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1. Introduction

In this paper, we present some technical details required by Mielke et al. [1]. They derived
the Wald-type test for the assessment of non-inferiority in a three-armed model with expo-
nentially distributed, right censored endpoints. The presented test procedures are based on
the asymptotic normality of the ML-estimators. In Theorem A.1 the asymptotic normality
is derived by means of the classical theory of exponential families. Theorem A.2 provides
the optimal allocation to the three groups in terms of minimizing the resulting asymptotic
variance of the ML-estimator for a given total sample size. We start in section 2.1 with an
introduction of the model considered by [1].

2. Model and Proofs of Theorems

2.1. Model and Hypothesis

The following introduction of the model is parallel to Section 2 of [1]. We are concerned
with a three-armed clinical trial where one observes Tki, i = 1, . . . , nk, independent and
exponentially distributed survival times with parameters λk, k = R, T, P , where R, T , and
P abbreviates reference, treatment and placebo group, respectively. To fix the relation of
the parameters λk and the distribution of the survival times we assume that E[Tki] = λk.
Further, let the corresponding censoring times Uki be independent distributed according to
Gk, where Uki is independent of Tki for i = 1, . . . , nk and k = R, T, P . The observations
consist of pairs (Xki, δki), where Xki = min{Tki, Uki} are the observed survival times and
δki = 1{Tki≤Uki}, i = 1, . . . , nk, k = R, T, P , are the corresponding censoring indicators.
Hence, δki = 1 stands for an uncensored observation. Moreover, none of the groups should
asymptotically vanish, i.e. for k = R, T, P and n = nR + nT + np

nk

n
−→ wk (1)

holds for nR, nT , np → ∞ and some wk ∈ (0, 1). Further, we assume that the probabilities
for an uncensored observation should be positive, i.e.

pk := P (δki = 1) > 0,
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for k = R, T, P .
Mielke et al. [1] consider the assessment of non-inferiority of a new treatment to a reference

one in terms of a retention of effect hypothesis on the log scale, i.e.

vs.
HN

0 : log λT − log λP ≥ ∆(log λR − log λP )
KN

0 : log λT − log λP < ∆(log λR − log λP )
(2)

with ∆ ∈ [0,∞). The alternative KN
0 means that the test treatment T achieves more than

∆× 100% of the active control effect, where both are compared to placebo and the effect is
measured via the log relative risk (cf. Rothmann et al. [2]). The hypothesis (2) is equivalent
to

HN
0 : η := log λT − ∆log λR + (∆ − 1) log λP ≥ 0 . (3)

The ML-estimator for η is given by

η̂ = log λ̂T − ∆log λ̂R + (∆ − 1) log λ̂P (4)

by plugging in the ML-estimators

λ̂k =

∑nk

i=1 Xki
∑nk

i=1 δki

for k = R, T, P .

2.2. Asymptotic Normality of the MLE and Optimal Allocation

Asymptotic Normality of the ML-estimator, Theorem A.1: The ML-estimator

η̂ given in (4) is asymptotically normally distributed, i.e.
√

n (η̂ − η)
D−→ N (0, σ2) with

variance

σ2 =
1

wT pT

+
∆2

wR pR

+
(∆ − 1)2

wP pP

. (5)

Proof. For k = R, T, P the density for an observation (Xki, δki) can be written as

hk(λk, x, δ) = λ−δ
k e

− x

λk h̃k(x, δ)

with h̃k(x, δ) = gk(x)1−δ(1 − Gk)δ
1{x≥0}, gk and Gk the density and distribution function,

respectively, of the censoring times Uki. Hence, the densities can be written as an exponential
family

hk(λk, x, δ) = e
− x

λk
−δ log λk h̃k(x, δ).

Therefore the required regularity conditions to obtain asymptotic normality of λ̂k are satis-
fied and we have (confer for example [3, Theorem 4.6])

√
nk (λ̂k − λk)

D−→ N (0, I−1
k )

with Fisher information matrices Ik, which can be computed by

Ik = −Eλk

[

∂2

∂2λk

log hk(λk,X, δ)

]

=
pk

λ2
k

with pk = P (δki = 1) > 0 by assumption. Consequently, the transformed ML-estimator√
nk(log λ̂k − log λk) has asymptotic variance p−1

k , which yields together with the indepen-
dence of the groups and (1), that

√
n(η̂ − η) is asymptotically normal with variance σ2

(5).
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Thus, based on Theorem A.1 we reject HN
0 for a given significance level α if

√
n

η̂

σ̂
≤ zα ,

where zα denotes the α-quantile of the standard normal distribution and σ̂2 is a consistent
estimator for σ2. Based on Theorem A.1 Mielke et al. [1] point out that HN

0 is rejected with
a probability of at least 1 − β, if for the total sample size n

n ≥ σ2

η2
(zα − z1−β)

2
(6)

holds, whereas the significance level α, λk, pk, ∆ and hence also η given in (3) are pre-
specified in planning a clinical trial. Thus, each term on the right hand side other than σ2 is
fixed. The asymptotic variance σ2 (5) depends on the allocation of the samples. Theorem A.2
presents the optimal allocation in terms of minimizing σ2 and therewith the total required
sample size n, confer (6).

Optimal allocation, Theorem A.2: The asymptotic variance σ2 in (5) is minimized in
W =

{

(wR, wP ) ∈ [0, 1]2 : wR + wP ≤ 1
}

for

w∗
R =

∆ p−1
P

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

and w∗
P =

|1 − ∆| p−1
P

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

.

Proof. Equating partial derivatives of σ2 with zero gives

∂

∂wR

σ2 =
1

p2
T (1 − wR − wP )2

− ∆2

p2
Rw2

R

= 0 (7)

∂

∂wP

σ2 =
1

p2
T (1 − wR − wP )2

− (1 − ∆)2

p2
P w2

P

= 0 . (8)

This yields a polynomial of degree four and four possible roots,

(wR, wP ) = ((1 − ∆) p−1
P + ∆ p−1

R − p−1
T )−1 · (∆ p−1

R , (1 − ∆) p−1
P ) ,

((∆ − 1) p−1
P + ∆ p−1

R − p−1
T )−1 · (∆ p−1

R , (∆ − 1) p−1
P ) ,

((1 − ∆) p−1
P + ∆ p−1

R + p−1
T )−1 · (∆ p−1

R , (1 − ∆) p−1
P ) ,

((∆ − 1) p−1
P + ∆ p−1

R + p−1
T )−1 · (∆ p−1

R , (∆ − 1) p−1
P ) .

However,

(w∗
R, w∗

P ) =

(

∆ p−1
R

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

,
|1 − ∆| p−1

P

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

)

is the only solution to (7) and (8) contained in W . Finally, the Hessian matrix of σ2 with
respect to (wR, wP ) at (w∗

R, w∗
P ) is positive definite since

∂2

∂2wR

σ2(w∗
R, w∗

P ) =
2 pT pR(p−1

T + ∆p−1
R )

(

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

)3

∆
> 0

and the determinant of the Hessian matrix is equal to

4 pT pR pP

(

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

)7

|1 − ∆| ∆ > 0 .

Hence a local minimum is attained at (w∗
R, w∗

P ), which is also the global minimum in W ,
because it is the only stationary point in W .
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