, we admit that the period in which the drug is administered may have an effect on the outcome. This will be
denoted as a period effect.

Definition 6. Assume that the basic Asumption A holds. In the nonparametric 2 × 2 cross-over design we say that a
period effect is present, if and only if H1 �= H2.

We will briefly explain the connections and differences to the parametric model under normality which is used by the
FDA (2001). Here the assumption of no or equal carry-over effects is used, where equal carry-over effects are supposed
to enter into the period effects. The model for the case of a 2 × 2 cross-over trial is given by

Yijk = � + Fl + Wjk + Sikl + ijk ,

where � is the overall mean, Fl is the fixed effect of the lth formulation (l = T , R, with FT + FR = 0), Wjk are fixed
period, sequence, and interaction effects (

∑
kWjk = 0), Sikl is the random effect of the ith subject in the kth sequence

under formulation l and (SikT , SikR), i = 1, . . . , nk, k = 1, 2, are independent and identically distributed bivariate
normal random vectors with mean 0 and covariance matrix(

	2
BT �	BT 	BR

�	BT 	BR 	2
BR

)
, (12)

the ijk are independent random errors with distribution N(0, 	2
Wl), and the Sikl and the ijk are mutually independent.

Under parametric assumptions it would be possible to determine whether a carry-over effect is present. However, in
this case no further analysis can be performed. In the nonparametric setup a mathematical separation between carry-over
and period effects is not possible. Therefore, we have excluded carry-over effects a priori in Assumption A.

A second important distinction between the parametric and the nonparametric case is that a reduction by sufficiency
allows in the parametric setup to base the analysis on individual log ratios with variance �2

T + �2
R . This simplifies the

model substantially, because we end up with a homoscedastic error structure (cf. Hauschke et al., 1997, for a discussion).
Note, however, that it is not possible in a nonparametric framework to base a priori the analysis on one-dimensional

within-subject quantities, such as the individual log ratios. Hence, the assumption of homogeneous variances is not
valid in general. This is highlighted in the next section, where tests for the nonparametric bioequivalence problem are
given which require the information of the full two-dimensional data vector without the possibility of a one-dimensional
reduction of the observations drawn from each individual. In particular, this illustrates that violation of a normal model
may have particularly drastic consequences in bioequivalence studies as pointed out by Chow and Tse (1990).

Now we are ready to define nonparametric bioequivalence hypotheses in a 2 × 2 cross-over design.
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Definition 7. Assume the nonparametric 2×2 cross-over model underAssumptionA. Then, population bioequivalence
is defined as similar marginals under T and R in each sequence, respectively, i.e.

��,p := 1
2 {��(F1, G2) + ��(F2, G1)}��2

0, (13)

for a fixed bound �0.

We would like to comment briefly on this definition. Because period effects (in the sense of Definition 6) cannot be
excluded a priori, bioequivalence has to be defined for each sequence separately, i.e. we cannot assume in general that
F2 = F1 and G1 = G2. Observe, however, that in the case of no period effect we have

��,p = ��(F, G), (14)

where F1 = F2 = F and G1 = G2 = G. This allows to perform a different and more efficient analysis for the case of
no period effect, as we will see in the next section.

Remark 8 (Determining the equivalence bound). In the example in Section 3.5 we will define the equivalence limit in
accordance with the average bioequivalence criterion in a normal homoscedastic setup with log-transformed data, i.e.
�0 = log(1.25). Note that this is based on the fact that in a location model Mallows distance reduces to the difference
of the means in both treatment groups (cf. Section 2.1). This is certainly a conservative choice, because no additional
tolerance limit for deviations of the variances, say, is admitted.

3.4. Test statistics for population bioequivalence

We present now two different tests for population bioequivalence. One is appropriate when no period effects are
present, while the other adjusts for period effects.

3.4.1. No period effects
We will first discuss the case of no period effect, i.e. we assume H1 = H2. This allows to reduce to the case of

n = n1 + n2 i.i.d. observations Zi = (Xi, Yi), i = 1, . . . , n1 + n2, where

Zi = (Xi, Yi) =
{

(Yi11, Yi21), i = 1, . . . , n1,

(Yi22, Yi12), i = n1 + 1, . . . , n1 + n2

such that Zi ∼ H(·, ·) with marginals F and G. In this case the bioequivalence measure ��,p in (13) reduces to ��(F, G)

(cf. (14)), which can simply be estimated by ��(Fn, Gn). Now we draw B, say, bootstrap samples of size n from the
bivariate observed data {Zi, i = 1, . . . , n} and calculate the corresponding empirical marginal distributions F ∗

n,b and

G∗
n,b , b = 1, . . . , B. Thus, we obtain B bootstrapped test statistics T b

�0
:= T�0,�(F ∗

n,b, G
∗
n,b), b = 1, . . . , B (see (6)).

3.4.2. Period effects
If a period effect cannot be excluded, separate estimation of ��(F1, G2) and ��(F2, G1) becomes necessary. The

appropriate test statistic is therefore

T�0,�(F1,n1 , F2,n2 , G1,n1 , G2,n2) =
√

n1n2

n1 + n2

[
1

2
(��(F1,n1 , G2,n2) + ��(F2,n2 , G1,n1)) − �2

0

]
. (15)

We now bootstrap from each sequence separately, i.e. for the bth bootstrap test statistic we draw n1 times from the
bivariate data {(Yi11, Yi21), i =1, . . . , n1} and n2 times from {(Yi22, Yi12), i =1, . . . , n2}, yielding the corresponding
estimators F ∗

k,nk,b
and G∗

k,nk,b
, k = 1, 2, which can be plugged in to obtain the bootstrapped test statistics. We mention

finally that, of course, similar results to Theorem 1 can be proved for the case of period effects in exactly the same way
using the above stratified bootstrap procedures.

It remains to decide which test is appropriate for data at hand. For the data analyst it is difficult to know in advance
if there are period effects present in the data. One simplistic approach is to first test for period effects and then proceed
testing for population bioequivalence depending on the outcome. However, this two-stage approach might lead to
unsatisfactory answers if the two tests are correlated (see Senn, 1993, pp. 52–54; Freeman, 1989 for the problem of
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testing for carry-over effects in a standard normal cross-over analysis). Without further investigations it is too early to
advise the use of such a two-stage approach. However, if one is interested in conducting such a two-stage approach, we
suggest using the methodology adopted in this article, i.e. to test the hypothesis H : 1

2 [��(F1, F2)+ ��(G1, G2)] > �2
0,

but where possibly a different value for the hypothesis boundary is used compared to the second test.
Finally, we would like to give a guide for the choice of the trimming bound �. As the sample size increases, trimming

up to 10% of the total sample size was always found to improve the accuracy of the bootstrap. For the most usual setting
in a standard bioequivalence trial we have n1 = n2 = 12. Here we suggest trimming on both tails by 1 observation,
i.e. � = 1

12 . This is also in accordance with Chow and Tse’s (1990) finding, who report on drastic consequences of an
outlier for the evaluation of bioequivalence.

In summary, the nonparametric approach allows to assess bioequivalence in a cross-over design without making the
normal error assumption or the additivity assumption of the period and treatment effects.

3.5. Example: vasoactive bioavailability study

The following data on a vasoactive drug were kindly supplied by a pharmaceutical company, and the log-transformed
data are given in Table 2.

In the underlying study a generic and a reference formulation of a vasoactive ingredient were compared. Fig. 1 gives
the histograms and kernel density estimators for the period differences and the empirical inverse distribution functions.
An outlier in Sequence 2 can be seen, which is mostly responsible for the differences in the empirical distributions of
the period differences.

The results of tests on normality of the period differences are presented in Table 3. They show some evidence against
the normal assumption of the period differences for Sequence 2.

Fig. 2 gives histograms for the treatment and reference measurements assuming no period effects, showing skewness
and hence nonnormality of the test and reference measurements. Population equivalence cannot be expected, since the
empirical distributions differ, as seen in the empirical quantile function plot. Again, this indicates that the results of a
classical approach might be misleading, since the underlying assumptions are violated in this example.

For comparison, we present now the results of the parametric approach and of the nonparametric approach in
Table 4. The parametric analysis shows that there is strong evidence for a treatment effect, while there is no evidence
for a period or a carry-over effect.Average bioequivalence cannot be shown with Schuirmann’s (1987) TOST procedure.
However, if the FDA (2001) population bioequivalence criterion PBC is used, i.e.

H : PBC = (FT − FR)2 + 	2
T T − 	2

T R

max(	2
T R, 	2

0)
> �p, (16)

with the commonly used values �p = ((ln 1.25)2 + εp)/	2
0, εp = 0.02, 	0 = 0.2, then population bioequivalence can

be concluded in this example (using the procedure suggested by Lee et al., 2004). Here 	2
T l = 	2

Bl + 	2
Wl , l = R, T (cf.

(12)). This is mainly due to the fact that we have highly variable drugs in this example, for which the use of the PBC
criterion is questionable.

Table 2
The log-transformed data from the bioavailability study on a vasoactive drug

Sequence 1 Sequence 2 Sequence 1 Sequence 2

Per. 1 Per. 2 Per. 1 Per. 2 Per. 1 Per. 2 Per. 1 Per. 2

Ref. Test Test Ref. Ref. Test Test Ref.

3.6188 3.3569 3.6836 3.5172 3.4770 3.6641 3.9310 3.5149
3.3540 3.3572 4.2773 3.9694 3.1708 3.6026 3.2648 3.1881
3.2128 3.6398 3.2856 3.1885 3.0632 3.2864 4.0409 3.5149
2.9158 3.2414 3.4421 3.1629 3.1679 2.0248 3.3186 3.2482
3.3306 3.7818 3.0198 2.9132 3.3996 3.7490 3.1716 3.5189
2.8543 3.7632 3.1430 2.4570 3.1554 3.1062 3.9867 3.2993
2.1964 2.7847 2.9153 2.6331 3.5435 3.5204 3.4659 3.5815
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Fig. 1. Histograms of period differences (− nonparametric kernel approximation) and empirical quantile functions of the log-transformed vasoactive
drug data.

Table 3
Tests of normality for the period differences of the (log-)vasoactive drug data

Period Shapiro–Wilks Cramer–von Mises
differences

Statistic p-value Statistic p-value

Sequence 1 0.9630 0.7294 0.0377 0.7173
Sequence 2 0.8791 0.0561 0.0883 0.1680
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Fig. 2. Histograms of reference and test measurements ignoring period effects (– kernel approximation) and empirical quantile functions of the
log-transformed vasoactive drug data.

For the nonparametric analysis, we first investigate whether there is a period effect. The effect of the outlier in the
period differences for Sequence 2 (see Fig. 1) can be clearly seen when no trimming is assumed. In this case evidence
for a period effect is present (p-value> 0.33). Regarding the treatment under the assumption of no period effect, the
BCa method cannot decide in favor of bioequivalence, thus indicting the presence of a treatment effect (as in the
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Table 4
Classical and nonparametric analyses for the vasoactive drug data (�0 = ln(1.25))

Effect Parametric analysis Nonparametric analysis (B = 2000)

� = 1
14 � = 0

Carry-over H : CT = CR = 0
p-value = 0.40

Period H : P1 = P2 = 0 H : 1
2 [��(F1, F2) + ��(G1, G2)] >�2

0
p-value = 0.70 BCa: p-value < 0.01 BCa: p-value = 0.34

Treatment H : FT = FR = 0
(no carry-over) p-value = 0.01

TOST H : ��(F, G) >�0

H : |FT − FR | >�0 (no period effects)
p-value = 0.41 BCa: p-value = 0.26 BCa: p-value = 0.30
FDA PBE H : 1

2 [��(F1, G2) + ��(F2, G1)] >�2
0

H : PBC >
�2

0+0.02
0.04 (allows for period effects)

p-value < 0.01 BCa: p-value = 0.19 BCa: p-value = 0.73

parametric analysis of ABE). In addition, trimming has little effect on the assessment of a treatment effect in this case.
If we are allowing for the presence of a period effect, we still cannot reject the bioequivalence hypothesis, regardless
whether trimming or no trimming is used. However, in case of trimming the p-value is considerably lower than without
trimming, reflecting the effect of the outlier in the period differences for Sequence 2.

Finally, the estimated Mallows distance ��(Fn, Gn) for the treatment effect (allowing for no period effect) is
estimated as 0.2044, with estimated bootstrapped standard error 0.0065, using B = 2000 and � = 1

14 . To interpret an
estimated Mallows distance of 0.2044, recall that in a location-scale family with equal variances this would correspond
to an absolute mean difference of 0.2044 (cf. Munk and Czado, 1998). In comparison, for the parametric analysis the
absolute treatment effect |FT − FR| is estimated as 0.202, with estimated standard error 0.07.

4. Further remarks and extensions

Remark 9 (Higher order cross-over designs). The proposed method can also be applied in higher order cross-over
designs, i.e. when either the number of periods or sequences is larger than two. To this end period effects have to
be defined similarly as in Definition 6. The bootstrap algorithm and the statistic �̂� have to be modified due to the
constraint induced by the periods. As an example, consider a dual two-sequence three-period cross-over design, where
in Sequence I n observations with T −R −R are available and in Sequence II n observations with R −T −T . Here we
have in the first sequence a three-dimensional distribution H 1 with marginals F 1

1 , G1
1, G

1
2, and in the second sequence

H 2 with marginals G2
1, F

2
1 , F 2

2 (cf. Table 5).
We will illustrate the analysis in the simplest case, if we exclude period effects. This would mean that all two-

dimensional marginals from Sequences I and II, respectively, are equal. The test statistic is

�̂� = 1

(1 − 2�)3n

3(n−[n·�])∑
i=[3n·�]+1

|X(i) − Y(i)|2 + Op

(
1

n

)
,

where X(1), . . . , X(3n) and Y(1), . . . , Y(3n) refer to the ordered samples of the combined 3n observations under T and
under R, respectively (cf. also (5)). Bootstrap samples have to be drawn from each sequence separately. Note that
under presence of period effects, the test statistic has to be split into the sum of three parts, i.e. we have to estimate the
Mallows distance in each period and define a bioequivalence measure as

��,p = 1/3{��(F 1
1 , G2

1) + ��(G1
1, F

2
1 ) + ��(G1

2, F
2
2 )}.

Remark 10 (Calculation of power and sample size). Most important for the calculation of the sample size is the power
under equality of the c.d.f.s F and G, i.e. ��(F, G) = 0. Note that in this case asymptotic normality as in Theorem 1
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Table 5
The nonparametric 2 × 3 cross-over design

Period I Period II Period III

Sequence I (H 1) F 1
1 G1

1 G1
2

Sequence II (H 2) G2
1 F 2

1 F 2
2

fails to hold. Here it can be shown that

n�̂�
D
⇒
∫ 1−�

�

(
B1(t) − B2(t)

f ◦ F−1(t)

)2

dt , (17)

where B1(t) and B2(t) are Brownian bridges with Cov[B1(s), B2(t)]= (F−1(s), G−1(t))− st . Observe that this holds
also true for � = 0, provided

∫
x2F(dx) < ∞ and

∫ 1
0 t (1 − t)/f 2(F−1(t)) dt < ∞ (cf. Csörgö and Horvath, 1993;

Lemma 5.3.2). Furthermore, note that the scaling factor in (17) is n and not n1/2 as in Theorem 1. For sample size
calculations, F has to be specified in advance to allow the use of the right-hand side of (17).
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