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Intrinsic MANOVA for Riemannian Manifolds with
an Application to Kendall’s Space of Planar

Shapes
Stephan Huckemann, Thomas Hotz, and Axel Munk

Abstract—We propose an intrinsic multi-factorial model for data on Riemannian manifolds as typically occur in the statistical analysis
of shape. Due to the lack of a linear structure, linear models cannot be defined in general; to date only one-way MANOVA is available.
For a general multi-factorial model, we assume that variation not explained by the model is concentrated near elements defining the
effects. By determining the asymptotic distributions of respective sample covariances under parallel transport, we show that they can be
compared by standard MANOVA. Often in applications, manifolds are only implicitly given as quotients where the bottom space parallel
transport can be expressed through a differential equation. For Kendall’s space of planar shapes, we provide an explicit solution. We
illustrate our method by an intrinsic two-way MANOVA for a set of leaf shapes. While biologists can identify genotype effects by sight,
we can detect height effects that are otherwise not identifiable.

Index Terms—Shape Analysis, Non-Linear Multivariate Analysis of Variance, Riemannian Manifolds, Orbifolds, Orbit Spaces,
Geodesics, Lie Group Actions, Non-Linear Multivariate Statistics, Covariance, Inference, Test, Intrinsic Mean, Forest Biometry

✦

1 INTRODUCTION

In high level image analysis and understanding, e.g.
for security or morphology related issues in biome-
try, reliable pattern recognition is of particular interest.
One may either model biometric feature expression in
a way directly reflecting an underlying specific image
understanding (e.g. [20]), or in a rather generic setting
using statistics to obtain a “low dimensional” feature
expression. Other potential applications of interest may
include geophysical measurements or measurements of
the shape of molecules as they occur in structural biology
and drug design. In this work our aim is to generalize
statistical testing methodology. In the context of image
analysis research on this is rather sparse, for some refer-
ences see [5] or [6].

We undertake this by generalizing “linear models” to
data on Riemannian manifolds. In classical multivariate
analysis (e.g. [37], [3] and [8]), linear models such as the
two-factorial model

Zi,j,n = µi,j + ǫi,j,n (1)

serve as a powerful tool to identify and discriminate
between multiple effects. Here, i, j denote the levels of
two factors and the replications are numbered by n.
Due to the linear formulation, multivariate analysis of vari-
ance (MANOVA) can be employed to test corresponding
hypotheses. Although classical MANOVA is developed
under the assumption of normality, it is known that
MANOVA is to some extent robust to nonnormality if
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fourth moments are finite (cf. [36, p. 378-9]). In this paper
we are concerned with an extension of this method to
data on more general, non-linear spaces. Usually, values
of random variables on non-linear spaces permit no ad-
ditive coupling thus rendering the very notion of “linear
models” inappropriate. In some applications (cf. e.g. [27]
as well as [13]) a non-commutative multiplication may
be available making the definition of a non-commutative
multiplicative model possible. In our work, however,
we aim at more general spaces as occur for example
in the statistical analysis of shape. In MANOVA it is
important for interpretation to decompose the effects
µi,j = αi + βj + γi,j into main and interaction effects.
We stress that for our purposes additive models like

Zi,j,n = αi + βj + γi,j + ǫi,j,n

can in general not be formulated and verified by a de-
composition of variance. The difficulty there is in general
two-fold: firstly, because of the lack of a commutative
multiplication, the model would depend on the order of
the effects; and secondly, there is no multiplication in
general, i.e. the very notion of “effects” (in particular,
acting distinctly corresponding to γi,j = 0) is not at all
obvious and an issue of separate research ([19], e.g. what
does it mean that two different shapes are deformed
“in the same way”?). Rather one may assume different
intrinsic means µi,j (equivalently an “expected value”
([42]) or a “center of gravity” w.r.t. an intrinsic non-
Euclidean metric ([30, p.109]) for each combination of
levels resulting in a test of a hypothesis

H0: there are µi such that µi,j = µi for all levels j

versus the alternative
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H1: there is a pair (i, j) 6= (i, j′) with µi,j 6= µi,j′ .

Suppose that random variables Pi,j,n are distributed
on a Riemannian manifold. Effects explained by the
model result in distributions around different intrinsic
means for each level. These distributions carry the re-
maining variation which, under the model hypothesis,
is confined to a local neighborhood of such a mean,

X ′
i,j,n = exp−1

µi,j
(Pi,j,n) . (2)

Here, the Euclidean data Zi,j,n of (1) corresponds to data
Pi,j,n on the manifold in (2), the Euclidean errors ǫi,j,n

correspond to tangent space valued errors X ′
i,j,n under

the inverse Riemann exponential, the tangent space located
at the mean µi,j .

In order to compare error covariances in different
tangent spaces with one-another, some connection be-
tween these tangent spaces is necessary. If the error
distributions are anisotropic then the desired connection
should respect anisotropy as well. As such a connection,
the Levi-Civitá connection, also called parallel transport
of the corresponding Riemannian structure qualifies. In
fact in a Euclidean space, parallel transport guarantees
the “linearity” of the corresponding linear model. In
general, parallel transport from one point to another is
unique only if there is a unique geodesic segment of
minimal length joining the two. Hence, we assume that
all random shape variables are supported by a subset
of the Riemannian manifold in which any point can
be connected by a unique minimizing geodesic to a
prespecified offset. For most realistic data this will be
the case with probability one.

Within this framework, intrinsic MANOVA can be
performed based on classical MANOVA thus allowing
for testing of different models as we show in Sections
2 and 3. We note that testing a model with one global
effect versus a single factorial model with several levels
does not require parallel transport: since the means
do not differ under the null hypothesis, the test can
be performed in the overall mean’s tangent space. For
the intrinsic mean, such tests have been proposed by
[4]. Using extrinsic means rather than intrinsic means,
corresponding tests are available from [10, Chapter 7],
[17] as well as [4]. Testing models with at least one factor
influencing the outcome, however, requires a connection
of different tangent spaces which is naturally provided
by parallel transport.

For spheres, parallel transport is easily accessable, cf.
Example A.2. Often in applications however, the Rie-
mannian manifold in question is given only as a quotient
and thus parallel transport is not explictly available. In
this case a formula due to [40] can be used to determine
parallel transport. We develop the necessary details in
the appendix and explicitly determine in a short cal-
culation parallel transport on Kendall’s space of planar
shapes (which are essentially complex projective spaces)
in Appendix A.2. We note that [33] computed paral-
lel transport differently, based on which, [31] extended

spline-fitting for spherical curves by [24] to shape curves.
In another method [12] extended polynomial regression
for intrinsic curve fitting.

We conclude our work with an application to forest
biometry in Section 4 that, in fact, initiated this research.
Two-dimensional shapes of poplar leafs are modeled by
genotype and height levels. To the biologist, the first
factor’s influence is identifiable by sight, the second
factor’s is not. Intrinsic MANOVA for Kendall’s spaces of
planar shapes, however, identifies height effects as well.

2 MULTI-FACTORIAL MODELS FOR MANI-
FOLDS

In this section we consider random points on manifolds.
First we review the concept of intrinsic means. Then
we formulate the multi-factorial model for manifolds and
reduce the corresponding test to classical MANOVA
applied to nonnormal distributions. In conclusion we
discuss the robustness of classical MANOVA in case of
nonnormality.

The following terminology for Riemannian manifolds
can be found in any introductory textbook, e.g. [29]. The
concept of parallel transport is introduced in detail in Ap-
pendix A, in particular parallel transport for Kendall’s
spaces of planar shapes is computed in Appendix A.2.

Throughout this section, M is a complete Riemannian
D-dimensional manifold, with induced distance d : M ×
M → [0,∞). expp : TpM → M denotes the Riemannian
exponential map from the tangent space at p ∈ M to the
manifold. Its inverse logp : U → TpM is well defined in
a neighborhood U around p. In particular, every p′ ∈ U
can be reached from p by a unique geodesic of minimal
length d(p, p′). For p′ ∈ U ,

θp,p′ : TpM → Tp′M

denotes the unique parallel transport of tangent spaces
along geodesics of minimal length induced by the Rie-
mannian connection, cf. Definition A.1. Example A.2 gives
parallel transport for spheres which is used to compute
parallel transport on Kendall’s space of planar shapes in
Theorem A.6.

A neighborhood U is called convex if for every p′, p′′ ∈
U the connecting geodesic segment of minimal length is
fully contained in U . In particular, logp′ is well defined
on a convex neighborhood U for all p′ ∈ U . Finally
denote by

Br(p) := {expp(v) : v ∈ TpM, ‖v‖ < r}

the geodesic ball of radius r around p. It is well-known that
geodesic balls are convex for sufficiently small r > 0, e.g.
[29, p.166].

2.1 Intrinsic Means on Manifolds

Suppose that P is a random element on M . Any mini-
mizer

µ ∈ argminp∈M E
(
d(P, p)2

)
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is called an intrinsic population mean of P . The intrinsic
mean is unique under the following condition, cf. [25, p.
510-1],

there are p ∈ M and r > 0 with d(P, p) < r a.s.,
Br(p) is convex with sectional curvatures ≤ κ,
if κ > 0 then 4r < π√

κ
.



 (3)

For example, if M is a sphere, and P is contained in a
proper quarter-sphere then the intrinsic mean is unique.

For P1, . . . , Pn i.i.d. as P , any minimizer

Pn ∈ argminp∈M

n∑

i=1

d(Pi, p)2 (4)

is an intrinsic sample mean. [42] established a strong law
of large numbers (SLLN) for quasi-metrical spaces. In
particular under (3) we have that

Pn → µ a.s. if E
(
d(P, p)2

)
< ∞ for at least one p ∈ P . (5)

If P has an intrinsic mean µ and if P assumes values
only within a neighborhood U of µ in which the inverse
Riemannian exponential logµ is well defined then

E(logµ ◦ P ) = 0 (6)

([30, p.110-111] and [32]) with the usual expectation E of
the multivariate real random variable X = logµ ◦ P . In
fact, (6) characterizes intrinsic means, based on which
[32] developed an algorithm for computing intrinsic
means and discussed its convergence. An alternate algo-
rithmic method in [23] is based on Lagrange multipliers.

2.2 Two-Factorial Models for Manifolds

In this section we formulate multi-factorial models for data
on a D-dimensional manifold M . In fact, it suffices to
formulate a two-factorial model since any larger number
of factors can be viewed as two factors with more levels,
as all interaction factors are assumed to be present.

Hence, we suppose that we have random elements
Pi,j,n on M due to the effects of levels

i = {1, . . . , I}, j = {1, . . . , J}

of two factors, n denoting replications. In particular we
assume that the Pi,j,n have a “common” distribution
around certain effects µi,j . In a Euclidean scenario this is
saying that the distributions of the Pi,j,n agree modulo
linear translations, in particular, involving no rotations.
On a general Riemannian manifold this concept natu-
rally generalizes to the requirement that the distributions
of the Pi,j,n agree modulo parallel transport to a specific
location ν ∈ M , i.e. that the

Xi,j,n := θµi,j ,ν ◦ logµi,j
◦ Pi,j,n ∈ RD (7)

are identically distributed. Here, θµi,j ,ν denotes the par-
allel transport as in Definition A.1 from µi,j to ν suffi-
ciently close to µi,j such that the parallel transport is
well defined. Note that slightly different from (2) we

included parallel transport here in order to obtain values
in a common tangent space at ν.

Definition 2.1. Let M be a complete Riemannian manifold,
I, J ∈ N. In the two-factorial model for manifolds we
assume for 1 ≤ i, i′ ≤ I , 1 ≤ j, j′ ≤ J , n = 1, . . . , Ni,j and
a specific ν ∈ M that

(M1) the random elements Pi,j,n satisfy condition (3), in
particular they are a.s. contained in a convex geodesic
ball Ui,j around the unique intrinsic mean µi,j ;

(M2) Pi,j,n is independent of Pi′,j′,n′ for (i, j, n) 6= (i′, j′, n′);
(M3) all µi,j are contained in a neighborhood U around ν in

which logν is well defined, in particular the Xi,j,n in
(7) are well defined;

(M4) the distributions of Xi,j,n and Xi′,j′,n′ agree.

Note that (M2) and (M4) can be replaced by

(M4’) the Xi,j,n are i.i.d.;

this corresponds to the ǫi,j,n being i.i.d. in the classical setting
(1). A generic random variable with the distribution of Xi,j,n

will be denoted by X . Since all Pi,j,n have compact support,
all moments of X exist; its covariance matrix will be denoted
by Σ.

In the single-factorial model for manifolds we assume
additionally that for all 1 ≤ i ≤ I there are µi ∈ M such that

µi,1 = . . . , µi,J = µi

i.e. the second factor has no influence.

For the single factorial model for manifolds in case
of only two levels I = 2, the specific location ν can be
chosen arbitrarily on the geodesic segment connecting µ1

with µ2. For more levels the intrinsic mean of the entire
population may be chosen.

In order to obtain a statistic for a test of hypothesis
H0 versus H1 from Section 1 we investigate empirical co-
variances under H0, i.e. under the single-factorial model.

Condition (M1) and hence (3) guarantees in case of the
single-factorial model that the empirical group means
P i of the Pi,1,l, . . . , Pi,1,Ni1 , Pi,2,1, . . . , Pi,J,NiJ

are unique
(1 ≤ i ≤ I). Thus

Yi,j,n := θP i,ν
◦ logP i

◦Pi,j,n (8)

are well defined under the single-factorial model. Note

that E(Xi,j,n) = 0 =
∑J

j=1

∑Ni,j

n=1 Yi,j,n as a consequence
of (6). Letting

Xi,j,· :=
1

Ni,j

Ni,j∑

n=1

Xi,j,n, Y i,j,· :=
1

Ni,j

Ni,j∑

n=1

Yi,j,n .

(here the index “i,j,·” indicates the usual Euclidean
mean) we let

Σ̂(Y )ij :=
1

Ni,j

Ni,j∑

n=1

(Yi,j,n − Y i,j,·)(Yi,j,n − Y i,j,·)
T and

Σ̂(X)ij :=
1

Ni,j

Ni,j∑

n=1

(Xi,j,n − X i,j,·)(X
T
i,j,n − Xi,j,·)

T

denote the corresponding sample covariance matrices.
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Lemma 2.2. Under the single-factorial model for manifolds,
for every 1 ≤ i ≤ I, 1 ≤ j ≤ J , and fixed n, 1 ≤ n ≤ Ni,j ,

Yi,j,n → Xi,j,n a.s. and Σ̂(Y )ij → Σ a.s.

as Ni,j → ∞.

Proof: By hypothesis, all second moments of com-
ponents exist. Hence the SLLN (5) is applicable yielding
P i → µi = µi,1 = . . . = µi,J a.s. By continuity for fixed
(i, j, n)

Yi,j,n − Xi,j,n

= θP i,ν

(
logP i

(Pi,j,n)
)
− θµi,ν

(
logµi

(Pi,j,n)
)

→ 0 a.s.

yielding the first assertion. To see the second assertion
consider for v = logµi

(P i) ∈ RD, w = logν P i ∈ RD and
wn = logµi

(Pi,j,n) ∈ RD the smooth function

f(v, w, wn) := Yi,j,n − Xi,j,n

= a(w, wn)v + O(‖v‖2)

with a suitable smooth function a (by Definition A.1, par-
allel transport is smooth). Under condition (M1), ‖wn‖ =
d(µi, Pi,j,n) is a.s. uniformly bounded for all 1 ≤ n ≤ Ni,j

and so is ‖w‖. Hence there is a constant M independent
of Ni,j such that ‖Xi,j,nXT

i,j,n −Yi,j,nY T
i,j,n‖ ≤ M‖v‖2 a.s.

for all 1 ≤ n ≤ Ni,j . Thus, with another constant M ′ > 0

‖Σ̂(Y )ij − Σ̂(X)ij‖ ≤ M ′‖v‖
= M ′d(P i,j , µi,j) → 0 a.s. .

Further Σ̂(X)ij → Σ a.s. This yields the assertion.

Theorem 2.3. Under the two-factorial model for manifolds
we have for every 1 ≤ i ≤ I, 1 ≤ j ≤ J , that
√

Ni,j(Σ
−1/2Σ̂(Y )ijΣ

−1/2 − ID) → H in distribution

as Ni,j → ∞. Here ID denotes the D × D unit matrix and
H denotes a Gaussian matrix with zero mean and covariance

COV(RrRs, RtRu), R = (R1, . . . , RD)T := Σ−1/2Xi,j,n

of the (r, s)-th and the (t, u)-th entry.

Proof: The asserted convergence for Σ̂(X)ij in place
of Σ̂(Y )ij follows from the classical multivariate Central-
Limit Theorem with the asymptotic covariance given in
B.1 in the Appendix. The assertion follows for Σ̂(Y )ij as
well, as a consequence of Lemma 2.2.

3 MANOVA
In the preceeding section we devised a method how to
map manifold data under a two-factorial model to data
within a common Euclidean space. For the covariance
of this Euclidean data we derived a common asymptotic
distribution. Under the assumption that all Xi,j,n from
(7) are multivariate normally distributed and, even more
boldly that all Yi,j,n from (8) are multivariate normally
distributed, classical MANOVA could be applied to the

Yi,j,n. Obviously this assumption is far-fetched for our
applications on manifolds. It is well-known, however,
that the methods of classical MANOVA extend to non-
normal data as well in a large number of cases (e.g.
[36, p. 465]), one condition being a common asymptotic
covariance distribution as in Theorem 2.3. For this reason
we review below classical MANOVA for normal data,
discuss its robustness to nonnormality and apply the
method to Euclidean data obtained from manifold data
as above.

3.1 Classical MANOVA Revisited

As a standard reference for MANOVA we refer to [37],
[3] and [8]). Here the Wishart distribution WD(Σ, N) with
N degrees of freedom and D × D covariance matrix Σ
plays a prominent role. In case of D = 1 it is the well-
known χ2

N distribution.
Suppose that Z1, . . . , ZN are independently multivari-

ate normal ND(0, Σ)-distributed and let Wn := Zn − Z ·
with Z· = 1

N

∑n
n=1 Zn. Then

N Σ̂(Z) :=

n∑

i=1

ZnZT
n ∼ WD(Σ, N) and

N Σ̂(W ) :=

N∑

n=1

WnWT
n ∼ WD(Σ, N − 1)

In particular if Σ is of rank D then

√
N
(
Σ−1/2Σ̂(W )Σ−1/2 − ID

)
→ G (9)

in distribution, where ID is the D-dimensional unit
matrix and G is a Gaussian matrix with independent
entries of variance 2 on the diagonal and of variance
1 elsewhere (cf. Theorem 2.3.).

Under the single-factorial model for manifolds, if all
Yi,j,n from (8) are multivariate normally distributed (1 ≤
i ≤ I, 1 ≤ j ≤ J) then

I∑

i=1

J∑

j=1

Ni,jΣ̂(Y )ij ∼ WD


Σ,

I∑

i=1

J∑

j=1

(Ni,j − 1)




is independent of

I∑

i=1

NiΣ̂(Y )i −
I∑

i=1

J∑

j=1

Ni,jΣ̂(Y )ij ∼ WD

(
Σ, I(J − 1)

)
.

Here, Ni =
∑J

j=1 Ni,j and

Σ̂(Y )i :=
J∑

j=1

Ni,j∑

n=1

(Yi,j,l − Y i,·,·)(Yi,j,l − Y i,·,·)
T with

Y i,·,· =
1

∑J
j=1 Ni,j

J∑

j=1

Ni,j∑

n=1

Yi,j,l .

In consequence, several one-dimensional test statis-
tics involving independent Wishart-distributed matrices
have been proposed. In fact, there are essentially two
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different types of tests, one involving largest eigen-
vectors and one involving determinants i.e. geometric
means of eigenvectors. We prefer the latter as it is more
robust to nonnormality (cf. [36, 465]). With Wilks’ Lambda
distribution,

det
(∑I

i=1

∑J
j=1 Ni,jΣ̂(Y )ij

)

det
(∑I

i=1 NiΣ̂(Y )i

)

∼ Λ


D,

I∑

i=1

J∑

j=1

(Ni,j − 1), I(J − 1)


 (10)

for I, J = 2, the identity

GΛ(D,N,2)(λ)

= 1 − GF2D,2(N−D+1)

(
N − D + 1

D

1 −
√

λ√
λ

)
(11)

can be employed (here Fn,m denotes the F -distribution
with n and m degrees of freedom), and in the general
case for sufficiently large N , Bartlett’s approximation

GΛ(D,N,K)(λ)

≈ 1 − Gχ2
NK

(
−
(
N − 1

2
(D − K + 1)

)
log λ

)
(12)

can be used. In both formulas, G denotes the respective
cumulative distribution function (cf. [37, p. 83-4]).

3.2 MANOVA on Manifolds

Let us first briefly discuss effects of nonnormality for the
benefit of readers less versed in asymptotic statistics. For
nonnormal deviates Yi,j,n as is realistic in the one- and
two-factorial models for manifolds – note that we have
not made any distributional assumption in (M4) – the
covariances of the limit distributions of Theorem 2.3 and
(9) disagree in general. For this reason, Σ̂(Y )ij and Σ̂(Y )i

are not well approximated by the corresponding Wishart
distribution. This is the same phenomenon as occurs in
the one-dimensional χ2-test under nonnormality. If the
respective covariances as in Theorem 2.3 agree with one
another then the ratio of the respective determinants in
(10), however, is usually well approximated by the cor-
responding Λ statistics, even for relatively small values
of D, Ni,j , I and J . Note that this corresponds to a
univariate F -test with higher degrees of freedom in case
of two levels for each factor. Contrary to the χ2-statistics,
F -statistics are again robust under nonnormality. The left
image of Figure 1 illustrates that the Λ-statistics is indeed
almost uniformly distributed in the one-effect model for
relatively small dimensions D and group sizes Ni,j .

Hence for general data Yi,j,n under the two-factorial
model for manifolds we may use (10) in approximation
under the single-factorial hypothesis. In case of I(J −
1) = 2 and large N =

∑
i,j Ni,j − I the exact distribution

(11) can be used, for I(J−1) > 2 Bartlett’s approximation
(12) will do fine. Indeed, the right image of Figure 1
illustrates that Bartlett’s approximation is valid already
for comparatively small group sizes.
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Fig. 1. Robustness of Wilks’ Lambda-test for 2 way
MANOVA under nonnormality: empirical test statistics (10)
generated with 1′000 repetitions for exponential deviates un-
der the hypothesis of only one single effect, D = 4 and
Ni,j = 5 for 1 ≤ i, j ≤ 2 = I = J . Top: the distribution of
the exact statistics (11). Bottom: the distribution of Bartlett’s
approximation (12).

4 APPLICATION: INTRINSIC TWO-WAY
MANOVA
In collaboration with the Institute for Forest Biometry
and Informatics at the University of Göttingen, the
influence on the shape of tree leaves of their vertical
position is studied for different tree genotypes. The
dataset studied here is based on digitized 2D-contours
of Canadian black poplar leaves taken from a recent
plantation of three clones (i = 1) and a reference tree
(i = 2) at two different heights. Since the trees are young
and of little height, level j = 1 corresponds to approx.
1 meter and level j = 2 to approx. 1.5 meters. The left
image of Figure 2 shows some typical original leaves.

From sight, experts in forestry can discriminate rather
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well between shapes of leaves of the different genotypes.
Shape variation due to different height levels, however,
can hardly be visually detected. As is the case for other
plants, there are grounds to believe that height levels
affect leaf shapes as well, e.g. [11]. In fact as we see in
the following, such effects can be identified by intrinsic
MANOVA using Kendall’s space Σ4

2 of planar shapes
with a “minimal” number of 4 landmarks. Kendall’s
shape spaces are introduced in Appendix A.2.

For each leaf, two anatomical landmarks have been
placed at the bottom and top of the main leaf vain and
two more mathematical landmarks at the largest extent
of the leaf, orthogonal to the dominating direction of the
main leaf vain. The right image of Figure 2 shows a typi-
cal digitized contour and its quadrangular configuration.
For the two-factorial model, we thus obtain a sample
Pi,j,n from four groups in Σ4

2, 1 ≤ i, j ≤ 2, 1 ≤ n ≤ Ni,j

with

N1,1 = 22, N1,2 = 51, N2,1 = 13, N2,2 = 18,∑

1≤i,j≤2

Ni,j = 104 .

As introduced above, j refers to genotype and i to height
level.

Indeed, geodesic principal component analysis (as has
been introduced for Kendall’s shape spaces of planar
configurations in [21]) as well as a Hotelling T 2-test
based on [10, Chapter 7] for the data mapped to the
tangent space at their common intrinsic sample mean
under the inverse exponential, both endorse the finding
that leaf shapes vary between different genotypes with
high significance (p-value of 0.002). Figure 3 depicts the
geodesic scores by projection of the entire data to the
first two principal component geodesics. They explain
83 % of data variation. Obviously, height levels cannot
easily be discriminated in Figure 3.

In order to see whether different height levels affect
leaf shape as well, intrinsic two-way MANOVA has
been employed as introduced in Section 2. Note (using
Remark A.7) that the parallel transport θ is well defined
on all Σk

2 except for a set of measure zero. Thus, for our
experimental situation parallel transport is well defined.
Conforming to the notation of Section 2.2 we chose
ν = P 1 and considered the data

Yi,j,n := θP i,ν

(
logP i

Pi,j,n

)

with P i the intrinsic sample mean of the Pi,j,l with
1 ≤ n ≤ Ni,j and 1 ≤ j ≤ 2 for 1 ≤ i ≤ 2. For
numerical feasibility we lifted the data to the respective
horizontal space of the pre-shape sphere S4

2 . Then the
explicit formula for the horizontal lift of the bottom
space parallel transport θ from Theorem A.6 can be
used. We note that the likelihood ratio test of [15] for
equality of the respective four covariance matrices under
normality assumptions lead to a p-value of 0.146 thus
giving no evidence for unequal covariance matrices.

Computing the test-statistics (10) via (11) and in ap-
proximation (12) we obtained a p-value of 0.022 in both

X

X

X

X

Fig. 2. Top images: some typical Canadian black poplar leaves.
Top row: three clones i = 1; bottom row: reference tree i = 2;
right column: height level j = 1; left column: height level
j = 2. Bottom image: typical digitized contour and landmarks
of the corresponding quadrangular configuration.

cases. Hence, the null hypothesis that there are only
genotype effects but no level effects can be rejected with
high significance.

5 CONCLUSION

In this paper we proposed an extension of classical
MANOVA by a generalization of certain linear models to
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Fig. 3. Geodesic scores of quadrangular shapes of poplar
leaves. Level j = 1 for clones i = 1 as circles, level j = 2 for
clones i = 1 as crosses. Level j = 1 for reference tree i = 2
as filled circles, level j = 2 for reference tree i = 2 as stars.

non-linear Riemannian manifolds. To date only a single-
factorial model with a corresponding Hotelling T 2-test
or Goodall’s F -test has been available. Cf. [10, Chapter
7] as well as [17] for a tangent space approximation at a
single extrinsic mean and [4] for using a single extrinsic
or intrinsic mean. We note that we also weakened the
assumption of isotropy in Goodall’s F -test for one-way
MANOVA as suggested in [10, Chapter 7]. Nonetheless,
the assumption of equal covariances of the groups still is
debatable and calls for further research. For our data at
hand, neither normality nor unequality could be rejected.
In general under nonnormality, tests based on [16] could
be employed.

Our newly introduced models allow to test for the
effects of multiple factors by comparing images in dis-
tinct tangent spaces centered at different intrinsic means
under parallel transport. In case the Riemannian mani-
fold is only implicitly given as is the case for Kendall’s
similarity shape spaces, we provided for a method to
pull back parallel transport of the bottom space to the
top space in Corollary A.4. This we computed explictly
for Kendall’s spaces of planar shapes. We illustrated the
use of this new method by an intrinsic 2-way MANOVA
for objects of forest biometry with two factors. Effects
of genotype that are visible to the trained eye of the
scientist can be identified with existing methodology.
Effects of the second factor, otherwise not accessible,
were identified by intrinsic MANOVA.

Recall that due to the non-linearity of the underlying
manifold, a decomposition of effects acting separately
can neither be modelled nor expected. It seems that for
this very reason, biologists cannot geometrically identify
the second effect.

At this point we note a complication for models

involving more than 2 levels arising from the fact that
parallel transport is not transitive if curvature is present.
One may work-around by choosing the specific loca-
tion ν as a population mean. Alternatively, one may
choose a specifically distinguished shape, for example
the shape of a regular polygon. The hypothesis of equally
distributed parallelly mapped tangent space residuals,
however, will in general not be valid in both tangent
spaces. However, if only two levels are involved, it
is comforting to know that the results obtained are
independent of ν if chosen arbitrarily on the geodesic
between the two respective means.

For highly concentrated data in low curvature regions
of shape space, one might approximate by mapping all
data into a single tangent space and perform classical
MANOVA there. E.g. this might be achieved by flatten-
ing the space using the Riemann exponential, cf. [41]. For
high curvature present or larger data spread, however,
results obtained by extrinsic analysis may deviate con-
siderably from results obtained by intrinsic analysis, cf.
Examples 1 and 2 of [22] with an extended discussion of
the validity of extrinsic approximations. In the specific
data example considered, a considerable data spread is
visible in Figure 3: the two tree-means are further apart
than 10 % of the maximal distance of π/2 in the shape
space Σm

2 .
In principle, our method is applicable to all shape

spaces of the form Σ = S/G where G is a Lie group
of shape invariants acting on a Riemannian pre-shape
space S immersed in a Euclidean space. We note that
this quotient is locally trivial in the statistical analysis
of projective shapes if modelled as direct products of real
projective spaces, cf. e. g. [39]. Hence with the parallel
transport on spheres as in Example A.2, our method of
intrinsic MANOVA is available also for projective shape
analysis. It can also be applied directly to the spherical
shape space of star-shaped pre-aligned configurations, cf.
[9] and [18].

With more effort, this method could be applied to
Grassmanian manifolds as are used in the statistical
analysis of affine shapes, cf. [2] as well as [38]; or to medial
axes shape spaces as have been introduced by [7] and are
currently of high interest, e.g. [13] as well as [14].

In general, it may be difficult to compute bottom
space parallel transport. For example in case of Kendall’s
space of 3 and higher-dimensional shapes, no vertical
geodesics are available in general (cf. [22, Example 5.1])
thus making the evaluation of the l.h.s. of (17) difficult.
Also for infinite dimensional shape spaces such as the
shape spaces of closed contours (cf. [28]), if the vertical
spaces of the respective submersions are finite dimen-
sional, the differential equation (17) could be solved
numerically thus making intrinsic MANOVA available.

In conclusion we note that parallel transport of co-
variances is a mathematically natural way to extend
MANOVA to manifolds. Parallel transport of covariances
seems in particular natural for locally symmetric spaces –
those are spaces that allow local isometries that reverse
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geodesics. Then, sectional curvature is invariant under
parallel transport, cf. [29, pp.300-304]. The spaces consid-
ered in this work, namely spheres and Kendall’s space of
planar shapes are locally symmetric ([29, pp.275]). Also
for our application in forest biometry, the assumption of
invariance of the empirical covariances under parallel
transport appears reasonable. We note that [14] use
parallel transport of covariance matrices as well, in order
to define a Mahalanobis distance on shape manifolds.
Clearly, a discussion of this assumption for applications
in general is beyond the scope of this paper. Recall
the “Geodesic Hypothesis” by [34] (cf. also [18]) which
states that natural biological growth tends to occur along
geodesics in shape space: this hypothesis as well as the
assumption of parallel transport of covariances in effect
link a specific Riemannian geometry to biological shape.
This topic certainly deserves future research.

APPENDIX A
PARALLEL TRANSPORT

In this section we review basic concepts of Riemannian
geometry found in any standard textbook (specifically
[35] is very appropriate for the following), in particular
formulae relating covariant derivatives of Riemannian
immersions and submersion. These provide a differential
equation lifting the parallel transport on shape space
to Euclidean space. In fact, the projection of ambient
Euclidean space to a sphere, as well as the quotient
mapping from the pre-shape sphere to Kendall’s space of
planar shapes are an example of a Riemannian immersion
followed by a Riemannian submersion. It is the aim of
this section to lift parallel transport from Kendall’s space
to the pre-shape sphere and from there to Euclidean
space.

For a Riemannian D-dimensional manifold M denote
by 〈Vp, Wp〉M the Riemannian metric of tangent spaces, by
dM : M × M → [0,∞) the induced distance on M and
by ∇M

V W the covariant derivative of vector-fields. Here
V, W ∈ T (M) denote vector-fields with values Vp, Wp in
the tangent space TpM of M at p ∈ M . A vector-field
W ∈ T (M) is parallel along a smooth curve t → γ(t) on
M if

∇γ̇W = 0 . (13)

Subsequent arguments exploit the fact that the parallel
equation (13) written in local coordinates is a system of D
first order differential equations for W . It is well-known
that there is locally a unique solution along γ for a given
initial value. In Euclidean space the left hand side of the
system has the simple form (14). In particular, geodesics
are characterized by the fact that their velocity is parallel:
∇γ̇ γ̇ = 0 .

The covariant derivative is also called the Levi-Civitá
connection. Indeed, if two offsets p, p′ ∈ M can be joined
by a unique geodesic segment of minimal length (in
particular, this is the case if p′ is sufficiently close to

p), their respective tangent spaces can be connected via
parallel transport.

Definition A.1. w′ ∈ Tp′M is the parallel transplant
θp,p′(w) of w ∈ TpM if there are

1) a unique unit speed geodesic t → γ(t) connecting p =
γ(0) with p′ = γ

(
dM (p, p′)

)
, and

2) a vector field W ∈ T (M) parallel along γ with Wp =
w, Wp′ = w′.

The Euclidean spaces Rn can be identified with all of
their tangent spaces, i.e. 〈v, w〉 := 〈v, w〉Rn

=
∑n

i=1 viwi,
‖x‖2 := 〈x, x〉 and the covariant derivative is just the
usual multivariate derivative by components,

∇R
n

(v1,...,vn)(w
1, . . . , wn) =

n∑

i=1

vi

(
∂w1

∂xi
, . . . ,

∂wn

∂xi

)
.

In particular, if v = ẋ(t), i.e. dxi

dt = vi we have that

∇R
n

ẋ(t)W =
d

dt
Wx(t) . (14)

Thus as desired, parallel transport on Euclidean spaces
is given by affine translations.

For short we write W (t) for the value Wγ(t) along a
selfunderstood smooth curve t → γ(t) and

Ẇ (t) :=
d

dt
Wγ(t)

in the Euclidean case.

A.1 Riemannian Immersions and Submersions

A smooth mapping Φ : M → N of Riemannian man-
ifolds M and N induces a differential mapping dΦp :
TpM → TΦ(p)N of tangent spaces. Φ is called

an immersion if both Φ and dΦ are injective,
a submersion if both Φ and dΦ are surjective,
an isometry if 〈Vp, Wp〉M = 〈dΦpVp, dΦpWp〉N , ∀p ∈
M and V, W ∈ T (M) .

An isometric immersion (submersion) is a Riemannian
immersion (submersion) respectively. As a consequence of
the implicit function theorem, every Riemannian im-
mersion admits locally an orthogonal projection Ψ :
U ∩ N → V ∩ M which is in general a non-Riemannian
submersion. Here, U ⊂ M and V ⊂ N are suitable
open sets. In consequence for a Riemannian immersion
Φ : M → N , X, Y ∈ T (M) and arbitrary local extensions
X̃, Ỹ ∈ T (N ∩ U) of dΦX, dΦY ∈ T (Φ(M ∩ V ) we have

dΨ
(
∇N

eX
Ỹ
)

= ∇M
X Y . (15)

Example A.2 (Parallel Transport on Spheres). The immer-
sion of the unit-hypersphere M = Sn−1 in the Euclidean space
N = Rn \ {0} can be viewed as a global projection Ψ : Rn →
Sn−1, x 7→ Ψ(x) = x

‖x‖ . Obviously, this submersion is not

isometric. Identifying TxSn−1 with {v ∈ Rn : 〈x, v〉 = 0}
we have that W̃ = W for all W ∈ T (Sn−1). If t → γ(t) is
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a smooth curve on Sn−1, then (15) yields with (14) at once
that

∇Sn−1

γ̇(t) W (t) = dΨγ(t)

(
Ẇ (t)

)
= Ẇ (t)−〈Ẇ (t), γ(t)〉 γ(t) .

Solving the parallel equation (13) for W (t) = γ̇(t) yields that
every unit speed geodesic on Sn−1 is a great circle of form
γx,v : t → x cos t+v sin t, x, v ∈ Sn−1, 〈x, v〉 = 0. Solving it
for arbitrary W (t) ∈ T (Sn−1) with initial condition W (0) =
w ⊥ x along the geodesic γ = γx,v we obtain that

W (t) = w − 〈w, v〉 v + 〈w, v〉 γ̇(t) .

Geometrically speaking, the part of w orthogonal to the
geodesic γx,v is mapped under affine translation and its
orthogonal complement is transported just as velocity (which
is of course parallel). In conclusion, we have: logx is well
defined on all Sn−1 \ {−x} and for x′ 6= ±x,

w′ = w − 〈w, v〉
(
(1 − 〈x, x′〉) v − 〈v, x′〉x

)

is the parallel transplant θx,x′(w) of w ∈ TxSn−1 to Tx′Sn−1

where

v =
x′ − 〈x, x′〉x

‖x′ − 〈x, x′〉x‖ .

Next, consider a Riemannian submersion Φ : M → N .
M is called the top space and N the bottom space. Every
fiber Φ−1(q), q ∈ N is a submanifold of M that is
locally a topological embedding. With the vertical space
TpΦ

−1
(
Φ(p)

)
along the submanifold we have the orthog-

onal tangent space decomposition

TpM = TpΦ
−1
(
Φ(p)

)
⊕ HpM .

The orthogonal complement HpM is the horizontal space.
Since HpM ∼= TΦ(p)N , every V ∈ T (N) has a unique

horizontal lift Ṽ ∈ HpM characterized by dΦṼ = V .
For arbitrary W ∈ T (M) denote by ·⊥ : p → W⊥

p the
orthogonal projection to the vertical space.

The following Theorem due to [40] allows to lift bot-
tom space parallel transport to the top space. In addition
to (15) this provides the vertical part as well which in
general is non-zero for submersions.

Theorem A.3. Let Φ : M → N be a Riemannian submersion
and let X, Y ∈ T (N). Then we have with the Lie bracket
[·, ·] on M that

∇M
eX

Ỹ = ∇̃N
XY +

1

2
[X̃, Ỹ ]⊥ . (16)

As an immediate consequence of Theorem A.3 and the
parallel equation (13) we have the following Corollary.

Corollary A.4. Let Φ : M → N be a Riemannian sub-
mersion, t → γ(t) a horizontal geodesic on M and W (t) a
horizontal vector-field along γ. Then dΦW is parallel along
δ = Φ ◦ γ if and only if

∇M
γ̇(t)W (t) =

1

2

[
γ̇(t), W (t)

]⊥
. (17)

Using (17) with the derivative W (t) of a geodesic
in bottom space, observe that this geodesic lifts to a

horizontal geodesic in top space. In fact every top space
geodesic with horizontal initial velocity has horizontal
velocity throughout its course. Such geodesics are called
horizontal geodesics. Every bottom space geodesic is a
projection of a horizontal top space geodesic.

A.2 Parallel Transport on Kendall’s Space of Planar
Shapes

Kendall’s landmark based similarity shape analysis is
based on configurations consisting of k ≥ m + 1 labelled
vertices in Rm called landmarks that do not all coincide.
A configuration

x = (x1, . . . , xk) = (xij)1≤i≤m,1≤j≤k

is thus an element of the space M(m, k) of matrices with
k columns, each an m-dimensional landmark vector.
Disregarding center and size, these configurations are
mapped to the pre-shape sphere

M = Sk
m := {p ∈ M(m, k − 1): ‖p‖ = 1} ,

where ‖p‖2 = 〈p, p〉 and 〈p, v〉 := tr(pvT ) is the standard
Euclidean product. This can be done by, say, multiplying
by a sub-Helmert matrix, cf. [10] for a detailed discussion
of this and other normalization methods. The Euclidean
metric of M(m, k−1) and the spherical metric of Sk

m are
related as in Example A.2.

In order to filter out rotation information define on Sk
m

a smooth action of the special orthogonal group SO(m) by

the usual matrix multiplication Sk
m

g→ Sk
m : p 7→ gp for

g ∈ SO(m). The orbit π(p) = {gp : g ∈ SO(m)} is the
Kendall shape of p ∈ Sk

m and the quotient

π : Sk
m → Σk

m := Sk
m/SO(m) (18)

is called Kendall’s shape space. In case of m = 2, the action
of SO(2) on M(2, k−1) may be identified with the scalar
action of

S1 := {eiα : α ∈ [0, 2π)}

on Ck−1 and we have the embedding

Sk
2
∼= S2(k−1)−1 := {z = (z1, . . . , zk−1) ∈ Ck−1 : ‖z‖2 = 1}.

Hence, for m = 2, (18) defines a Riemannian submersion
which is equivalent to the well-known Hopf fibration,
mapping a unit sphere to complex projective space

Sk
2 → Σk

2
∼= S2(k−1)−1/S1 = PCk−2 .

For ease of notation, we use complex notation henceforth
exclusively.

Contrary to Example A.2, complex projective space is
not explicitly available. Hence, for computational fea-
sibility, parallel transport in the bottom space PCk−2

needs to be pulled back to the top space S2(k−1)−1. For
this task we review additional background (cf. [21]).

For z, z′ ∈ Sk
2 , we say that eiαz′ is z′ rotated into

optimal position to z if

dSm
2 (z, eiαz′) = dΣk

2
(
π(z), π(z′)

)
.
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Since S1 is compact, every point can be rotated into
optimal position to a given point. We note that the
relation “in optimal position” is reflexive but not in
general transitive (cf. [42, p. 602]). Optimal positioning

is unique if dΣk
2

(
π(z), π(z′)

)
< π

2 , cf. [26, p.121]. If z 6= z′

are in optimal position (in particular, z′ 6= −z) then

v =
z′ − 〈z′, z〉 z

‖z′ − 〈z′, z〉 z‖ (19)

is horizontal at z and the (thus horizontal) geodesic γz,v :
t → z cos t + v sin t is the unique unit speed geodesic
joining z = γz,v(0) with z′ = γz,v

(
dSm

2 (z, z′)
)
. Moreover,

iz spans the vertical space at z, in particular iγz,v is the
vertical field along γz,v. In real coordinates we have

iγz,v =
k−1∑

j=1

(
γ1,α∂2,α − γ2,j∂1,j

)

which yields

dω = 2

k−1∑

j=1

d1,j ∧ d2,j

for the exterior derivative of the one-form ω dual to the
vertical field. As a consequence of the general property

dω(X, Y )

= 2

k−1∑

j=1

d1,j ∧ d2,j
( k−1∑

j′=1

(
X1,j′∂1,j′ + X2,j′∂2,j′

)
,

k−1∑

j′′=1

(
Y 1,j′′∂1,j′′ + Y 2,j′′∂2,j′′

))

=
k−1∑

j=1

(
X1,jY 2,j − X2,jY 1,j

)

= 〈X, iY 〉

we have the following Lemma:

Lemma A.5. dω(X, X) = 0 = d(X, Y ) and dω(X, iX) =
‖X‖2 for arbitrary X, Y ∈ T (Sk

2 ) with X ⊥ iY .

Theorem A.6. Let p, p′ ∈ Σk
2 , 0 < dΣk

2 (p, p′) < π
2 . Then

with the notation below,

w′ = dπz′

(
W (arccos〈z, z′〉)

)

is the well defined parallel transplant of w ∈ TpΣ
k
2 to

Tp′Σk
2 . In particular, there are z, z′ ∈ Sk

2 in optimal position,
π(z) = p, π(z′) = p′ and a unique unit-speed geodesic
γz,v : t → z cos t + v sin t connecting z = γz,v(0) with

z′ = γz,v

(
dΣk

2 (p, p′)
)

which is horizontal and

W (t) =

w̃ −
(
〈w̃, v〉 v + 〈w̃, iv〉 iv

)
+ 〈w̃, v〉 γ̇z,v(t) + 〈w̃, iv〉 iγ̇z,v(t)

is the horizontal lift at γz,v(t) of the parallel transplant of
w along the unique geodesic π ◦ γz,v of minimal length
connecting p with p′. Here, v is from (19) and w̃ denotes
the horizontal lift of w at z.

Proof: With the preceeding, all we need to show is
that W (t) defined above satisfies equation (17). This is a
consequence of the following three identities:

∇Sk
2

γ̇z,v(t)W (t) = Ẇ (t) −
〈
Ẇ (t), γz,v(t)

〉
γz,v(t)

= −〈w̃, iv〉 iγz,v(t)

from Example A.2,
[
γ̇z,v(t), W (t)

]⊥
=

〈
iγz,v(t),

[
γ̇z,v(t), W (t)

]〉
iγz,v(t)

with the vertical field, and〈
iγz,v(t),

[
γ̇z,v(t), W (t)

]〉

= γ̇z,v(t)
( 〈

W (t), iγz,v(t)
〉

︸ ︷︷ ︸
=0

)

−W (t)
( 〈

iγz,v(t), γ̇z,v(t)
〉

︸ ︷︷ ︸
=0

)
− 2dω

(
γ̇z,v(t), W (t)

)

= −2〈w̃, iv〉
from Lemma A.5. Here we used the well-known (e.g.
[29, p.36])

ω[X, Y ] = X
(
ω(Y )

)
− Y

(
ω(X)

)
− 2dω(X, Y ) .

Geometrically speaking, the horizontal lift of bottom
space parallel transport along a horizontal geodesic is
obtained by top space parallel transport of the horizontal
part (cf. Example A.2), and by mapping the vertical
part along the vertical field with constant modulus.
A transformation giving negative parallel transport for
the velocity of the geodesic and the identity on the
orthogonal complement is given in Lemma 3 of [1].

Remark A.7. Since the largest possible distance between
shapes on Σk

2 is π/2, parallel transport is well defined on
Σk

2 except for a set of measure zero.

APPENDIX B
COMPUTATION OF COVARIANCE

For random real variates X1, . . . , Xn, Y1, . . . , Yn let as
usual X · = 1

n

∑n
j=1 Xj and

SX,Y =
1

(n − 1)

n∑

j=1

(Xi − X ·)(Yi − Y ·) .

The proof of the following Lemma is tedious but
straightforward.

Lemma B.1. Let (X1, Y1, W1, Z1), . . . , (Xn, Yn, Wn, Zn)
i.i.d. ∼ (X, Y, W, Z) and suppose that all fourth moments
E(XαX Y αY WαW ZαZ ) exist for αX + αY + αW + αZ = 4.
Then

COV(SX,Y , SW,Z) =
1

n
COV

(
(X − EX)(Y − EY ), (W − EW )(Z − EZ)

)

+
1

n(n − 1)

(
COV(X, W )COV(Y, Z)

+ COV(X, Z)COV(Y, W )
)

.
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