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Abstract

We present general results on the identifiability of finite mixtures of elliptical distrib-

utions under conditions on the characteristic generators or density generators. Examples

include the multivariate t distribution, symmetric stable laws, exponential power and

Kotz distributions. In each case, the shape parameter is allowed to vary in the mixture,

in addition to the location vector and the scatter matrix. Furthermore, we discuss the

identifiability of finite mixtures of elliptical densities with generators that correspond to

scale mixtures of normal distributions.
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1 Introduction

Finite mixture distributions have been widely used in the statistical and general scientific

literature, both as tools for modeling population heterogeneity and as a flexible method for

relaxing parametric distributional assumptions. Comprehensive surveys are available in Tit-

terington et al. (1985), Lindsay (1995), Böhning (2000) and McLachlan & Peel (2000). The

assumption of identifiability for a statistical model lies at the heart of most statistical theory
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and practice (Titterington et al., 1985, p. 35). In the context of finite mixture models, iden-

tifiability allows for the recovery of the mixing distribution from the mixture and is essential

for consistent estimation (Leroux, 1992). Different variants of the identifiability problem arise

in specific mixture models used in practice (Link, 2003; Holzmann et al., 2006).

Teicher (1961) pioneered the study of identifiability for finite mixture distributions, and iden-

tifiability has been proved in numerous special cases since. Nevertheless, identifiability often

is tacitly assumed to hold while proofs remain unavailable (Titterington et al., 1985, section

3.1.3; Lindsay et al., 2004, p. 396), and the literature appears to be incomplete in two ways.

First, the number of parameters allowed to vary in the mixture is limited. Typically, a single

location parameter or univariate location and scale parameters are considered only (Holzmann

et al., 2004). However, it is often desirable to allow additional shape parameters to vary with

the mixture components as well. Second, results for multivariate distributions are generally

unavailable, with few but notable exceptions. Yakowitz & Spragins (1968) showed that finite

mixtures of multivariate normal distributions with variable mean vectors and covariance ma-

trices are identifiable, and Kent (1983) proved a general result on the identifiability of finite

mixtures of distributions on Stiefel manifolds. Chandra (1977) studied identifiability of finite

mixtures on general measurable spaces.

Our work addresses both limitations simultaneously, by considering finite mixtures of elliptical

densities of the form

fα,p(x) = |Σ|−1/2 fp

(
(x− µ)T Σ−1(x− µ); θ

)
, x ∈ Rp, α = (θ, µ, Σ) ∈ Ap. (1)

Here, fp(· ; θ) is a density generator, that is, a non-negative function on [0,∞) or (0,∞) such

that the spherically symmetric function fp(xTx; θ), x ∈ Rp, integrates to 1. The parameter

vector α = (θ, µ, Σ) belongs to Ap ⊂ Rk×p×p(p+1)/2 where µ ∈ Rp is a location parameter, Σ

is a positive definite scatter matrix, |Σ| denotes its determinant, and θ ∈ Θ ⊆ Rk may be an

additional shape parameter which may also be allowed to vary in the mixture. Finite mix-

tures of elliptical densities play crucial roles in model-based clustering, discriminant analysis,
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density estimation and other applications (Fraley & Raftery, 2002).

Elliptically symmetric densities can be defined via characteristic generators or via density

generators (Kelker, 1970; Cambanis et al., 1981; Fang et al., 1990). Specifically, a function

φ(u), u ≥ 0, is a characteristic generator in dimension p ≥ 1 if φ(tT t) is the characteristic

function of a probability distribution on Rp. A characteristic generator in dimension p is a

characteristic generator in dimension p′ if p′ ≤ p, but not necessarily if p′ > p. If the proba-

bility distribution in Rp, determined by φ(tT t), has a density, it is of the form fp(xT x). The

density generator fp depends on the dimension, p, and generates a location-scatter family of

elliptically symmetric densities in Rp.

The paper is organized as follows. In section 2 we present identifiability theorems for ellip-

tically symmetric densities, defined via characteristic generators or via density generators.

When expressed in terms of characteristic functions, identifiability questions for elliptical dis-

tributions reduce to univariate problems, and this allows us to work with tail conditions on

the characteristic generators. In terms of density generators, we prove identifiability under

tail conditions, or smoothness conditions at the origin. These results extend and complete

previous work by Teicher (1961, 1963), Yakowitz & Spragins (1968), Kent (1983) and Holz-

mann et al. (2004).

Section 3 turns to examples. In particular, we show that finite location-scatter mixtures from

the multivariate t distribution, even with variable degree of freedom, are identifiable. Peel

& McLachlan (2000) proposed the use of mixtures of this type to robustify cluster analysis

and discussed maximum likelihood estimation via the EM algorithm in such models. We

also prove identifiability of mixtures from multivariate stable laws, where the characteristic

exponent takes the role of the variable shape parameter, and we consider finite mixtures of

Kotz type distributions. These results are summarized in Table 1. Further examples for

identifiable finite location-scatter mixtures include generalized hyperbolic secant and Bessel

distributions.

Table 1 about here
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Section 4 considers finite location-scatter mixtures of elliptical distributions with completely

monotone characteristic generators, corresponding to scale mixtures of normal distributions.

Here, a condition for identifiability can be stated in terms of the tail behavior of the Laplace

transform of the mixing measure in the scale mixture. We extend the respective Abelian

theory which links the tail behavior of the Laplace transform to the behavior of the mixing

distribution at the origin, and this result might be of independent interest. The paper closes

with a discussion in Section 5. All proofs are deferred to the Appendix.

2 Identifiability Theorems

Finite mixtures are said to be identifiable if distinct mixing distributions with finite support

correspond to distinct mixtures. In the present context, finite mixtures from the location-

scatter family {fα,p : α = (θ, µ, Σ) ∈ Ap} are identifiable if a relation of the form

m∑
j=1

λj fαj ,p(x) =
m∑

j=1

λ′j fα′
j ,p(x), x ∈ Rp, (2)

where m is a positive integer,
∑m

j=1 λj =
∑m

j=1 λ′j = 1 and λj , λ
′
j ≥ 0 for j = 1, . . . ,m,

implies that there exists a permutation σ ∈ Sm such that (λj , αj) = (λ′σ(j), α
′
σ(j)) for all

j. Evidently, finite mixtures are identifiable if the family {fα,p : α = (θ, µ, Σ) ∈ Ap} is

linearly independent. A classical result of Yakowitz & Spragins (1968) states that this linear

independence is a necessary and sufficient condition for identifiability.

2.1 Identifiability via characteristic generators

Let φ(u; θ), where u ≥ 0 and θ ∈ Θ, be a parametric family of characteristic generators,

giving rise to spherically symmetric characteristic functions φ(tTt; θ), t ∈ Rp, where 1 ≤ p < q

and 1 ≤ q ≤ ∞. The positive integer q gives an upper bound on the permissible dimen-

sions in which φ(u; θ) is a characteristic generator, and might be infinite. We suppose that

the associated distributions have spherically symmetric densities fp(xTx; θ), x ∈ Rp, and
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recall that the density generator, fp, depends on the dimension, p. The respective family

{fα,p : α = (θ, µ, Σ) ∈ Ap} of elliptical densities is defined in (1).

The following result shows that identifiability reduces to a univariate problem if the distrib-

utions are defined via characteristic generators.

Lemma 1. Suppose that a parametric family of characteristic generators gives rise to families

of elliptical densities {fα,p : α = (θ, µ, Σ) ∈ Ap} in dimension 1 ≤ p < q. Then the identifi-

ability of finite mixtures from the univariate family {fα,1 : α ∈ A1} implies the identifiability

of finite mixtures from the family {fα,p : α ∈ Ap} for each 1 ≤ p < q.

Next we give a sufficient condition for identifiability. To this end, we introduce a scale

parameter, a > 0, and consider the family

φβ(u) = φ(au; θ), β = (a, θ) ∈ (0,∞)×Θ =: B. (3)

Theorem 1. Suppose that a parametric family of characteristic generators gives rise to fam-

ilies of elliptical densities {fα,p : α = (θ, µ, Σ) ∈ Ap} in dimension 1 ≤ p < q. Suppose there

exists a total ordering � on the set B such that β1 ≺ β2 implies

lim
u→∞

φβ2(u)
φβ1(u)

→ 0 (4)

for the corresponding characteristic generators. Then finite mixtures from the class {fα,p :

α = (θ, µ, Σ) ∈ Ap} of elliptical distributions in Rp are identifiable for each 1 ≤ p < q.

Note that the shape parameter is allowed to vary in the mixture, in addition to the location

parameter and the scatter matrix. Pure location-scatter mixtures are covered by the special

case in which Θ is trivial.

2.2 Identifiability via density generators

Typically, identifiability of finite mixtures is proved via integral transforms such as the Fourier

or Laplace transform (Teicher, 1961). However, it is often more convenient to argue in terms
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of densities, since the corresponding transforms may not be known in closed form or may

even not exist. A prominent example was given by Kent (1983), who argued directly via the

densities of certain distributions on Stiefel manifolds.

In this section we present conditions on density generators that guarantee the identifiability

of finite mixtures from the associated elliptical distributions. Let fp(u; θ), where u ∈ [0,∞)

or (0,∞) and θ ∈ Θ, be a parametric family of density generators on Rp, that is, fp(xTx; θ) is

non-negative and has unit integral over x ∈ Rp, for all θ ∈ Θ. The associated location-scatter

family {fα,p : α = (θ, µ, Σ) ∈ Ap} is given by (1).

Theorem 2. Let fp(· ; θ), θ ∈ Θ, be a parametric family of density generators for spherically

symmetric distributions in Rp. Let C = Θ × (0,∞) × R and let γj = (θj , aj , bj) ∈ C for

j = 1, 2. Suppose there exists a total ordering � on the set C such that γ1 ≺ γ2 implies

lim
u→∞

fp(a2u
2 + b2u + c2; θ2)

fp(a1u2 + b1u + c1; θ1)
= 0 for c1, c2 ∈ R. (5)

Then finite mixtures from the family {fα,p : α = (θ, µ, Σ) ∈ Ap} of elliptical distributions in

Rp are identifiable.

The following result concerns location-scatter mixtures for density generators that lack smooth-

ness at the origin.

Theorem 3. Let fp be a density generator for a spherically symmetric distribution in Rp.

Suppose that fp has continuous derivatives of any order everywhere on (0,∞), and suppose

that there exists a positive integer k0 such that the function h(u) = fp(u2), u ∈ R \ {0},

satisfies

h(2k−1)(0+) 6= h(2k−1)(0−) for k = k0, k0 + 1, . . . (6)

Then finite mixtures from the location-scatter family {fα,p : α = (µ,Σ)} are identifiable.
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3 Examples

Example 1 (Multivariate t distribution). The multivariate t distribution with location pa-

rameter µ, scatter matrix Σ and θ > 0 degrees of freedom has density function

fα,p(x) =
Γ( θ+p

2 )

πp/2Γ( θ
2)|Σ|1/2

(
1 + (x− µ)T Σ−1(x− µ)

)−(θ+p)/2
, x ∈ Rp,

where α = (θ, µ, Σ) ∈ Ap. Finite mixtures from the multivariate t distribution are identifiable,

even with variable degree of freedom. Indeed, the respective characteristic generator (Kotz

& Nadarajah, 2004, p. 39) is given by

φ(u; θ) =
(uθ)θ/4

2θ/2−1Γ( θ
2)

Kθ/2

(√
uθ

)
, u ≥ 0, (7)

where Kθ/2 denotes the McDonald or modified Bessel function of the second kind (Watson,

1944, p. 78). A well known estimate (Watson, 1944, p. 202) implies that

φβ2(u)
φβ1(u)

∝ e−
√

u (
√

a2θ2−
√

a1θ1)u(θ2−θ1)/4 as u →∞, (8)

where βj = (aj , θj) for j = 1, 2, and ∝ means that the quotient converges to a positive

constant. We define a total ordering on the set B, specified in (3), as follows: β1 ≺ β2

if a1θ1 < a2θ2, or if a1θ1 = a2θ2 and θ1 > θ2. With this total ordering, the asymptotic

relationship (8) implies (4), and Theorem 1 applies. A straightforward extension of the

argument shows that finite mixtures of elliptical distributions from the union of multivariate

t and normal distributions are also identifiable.

Example 2 (Symmetric stable law). The characteristic generator of the multivariate sym-

metric stable law with characteristic exponent 0 < θ ≤ 2 is given by

φ(u; θ) = exp
(
− uθ/2

)
, u ≥ 0.

To show that finite mixtures from the associated family of elliptically symmetric densities are

identifiable, let βj = (aj , θj) for j = 1, 2 and define a total ordering on the set B, specified

in (3), as follows: β1 ≺ β2 if θ1 < θ2, or if θ1 = θ2 and a1 < a2. With this total ordering,

Theorem 1 applies.
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Example 3 (Kotz type distributions). Kotz type distributions in Rp (Fang et al., 1990, p. 76)

are defined via the density generators

fp(u; θ) =
sΓ(p

2)

πp/2 Γ(2r+p
2s )

ur exp
(
− us

)
, u > 0,

where θ = (r, s) ∈ (−p/2,∞) × (0,∞). This flexible family includes the exponential power

distribution (Box & Tiao, 1992, p. 157), the original Kotz distribution (Fang et al., 1990,

p. 76) and the multivariate normal law as the special cases in which r = 0, s = 1 and

(r, s) = (0, 1), respectively. When compared to Gaussian densities, Kotz type distributions

allow for lighter as well as heavier tail behavior.

We apply Theorem 2 to show that finite location-scatter mixtures from the Kotz family with

variable shape parameter θ = (r, s) ∈ (−p/2,∞)× (1/2,∞) are identifiable. Let θj = (rj , sj)

and γj = (θj , aj , bj) for j = 1, 2 and define a total ordering on the set C, specified in the

theorem, as follows: γ1 ≺ γ2 if s1 < s2; or if s1 = s2 and a1 < a2; or if s1 = s2, a1 = a2 and

b1 < b2; or if s1 = s2, a1 = a2, b1 = b2 and r1 > r2. With this total order, condition (5) is

satisfied and Theorem 2 applies.

For fixed parameter values condition (6) is satisfied, unless both r and s are integers. Hence,

Theorem 3 shows that the respective location-scatter families are identifiable. For r = 0 and

s = 1/2 we obtain the identifiability of finite location-scatter mixtures from the multivariate

Laplace distribution (k0 = 1). Al-Hussaini & Ahmad (1981) considered mixtures of univariate

Laplace distributions, but proved identifiability with fixed location or scale parameters only.

A similar comment applies to many of their examples. The aforementioned results can be

combined to prove the identifiability of location-scatter mixtures for the exponential power

distribution with variable shape parameter s ≥ 1/2. We omit the tedious proof.

Example 4 (Location-scatter mixtures). We give additional examples of elliptical distribu-

tions with identifiable finite location-scatter mixtures.

The multivariate generalized hyperbolic secant distribution (Harkness & Harkness, 1968) with
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shape parameter θ > 0 has characteristic generator

φ(u; θ) = sech2θ(
√

u/2) =
(
(e
√

u/2 + e−
√

u/2)/2
)−2θ

, u ≥ 0.

For fixed θ > 0 finite mixtures from the associated location-scatter family are identifiable.

Indeed, φ(au; θ) ∼ e−θ
√

a u as u → ∞ for a > 0, and Theorem 1 applies with the standard

order on (0,∞). However, Theorem 1 cannot be used to prove identifiability with variable

shape parameter.

The symmetric Bessel distribution (Fang et al., 1990, p. 92) with shape parameter θ > 0

has a density generator fp(· ; θ) that is proportional to the characteristic generator (7) of the

multivariate t distribution. One can show that for fixed shape parameter θ, Theorem 3 applies,

yielding identifiability of the associated location-scatter mixtures. Indeed, fp evidently has

continuous derivatives of all orders on (0,∞) since this holds for the modified Bessel function

K. Furthermore, (6) can be checked with k0 = 1 using the series expansions in Abramowitz

and Stegun (1965, p. 375).

Example 5 (Band-limited densities). Densities with compactly supported characteristic gen-

erators are called band-limited and play significant roles in signal processing (Kay, 1988). Let

φ be a characteristic generator in Rp where 1 ≤ p < q. A slight variant of the arguments in the

proof of Theorem 1 shows that if there exists d > 0 such that φ(u) = 0 for u ≥ d and φ(u) 6= 0

for u < d, then finite mixtures from the respective location-scatter family {fα,p : α = (µ,Σ)}

are identifiable.

The classical example of a non-identifiable location-scatter family is based on the uniform

distribution on R (Teicher, 1961). We give a similar counterexample.

Example 6 (Triangular distributions). Consider the univariate triangular location-scale fam-

ily

f(x;µ, a) =
1
a

(
1−

∣∣∣∣x− µ

a

∣∣∣∣ )
1|x−µ|≤a, x ∈ R,
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where µ ∈ R and a > 0. It is easily seen that

f(x; 0, 1) =
4
9

f(x; 1
3 , 2

3) +
4
9

f(x;−1
3 , 2

3) +
1
9

f(x; 0, 1
3), x ∈ R.

Hence, finite location-scale mixtures of the triangular density are not identifiable.

4 Normal scale mixtures

In this section we study conditions on a particular class of characteristic generators φ, as to

guarantee identifiability of the associated location-scatter families.

To characterize this class, we recall Schoenberg’s theorem, which states that a function φ is

a characteristic generator in any dimension if and only if it is of the form

φ(u) =: φG(u) =
∫ ∞

0
e−u r/2 dG(r), u ≥ 0, (9)

where G is a probability measure on (0,∞). See, for example, Fang et al. (1990, p. 48).

Equivalently, the associated elliptical distributions form scale mixtures of normal distribu-

tions. Many of the examples in section 3 are of this form (Gneiting, 1997).

We now fix the measure G and consider the respective location-scatter family {fα,p : α =

(µ,Σ)}, defined in terms of the associated characteristic functions,

φα,G(t) = eiµT tφG

(
tT Σt

)
, t ∈ Rp.

Note that φG(2u) equals the Laplace transform, LG(u), of the mixing measure, G, in the rep-

resentation (9). Hence, if LG(a2u)/LG(a1u) → 0 as u →∞ for a2 > a1 > 0 or, equivalently,

lim
u→∞

LG(au)
LG(u)

= 0 for a > 1, (10)

then Theorem 1 implies that finite mixtures from the family {fα,p, α = (µ,Σ)} generated by

φG are identifiable. The following result provides a sufficient condition.

Theorem 4. Suppose that the density g of G exists and satisfies

lim
r→0

g(r)
g(a r)

= 0 for a > 1. (11)
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Then the tail condition (10) holds and, consequently, finite mixtures from the family {fα :

α = (µ,Σ)} generated by φG are identifiable.

In particular, if the mixing density g satisfies

g(r) ∝ rβe−c/rα
as r → 0 (12)

for some α, c > 0 and β ∈ R, or decays even faster as r → 0, then (11) holds. On the other

hand, if g satisfies

g(r) ∝ rβ as r → 0 (13)

for some β ≥ 0, or decays even slower as r → 0, then LG decays at most algebraically and

f lacks smoothness at the origin; therefore, Theorem 3 applies. Clearly, (12) and (13) span

a comprehensive range of behaviors for the mixing distribution under which finite mixtures

from the location-scatter family generated by φG are identifiable. It is tempting to conjecture

that finite location-scatter mixtures based on a normal scale mixture are always identifiable,

irrespectively of the mixing measure.

Note that Theorem 4 links the tail behavior of the Laplace transform LG to the behavior of

the measure G at the origin. This result complements the Abelian theory in section XIII of

Feller (1973) and might be of independent interest.

5 Discussion

There appears to be an understanding in the literature that finite location-scatter mixtures

of continuous densities are generally identifiable, with few exceptions (McLachlan & Peel,

2000, p. 28). However, various questions remain open, particularly as to which densities

are the exceptional ones, which parameters are allowed to vary in the mixture, and as to

the effects of smoothness and dimensionality. We believe that our results are reassuring, in

that identifiability for elliptical distributions generally persists in higher dimensions, and if in

addition to the location vector and scatter matrix additional shape parameters are allowed to
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vary as well. Furthermore, our results apply to differentiable densities and also to densities

that lack smoothness. Some of our findings, and in particular Theorems 2 and 3, might

well extend to location-scatter families associated with less stringent or alternative notions of

multivariate symmetry, such as those discussed by Fang et al. (1990).
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Appendix: Proofs

Proof of Lemma 1. Let the dimension, p, be fixed and suppose that

n∑
j=1

λj fαj,p(x) = 0, x ∈ Rp, (14)

where λj ∈ R and where the tuples αj = (θj , µj ,Σj) ∈ Ap are pairwise distinct. Taking the p-

dimensional Fourier transform in (14) gives

n∑
j=1

λje
iµT

j tφ(tT Σjt; θj) = 0, t ∈ Rp.

Yakowitz & Spragins (1968, p. 211) show that there exists z ∈ Rp such that the tupels αz
j =

(θj , µ
T
j z, zT Σj z) are pairwise distinct. If we write t = uz for u ∈ R then

n∑
j=1

λje
iuµT

j zφ(u2zT Σjz; θj) = 0, u ∈ R.

Taking the one-dimensional inverse Fourier transform gives

n∑
j=1

λj fαz
j,1(t) = 0, t ∈ R,

which implies λ1 = · · · = λn = 0 by our identifiability assumption on the univariate family.

Proof of Theorem 1. By Lemma 1, it suffices to consider the case p = 1. Starting with the relation

(14), we take the Fourier transform and obtain

n∑
j=1

λje
iµjuφβj

(u2) = 0, u ∈ R,

where βj = (σ2
j , θj) and σ2 stands for the univariate variance parameter. Without loss of generality

we may assume that β1 � · · · � βn. Let m ≥ 1 be such that β1 = · · · = βm ≺ βm+1 � · · · � βn; the

14



case β1 = · · · = βn is treated similarly. Dividing by eiµ1uφβ1(u
2) and rearranging terms, we get

λ1 +
m∑

j=2

λje
iu(µj−µ1) +

n∑
j=m+1

λje
iu(µj−µ1)

φβj
(u2)

φβ1(u2)
= 0, u ∈ R. (15)

From (4) and (15) we find that
∑m

j=2 λj eiu(µj−µ1) → −λ1 as u → ∞. Since µj − µ1 6= 0 for

j = 2, . . . ,m, there exists u0 ∈ R such that u0(µj − µ1) ∈ (0, 2π) mod 2π for j = 2, . . . ,m. Now∑m
j=2 λj eilu0(µj−µ1) → −λ1 as l → ∞; hence, the arithmetic mean of these terms converges to −λ1,

too. However, Lemma 2.1 in Holzmann et al. (2004) implies that

1
N

N−1∑
l=0

m∑
j=2

λj eilu0(µj−µ1) → 0 as N →∞,

thereby showing that λ1 = 0. An inductive argument completes the proof.

Proof of Theorem 2. Suppose that
m∑

j=1

λj fp

(
(x− µj)T Σ−1

j (x− µj); θj

)
= 0, x ∈ Rp,

where the tuples αj = (µj ,Σj , θj) are pairwise distinct, and where the |Σj |−1/2 are subsumed into the

λj . If we put x = uz where u varies over R and z ∈ Rp is considered fixed, then

(x− µj)T Σ−1
j (x− µj) = aju

2 + bju + cj ,

where aj = zT Σ−1
j z and bj = −2 µT

j Σ−1
j z, and we conclude that

λ1 = −
m∑

j=2

λj

fp

(
aju

2 + bju + cj ; θj

)
fp(a1u2 + b1u + c1; θ1)

, u ∈ R. (16)

The argument in Yakowitz & Spragins (1968, p. 211) shows that there exists z ∈ Rp such that

the tuples (θj , aj , bj) are pairwise distinct. Hence, we can assume without loss of generality that

(θ1, a1, b1) ≺ · · · ≺ (θm, am, bm). In view of (5), letting u → ∞ in (16) implies λ1 = 0, and the proof

is completed by an inductive argument.

Proof of Theorem 3. Suppose that
m∑

j=1

λj fp

(
(x− µj)T Σ−1

j (x− µj)
)

= 0, x ∈ Rp,

where the tuples (µj ,Σj) are pairwise distinct. Put x = uz + µ1 where u varies over R and z ∈ Rp is

chosen such that the following hold: uz +µ1−µj 6= 0 ∈ Rp for u ∈ R unless µj = µ1 and, furthermore,

the σ2
j := zT Σ−1

j z are pairwise distinct for the indices j with µj = µ1. Then it follows that∑
j|µj=µ1

λj σ2k−1
j h(2k−1)(u σj) = −

∑
j|µj 6=µ1

λj h
(2k−1)
j (u), u ∈ R \ {0}, (17)
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where hj(u) = fp

(
‖Σ−1/2

j (uz + µ1 − µj)‖2
)
. The right-hand side of (17) is continuous at u = 0, which

requires that ∑
j|µj=µ1

σ2k−1
j λj = 0 for k = k0, . . . , k0 + m− 1,

where m denotes the number of terms in the sum. Since the Vandermonde matrix has full rank, this

linear system implies that λj = 0 for all indices j such that µj = µ1. Proceeding inductively, we see

that λj = 0 for all j.

Proof of the claim in Example 5. By Lemma 1 we may suppose that p = 1. Starting with (14), we

take the Fourier transform and obtain

n∑
j=1

λje
iµjuφ(σ2

j u2) = 0, u ∈ R,

where we may assume that σ1 ≤ · · · ≤ σn and σ1 = · · · = σm < σm+1. Division by φ(σ2
1 u2) yields∑m

j=1 λje
iµju = 0 for d/σ2

m+1 < u2 < d/σ2
1 . The functions eiµju are analytic; hence,

∑m
j=1 λje

iµju = 0

for u ∈ R, and the proof is completed in analogy to the proof of Theorem 1.

Proof of Theorem 4. Suppose that a > 1 and consider the decomposition

LG(au) =
∫ u−1/2

0

e−aurg(r) dr +
∫ ∞

u−1/2
e−aurg(r) dr = I1 + I2.

In order to estimate I2/LG(u), note that e−aurg(r) ≤ e−urg(r)e−(a−1)u1/2
for r ≥ u−1/2, which implies

I2

LG(u)
≤

∫∞
u−1/2 e−aurg(r) dr∫∞
u−1/2 e−urg(r) dr

≤ e−(a−1)u1/2
→ 0 as u →∞.

Concerning I1, we find that

I1

LG(u)
≤

∫ u−1/2

0
e−aurg(r) dr∫ au−1/2

0
e−urg(r) dr

=

∫ au1/2

0
e−s g

(
s/(au)

)
ds

a
∫ au1/2

0
e−s g

(
s/u

)
ds

. (18)

From (11),

sup
s∈[0,au1/2]

g(s/(au))
g(s/u)

= sup
r∈[0,u−1/2]

g(r)
g(ar)

→ 0 as u →∞,

and this implies that the quotient in (18) tends to zero, thereby proving (10).
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Table 1: Examples of Location-Scatter Families in Rp with Identifiable Finite Mixtures

Distribution Additional Shape Parameters Shape Parameter in Mixture

Multivariate t degrees of freedom θ > 0 variable

Symmetric stable characteristic exponent 0 < α ≤ 2 variable

Kotz shape parameter r > −p/2 variable

Exponential power exponent s > 0 variable with s ≥ 1
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