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Abstract

In this paper a numerical method to compute principal component
geodesics for Kendall’s planar shape spaces - which are essentially com-
plex projective spaces - is presented. Underlying is the notion of principal
component analysis based on geodesics for non-Euclidean manifolds as
proposed in an earlier paper by Huckemann and Ziezold (2006). Currently,
principal component analysis for shape spaces is done on the basis of a
Euclidean approximation. In this paper, using well studied datasets and
numerical simulations, these approximation errors are discussed. Overall,
the error distribution is rather dispersed. The numerical findings back
the notion that the Euclidean approximation is good for highly concen-
trated data. For low concentration, however, the error can be strongly
notable. This is in particular the case for a small number of landmarks.
For highly concentrated data, stronger anisotropicity and a larger number
of landmarks may also increase the error.
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by Bookstein (1978), Kendall (1977) and Ziezold (1977). Different concepts of
“size” lead to different landmark based shape spaces, cf. Small (1996). Tak-
ing “size” as the Euclidean norm of a matrix, the resulting quotient spaces are
commonly called Kendall’s shape spaces. They are obtained as follows. Given
a sample of original geometrical objects, from each object a landmark config-
uration matrix is extracted. In a first step, normalizing for location and size,
this matrix is mapped to a point on the so called pre-shape sphere. In a second
step, filtering out rotation, the pre-shape sphere is projected to the shape space,
containing only the “shape information” of the original object. Shape spaces
can be rather complicated. When planar objects are considered, the projection
from the pre-shape sphere filtering out rotation is the well known Hopf fibra-

tion mapping to a complex projective space. This is a non-Euclidean positive
curvature manifold.

As this geometry naturally arises through the subsequent normalization and
projection steps it is very reasonable to consider statistical features based on
that geometry as the “true” shape features. In a non-Euclidean geometry, how-
ever, statistical features such as means and principal components are solutions
to non-linear problems and hence much harder to compute, than their kin that
linearly compute in Euclidean space. Recently, general investigations by Bhat-
tacharya and Patrangenaru (2003), Bhattacharya and Patrangenaru (2005) and
methods to compute means on positive curvature manifolds with respect to the
intrinsic metric have become available, cf. Le (2001). Most statistical meth-
ods, however, currently still rely on embeddings (cf. e.g. Micheas and Dey
(2005), Chikuse and Jupp (2004)) or on projections onto suitable Euclidean
spaces, such as principal component analysis (PCA), cf. e.g. Dryden and Mar-
dia (1998). The latter approach of projecting the data into the tangent space of
an extrinsic mean or mapping it under the inverse Riemannian exponential into
the tangent space of an intrinsic mean (cf. e.g. Fletcher et al. (2004)) has been
particularly popular as it allows for the use of standard statistical methodology.
The prevailing conviction to the moment is that

for highly concentrated data the Euclidean approximation
reflects very well intrinsic shape features.

(1)

This statement, however, has not been investigated. We note that asymptotic
considerations, cf. Hendriks and Landsman (1998), show that the spread of the
extrinsic mean is in first order supported by its tangent space projection when
embedding both manifold and tangent space in a Euclidean space. In order to
investigate the above statement, however, we cannot argue asymptotically since
(1) is a statement concerning the spread of the data on the shape manifold and
not the spread of the mean.

It is the aim of this paper to provide for numerical methods of PCA for planar
shape spaces based on geodesics in the intrinsic metric, i.e. without resorting
to embeddings and/or projections to Euclidean spaces, and, on that basis to
discuss the above statement. To this end the paper is structured as follows:
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Section 2 reviews the concepts of PCA based on geodesics from Huckemann
and Ziezold (2006). For the problem at hand, a key feature of non-
Euclidean geometry is the fact, that principal component geodesics (PCGs)
do not pass through intrinsic means (IMs). Hence, in order to find a first
PCG, we have to minimize over both offset and initial velocity of compet-
ing geodesics. At this point we note that Fletcher et al. (2004) consider
“medial manifolds” for shape representation. For these manifolds they
determine “principal geodesics” which are PCGs that are constrained to
pass through the IM.

Section 3 defines Kendall’s shape spaces. Also, the current method of PCA by
embedding into and projecting onto suitable Euclidean spaces is sketched
briefly. In fact, this method computes approximations to PCGs that are
constrained to pass through the extrinsic mean (EM).

Section 4 is devoted to the optimal positioning (cf. Ziezold (1977), also called
alignment or registration) of configurations with respect to shape distance.
The Hopf-fibration gives rise to so called horizontal and vertical great

circles on the pre-shape sphere. From the detailed study of these circles,
results for optimal positioning of data to a given geodesic are derived and
the space of geodesics of planar shape spaces is determined.

Section 5 reformulates the problem of finding PCGs and IMs as an extremal
problem under constraints, as has been done in a previous paper by Huck-
emann and Ziezold (2006) for spheres only. This leads in a natural way
to an algorithmic approach. Having provided for a representation of the
space of geodesics in the preceeding section, the numerical implementation
can be pulled back to the pre-shape sphere.

Section 6 addresses the above conviction (1) by comparing sums of squared

distances (SSDs) of datasets to principal components (PCs) obtained by
Euclidean approximation on the one hand and obtained by minimization
based on the intrinsic metric on the other hand. Also, mutual distances be-
tween extrinsic mean (EM), intrinsic mean (IM) and principal component

geodesic mean (PM) are discussed. The discussion is based on existing
data and on simulations using the complex Bingham distribution. Foci of
the discussion are the correlations between concentration and anisotropy
of the distribution as well as the number of landmarks on the one side and
the relative improvement of the geodesic fit vs. the Euclidean fit on the
other side.

2 PCA Based on Geodesics

For an m-dimensional Riemannian manifold M with induced metric d(·, ·) con-
sider both

E
(
d(X, p)2

)
and (2)
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E
(
d(X, γ)2

)
(3)

for p ∈ M , a M -valued random variable X and a geodesic γ ∈ G(M) :=
{γ: γ is a geodesic on M , maximal w.r.t. inclusion}.

A point p ∈ M minimizing (2) is called an intrinsic mean (IM) to X (also
called an intrinsic Fréchet mean) and a geodesic γ1 ∈ G(M) minimizing (3) is
called a first principal component geodesic (PCG) to X . A geodesic γ2 ∈ G(M)
that minimizes (3) over all geodesics γ ∈ G(M) that have at least one point in
common with γ1 and that are orthogonal to γ1 at all points in common with
γ1 is called a second PCG to X . Every point p̂ that minimizes (2) over all
common points p of γ1 and γ2 is called a principal component geodesic mean
(PM).

Given a first and a second PCG γ1 and γ2 with PM p̂, a geodesic γ3 is a third
PCG if it minimizes (3) over all geodesics that meet γ1 and γ2 orthogonally at
p̂. Analogously, PCGs of higher order are defined.

In our context, one main feature of non-Euclidean geometry is the fact that
in general, due to curvature, the IM will differ from the PM, even more, the IM
will not come to lie on any of the PCGs. Also, due to curvature, different non-
Euclidean generalizations of variance are possible. Cf. Huckemann and Ziezold
(2006) for a detailed discussion.

3 Kendall’s Shapes Spaces

Considering spheres in matrix spaces modulo the similarity transformation group
acting on columns leads to Kendall’s shape spaces. Denote by

·T the transposition of matrices,
M(m, k) all real matrices with m rows and k columns identified with Eu-

clidean Rmk, i.e. with the inner product 〈a, b〉 := Tr(abT ), ‖a‖ =√
〈a, a〉,

O(m) the orthogonal group in M(m, m),
SO(m) the special orthogonal group in M(m, m).

3.1 Definition and Metric

Landmark based shape analysis is based on configurations consisting of k la-
belled vertices in R

m called landmarks that do not all coincide. Each configura-
tion is a point in M(m, k). Normalizing for location and size, these configura-
tions are mapped by a Helmert matrix to the pre-shape space (cf. e.g. Dryden
and Mardia (1998))

Sk
m := {s ∈ M(m, k − 1): ‖s‖ = 1}
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which can be regarded as a hyper-sphere in Euclidean Rm(k−1). Additionally
filtering out rotation leads to the definition of shape space: Define on Sk

m a
smooth left action of SO(m) by

gs := (gs1, . . . , gsk−1) ∈ Sk
m (4)

for g ∈ SO(m) and s = (s1, . . . , sk−1) ∈ Sk
m. Then the orbit [s] = {gs: g ∈

SO(m)} is the shape of s ∈ S and the topological quotient

Σk
m := Sk

m/SO(m)

is called the shape space.

Shape spaces of one-dimensional objects are just the corresponding pre-shape
spheres as SO(1) = {id} is trivial. In case of m = 2 shape spaces are complex
projective spaces of real dimension 2(k − 2), as we will see below. In particular
Σ3

2 is isometrical with the two-dimensional sphere S2
(

1
2

)
of radius 1/2. For

m ≥ 3 shape spaces no longer have an overall manifold structure compatible
with its quotient topology, yet they still are metric Hausdorff spaces (cf. Kendall
et al. (1999) for a detailed discussion).

The pre-shape sphere naturally carries the spherical metric, that is the induced
metric of the Riemannian embedding

Sk
m →֒ M(m, k − 1).

The tangent space at s ∈ Sk
m is given by

TsS
k
m = {v ∈ M(m, k − 1) : 〈v, s〉 = 0} .

The action of SO(m) induces an isometric mapping of tangent spaces dg :
TsS

k
m → TgsS

k
m given by

dg v = gv, v ∈ TsS
k
m . (5)

For any two a, b ∈ Sk
m the spherical distance is

0 ≤ d(a, b) = 2 · arcsin

(√
〈a − b, a− b〉

2

)
= arccos〈a, b〉 ≤ π . (6)

Geodesics on spheres are precisely the great circles

γ: t 7→ a cos t + b sin t

for any a, b ∈ Sk
m with 〈a, b〉 = 0, t ∈ R. We denote this above great circle

γ through a with initial unit velocity b by γa,b. The spherical distance of a
point p ∈ Sk

m to the great circle γa,b is (cf. Huckemann and Ziezold (2006),
Proposition 3.1)

0 ≤ d(p, γa,b) = arccos
√
〈p, a〉2 + 〈p, b〉2 ≤ π

2
, (7)
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the unique spherical projection of p onto γa,b is given by (cf. Huckemann and
Ziezold (2006), Corollary 3.2)

〈a, p〉a + 〈b, p〉b√
〈a, p〉2 + 〈b, p〉2

(8)

whenever d(p, γa,b) < π
2 .

The spherical metric projects naturally to a metric on the shape space

dΣ([a], [b]) := inf
g∈SO(m)

d(ga, b) for a, b ∈ Sk
2 .

The shape distance

dΣ(a, b) := dΣ([a], [b])

will be used for pre-shapes as well. Two pre-shapes p, x ∈ Sk
m are in optimal

position to each other (cf. Ziezold (1977)) if

d(p, x) = dΣ(p, x) .

As SO(m) is compact, any pre-shape p can be rotated into optimal position to
a given pre-shape x. We will denote the optimally rotated version of p with
respect to x by px. px is also called the partial Procrustes fit of p onto x (cf.
Dryden and Mardia (1998)). Optimal positioning is reflexive and symmetric
but not transitive, i.e. for x, p, q ∈ Sk

m in general qpx 6= qx (cf. Ziezold (1977),
Example 2). Moreover in general, px is not uniquely determined (cf. Kendall
et al. (1999), p. 121).

Similarly, a pre-shape p ∈ Sk
m is said to be in optimal position to a great

circle γx,v with x, v ∈ Sk
m, 〈x, v〉 = 0, if

d(p, γx,v) = inf
g∈SO(m)

d(gp, γx,v) =: dΣ(p, γx,v) .

3.2 Euclidean PCA for Shape Spaces

In addition to the spherical metric two extrinsic distances are considered on the
pre-shape sphere: For a, b ∈ Sk

m their distance in the chordal metric is given by
‖a − b‖ =

√
2(1 − 〈a, b〉) wheras their distance in the residual pseudo-metric is

‖a − 〈a, b〉b‖ =
√

1 − 〈a, b〉2. The former is obtained from embedding into the
ambient Euclidean M(m, k− 1), the latter can be viewed as obtained from first
orthogonally projecting to the tangent space of the pre-shape sphere and then
by embedding this tangent space in the ambient Euclidean space.

Any two pre-shapes p, x ∈ Sk
m that are in optimal position to each other are

also in optimal position to each other with respect to chordal metric and vice
versa. With respect to the residual pseudo-metric also −p is in optimal position
to x.
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Given pre-shapes p1, . . . , pN ∈ Sk
m call a pre-shape x̃ ∈ Sk

m a pre-shape of an

extrinsic mean (EM) shape, or equivalently, a pre-shape of a partial Procrustes

mean shape, if

min
g1,...,gN∈SO(m)

N∑

i=1

‖gipi − x̃‖2 = min
x∈S

(
min

g1,...,gN∈SO(m)

N∑

i=1

‖gipi − x‖2
)

.

Such a mean is computed with standard algorithms, cf. Gower (1975) and
Ziezold (1994): In every step the estimate of the mean is updated to the pro-
jection onto the pre-shape sphere of the Euclidean mean to that data, that is
optimally positioned to the previous estimate.

Euclidean PCA for Kendall’s shape spaces is performed as follows, see e.g. Dry-
den and Mardia (1998): having found a pre-shape x̃ ∈ Sk

m of an EM shape,
all data points are brought into optimal position to x̃ and projected onto the
tangent space TexS. Then with respect to the residuals

ri := pex
i − x̃ 〈pex

i , x̃〉 ∈ R
mk, i = 1, . . . , N,

standard PCA is performed.

Alternatively (cf. also Dryden and Mardia (1998)), using instead the residual
pseudo-metric, the so-called full Procrustes mean will be obtained. For two-
dimensional data a pre-shape of the full Procrustes mean can be determined
directly. It is any unit-length eigenvector to the largest eigenvalue of a suitable
complex data matrix that is introduced by (26) in Section 6.1. The other eigen-
vectors then qualify as principal components to the residual data.

Instead of a Procrustes mean following Le (2001), an intrinsic mean may be
computed (cf. Section 5.4). Then, standard PCA can be performed to the data
mapped under the inverse Riemannian exponential to the tangent space at the
intrinsic mean (cf. e.g. Fletcher et al. (2004)).

4 Planar Shape Spaces

Suppose that we have k planar landmarks

(
xj

yj

)
∈ R

2, j = 1, . . . , k. Intro-

ducing complex notation define

zj = xj + iyj ∈ C, j = 1, . . . , k.

The landmark wise action (4) of

SO(2) =

{(
cosφ − sinφ
sin φ cosφ

)
: φ ∈ R

}
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on R2k is then equivalent to the scalar action of S1 = {eiφ : φ ∈ R} on Ck.
With the Euclidean norm

‖z‖2 := |z1|2 + . . . + |zk|2

for z = (z1, . . . , zk) ∈ Ck we have that the pre-shape sphere of k labelled two-
dimensional landmarks is given by

S2(k−1)−1 := {z = (z1, . . . , zk−1) ∈ C
k−1 : ‖z‖2 = 1}.

The shape space is then the well known complex projective space of real dimen-
sion 2(k − 2) given by the Hopf-fibration:

Σk
2

∼= S2(k−1)−1/S1 = PC
k−2.

From now on we will use complex notation exclusively and SO(2) will be iden-
tified with S1 in the above obvious way. Then the Euclidean inner product of
z = (z1, . . . , zk−1) with w = (w1, . . . , wk−1), where zj = xj + iyj, wj = uj + ivj ,
rewrites to

〈z, w〉 =

n∑

j=1

(xjuj + yjvj) =

n∑

j=1

ℜ(zjwj) = ℜ(zw∗)

where w∗ = (w1, . . . , wn)T , as usual. Note that

〈z, iw〉 = −〈iz, w〉 . (9)

4.1 Horizontal and Vertical Great Circles

At every point z ∈ Sk
2 ⊂ Ck−1 of the pre-shape sphere, the tangent space

decomposes into one so called vertical direction iz - that direction points into the
fiber [z] - and into 2(k − 2) linearly independent so called horizontal directions,
those are orthogonal to the fiber. In fact there is one vertical geodesic at z,
all other geodesics starting off horizontally remain horizontal throughout their
course (this latter fact is true for any shape space cf. Kendall et al. (1999), p.
109). More precisely we have as an immediate consequence of (9):

Proposition 4.1. Let z ∈ Sk
2 ⊂ Ck−1. Then

(i) 〈z, iz〉 = 0 and [z] = {z cos t + iz sin t : t ∈ R},
(ii) for any v ∈ Sk

2 with 〈z, v〉 = 0 we have for all t ∈ R that
〈
γ̇z,v(t), i γz,v(t)

〉
=
〈
γ̇z,v(0), i γz,v(0)

〉
= 〈v, iz〉 .

A geodesic γz,v with z, v ∈ Sk
2 , 〈z, v〉 = 0 is hence horizontal if and only if the

horizontality condition

〈v, iz〉 = 0 (10)

is satisfied.

Remark 4.2. Every horizontal geodesic γz,v meets twice the vertical geodesic
γz,iz, namely at z and −z.
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4.2 Optimal Positioning

In order to position optimally we have to minimize the distance along a fiber.
The first assertion of the following theorem - a consequence of e.g. (8) and
Proposition 4.1 (i) - we take from Ziezold (1977):

Theorem 4.3. Let x, p, v ∈ S with 〈x, v〉 = 0. Then

(i) x and eitp are in optimal position if and only if

eit =

{ 〈x,p〉+i〈x,ip〉√
〈x,p〉2+〈x,ip〉2

, if 〈x, p〉2 + 〈x, ip〉2 6= 0

arbitrary, if 〈x, p〉2 + 〈x, ip〉2 = 0.

(ii) γx,v and eitp are in optimal position if and only if

eit =





± D+iC√
D2+C2

, if C 6= 0

±1, if C = 0, A2 6= B2

arbitrary, if C = 0, A2 = B2

with

A2 = 〈x, p〉2 + 〈v, p〉2, B2 = 〈x, ip〉2 + 〈v, ip〉2,
D = 2

(
〈x, p〉〈x, ip〉 + 〈v, p〉〈v, ip〉

)
, C = B2 − A2 +

√
(B2 − A2)2 + D2.

Proof. To prove the second assertion note that minimizing (7) is equivalent to
maximizing

cos2
(
d(eitp, γx,v)

)
= c2A2 + s2B2 + csD (11)

with c = cos t, s = sin t and A, B, D defined as above. This is a function of t
with period π, it suffices thus to consider −π

2 < t ≤ π
2 only.

In case of D 6= 0 = A2 − B2 (i.e. C 6= 0) we have the solution

t = sign(D)
π

4
.

If D = 0 = A2 − B2 then (11) is constant along the path t → eitp . In case
D = 0 6= A2 − B2 we have the solutions

t =
π

2
if B2 > A2, then C 6= 0 ,

t = 0 if A2 > B2, then C = 0 .

Now assume that D 6= 0 6= A2 −B2. Computing the first and second derivative
of (11) with respect to t observe that we have a maximum if and only if

tan(2t) = 2cs
c2−s2 = D

A2−B2 ,

−cs (A2−B2)2

D
< csD.

}
(12)
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From the above inequality we infer that sign(sin 2t) = sign(D), thus from the
above equation: sign(cos 2t) = sign(A2 − B2). Solving the above equation we
find that precisely taking the positive square root below meets the two conditions
of (12)

t = arctan

(
1

D

(
B2 − A2 +

√
(B2 − A2)2 + D2

))
.

This yields the assertion.

4.3 The Space of Geodesics of Planar Shape Space

At this point the space of geodesics G(Σk
m) for m = 1, 2 can be easily determined

by an application of the concept of horizontal and vertical geodesics on the pre-
shape sphere. Using standard arguments from differential geometry introduce

O2

(
2(k − 1)

)
:= {(e1, e2) ∈ C

k−1 × C
k−1: 〈el, ej〉 = δij , 1 ≤ l, j ≤ 2}, a

Stiefel manifold of real dimension 4k − 7.

and

Õ2

(
2(k − 1)

)
:= {(e1, e2) ∈ O2

(
2(k − 1)

)
: 〈e2, ie1〉 = 0} a sub-manifold

of real dimension 4k − 8.

Then every pair (z, v) ∈ O2

(
2(k − 1)

)
defines a geodesic γz,v on Sk

2 . In partic-

ular, if (z, v) ∈ Õ2

(
2(k − 1)

)
then by (10) the geodesic is horizontal. In order

to single out the equivalence class corresponding to the same geodesic consider
the free action of O(2) from the right on both O2(2k) and Õ2(2k) defined by

(e1, e2)

(
a −b
εb εa

)
= (ae1 + εbe2,−be1 + εae2) , (13)

where a2 + b2 = 1 = ε2. The quotient O2

(
2(k − 1)

)
/O(2) =: G2

(
2(k − 1)

)
is a

Grassmanian manifold of real dimension 4k − 8 which gives

G(Sk
2 ) ∼= G2

(
2(k − 1)

)
.

With a similar consideration we obtain the space of geodesics of linear shapes

G(Σk
1) ∼= G2(k − 1)

of dimension 2k − 6. For planar shape spaces define the sub-manifold

G̃2

(
2(k − 1)

)
:= Õ2

(
2(k − 1)

)
/O(2) ⊂ G2

(
2(k − 1)

)
,

of dimension 4k−9. Underlying the above (and also the below) reasoning is the
following theorem (cf. Abraham and Marsden (1978), p. 266):

Theorem 4.4. A smooth and free action of a compact Lie group G on a smooth
manifold M induces a natural manifold structure on M/G compatible with its
quotient topology.
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We now investigate the corresponding action of S1 ∼= SO(2) on both O2

(
2(k−1)

)

and Õ2

(
2(k − 1)

)
. It is, in fact, a free action from the left by components:

eiφ(e1, e2) = (eiφe1, e
iφe2) , (14)

that commutes with the action of O(2). Here eiφej (j = 1, 2) is defined as in (4).
Under the Hopf fibration, horizontal geodesics on Sk

2 project to geodesics on Σk
2

and geodesics on Σk
2 lift to horizontal geodesics on Sk

2 . This is a general fact
for Riemannian submersions, cf. O’Neill (1983), p. 212. Hence, every geodesic
δ on Σk

2 starting at [z] can be lifted to a unique horizontal great circle γz,v on
Sk

2 starting at z. Then, for any eiφ ∈ S1, we have that the great circle γeiφz,w

on Sk
2 through eiφz projects to the same geodesic δ if and only if

w = eiφv ,

cf. (5). Thus

G(Σk
2) ∼= G̃2

(
2(k − 1)

)
/S1

as topological spaces. Unfortunately we cannot straightforward conclude that
the right hand side is a manifold since the action of S1 is no longer free on either
G2

(
2(k−1)

)
or G̃2

(
2(k−1)

)
as Remark 4.2 teaches. However, S0 = {id,−id} ⊂

S1 ∩O(2) acts freely on Õ2

(
2(k− 1)

)
(even discretely) giving rise to a manifold

Õ0
2

(
2(k − 1)

)
:= Õ2

(
2(k − 1)

)
/S0

of the same dimension 4k−8. Both S1 and O(2) act freely on Õ0
2

(
2(k−1)

)
and

their actions commute. Moreover, S1 also acts freely on

G̃0
2

(
2(k − 1)

)
:= Õ0

2

(
2(k − 1)

)
/O(2)

which is, as a topological quotient the same as G̃2

(
2(k − 1)

)
. With this we

obtain

Theorem 4.5. The space of all geodesics on planar shape space can be given a
manifold structure

G(Σk
2) ∼= G̃2

(
2(k − 1)

)
/S1

of dimension 4k − 10.

5 Algorithms for PCGs and IMs on Planar Shape

Spaces

For this section assume that N planar configurations are mapped to pre-shapes
p1, . . . , pN ∈ Sk

2 ⊂ Ck−1 and to shapes [p1], . . . , [pN ] ∈ Σk
2 . In order to find

PCGs γ∗ ∈ G(Σk
2) an objective function F given by (3) will be minimized under

suitable vector valued constraining conditions Φ = 0. A standard method to
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solve such a minimization problem is to project a gradient descent path onto
the constraint surface:

x(n) 7→ x(n+1) := π
(
x(n) − ε(n)dF (x(n))

)
.

Here, ε(n) > 0 is sufficiently small and π gives the orthogonal projection to the
surface S determined by Φ = 0.

We propose another method here. Introducing a vector valued Lagrange multi-
plier λ, every minimum will then solve

dF + λT dΦ = 0 . (15)

This equation will yield in a natural way fixed point equations for the param-
eters of minimizing geodesics. These in turn will lead to numerical algorithms
solving the constrained optimization problem. In practice we have a rather
quick convergence to a (possibly local) minimum when applying the below de-
rived algorithms to numerical data in section 6. Analogously, minimizing (2)
will lead to a fixed point equation for the IM.

Let us first discuss convergence issues arising from the actions of O(2) and S1.
The ambiguity due to the right action of O(2) on the space of spherical geodesics
given by (13) can be overcome by adding appropriate constraining conditions
(cf. Huckemann and Ziezold (2006)). The ambiguity stemming from the left
action of S1 on the horizontal geodesics (14) is handled similarly below. We now
give a heuristic reasoning, why the algorithms of our approach usually converge
faster to a local minimum rather than a method based on projecting a gradient
descent path. In view of the subtle argument of Le (2001) (concerning the con-
vergence of an algorithm for the IM which we quote at the end of Section 5.4)
a mathematically sound derivation of conditions for convergence is obviously
beyond the scope of this paper. For the specific minimization problems below
the constraining surfaces determined by Φ = 0 are subsets of a direct product
of spheres. If, to simplify the argument, we had a single two-sphere determined
by Φ(x) = 〈x, x〉 − 1, x ∈ R2, then the fixed point equation dF (x) = −2λx
naturally yields the algorithm x(n+1) = −dF (x(n))/‖dF (x(n))‖. Obviously, the
less curved the level lines of F are, the faster is the convergence. In case of high
curvature, however, convergence might not occur. In Section 6 below, for all
data examples and for essentially all of our simulations we observed convergence.

In the following, for values 0 < ζj < 1, j = 1, . . . , N the formula

ξj := − 1

2ζj

d

dζj

arccos2 ζj =
arccos ζj

ζj

√
1 − ζ2

j

(16)

and ξj := 1 for ζj = 1 will be useful.
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5.1 The First PCG

By Theorem 4.5, minimizing (3) over γ ∈ G(Σk
2) is equivalent to finding a

horizontal geodesic γx,v minimizing the sum of squared distances to the fibers
of the pre-shape data. Letting t := (t1, . . . , tN ) ∈ [0, 2π)N and taking (7) into
account we have the objective function

F (x, v, t) :=

N∑

j=1

d
(
γx,v, eitj pj

)2

=

N∑

j=1

arccos2
√
〈x, eitj pj〉2 + 〈v, eitj pj〉2

and the constraining condition x, v ∈ Õ2

(
2(k − 1)

)
, i.e.

Φ(x, v, t) :=




〈x, x〉 − 1
〈v, v〉 − 1
2〈x, v〉
2〈ix, v〉




!
=




0
0
0
0


 .

Letting qj = eitj pj, x, v ∈ Ck−1 and λ = (λ1, λ2, λ3, λ4) the Lagrange equation
(15) rewrites to

∑N
j=1 ξj 〈x, qj〉 qj = λ1x + λ3v − λ4iv∑N

j=1 ξj 〈v, qj〉 qj = λ2v + λ3x + λ4ix
∂
∂tj

d(γx,v, e
itj pj) = 0 (j = 1, . . .N)





(17)

where ζj = ζj(x, v) :=
√
〈x, qj〉2 + 〈v, qj〉2 and ξj = ξj(x, v) from (16). With

Theorem 4.3 we can directly solve the last line by putting each pj (j = 1, . . . , N)
into optimal position qj = qj(x, v) = eitj(x,v)pj to a competing γx,v. We may
assume that the optimal positioned data qj is sufficiently close to γx,v which
means that ζj 6= 0, j = 1, . . . , N . The Lagrange multipliers can be obtained
from (17):

∑N

j=1 ξj 〈x, qj〉2 = λ1(x, v) = λ1∑N

j=1 ξj 〈v, qj〉2 = λ2(x, v) = λ2∑N
j=1 ξj 〈x, qj〉〈v, qj〉 = λ3(x, v) = λ3∑N

i=1 ξj 〈ix, qj〉〈v, qj〉 = λ4(x, v) = λ4





. (18)

Introducing

Ga = Ga(x, v) :=
∑N

j=1 ξj 〈a, qj〉 qj ,

s = s(x, v) :=
(
λ1λ2 − λ2

3 − λ2
4

)−1

,

Ψ1(x, v) := s
(
λ2Gx − λ3Gv + λ4 iGv

)
,

Ψ2(x, v) := s
(
λ1Gv − λ3Gx − λ4 iGx

)
,

13



then x∗, v∗ solve (17) and (18) if and only if they satisfy the fixed point equa-
tions x∗ = Ψ1(x

∗, v∗) and v∗ = Ψ2(x
∗, v∗). Note that, the linear combinations

of the two gradients and the multiplication by s can be viewed as an approxi-
mation to the projection to the surface determined by Φ = 0. At (x∗, v∗) this
approximation is exact. Hence, we propose the following algorithm to determine
(x∗, v∗):

Starting with initial values, e.g.

x(0) := p1, v(0) := unit horizontal projection of (p2 − p1)

=
p2 − p1 − 〈p2 − p1, p1〉p1 − 〈p2 − p1, ip1〉ip1

‖p2 − p1 − 〈p2 − p1, p1〉p1 − 〈p2 − p1, ip1〉ip1‖

obtain

x(n+1), v(n+1) from x(n), v(n) for n ≥ 0

by computing qj := eitj pj ∈ [pj ], 1 ≤ j ≤ N in optimal position with respect to
γx(n),v(n) according to Theorem 4.3 and by setting

x(n+1) = Ψ1(x(n),v(n))
‖Ψ1(x(n),v(n))‖ ,

v(n+1) = unit horizontal projection:

= Ψ2(x(n),v(n))−〈Ψ2(x
(n),v(n)),x(n+1)〉 x(n+1)−〈Ψ2(x(n),v(n)),ix(n+1)〉 ix(n+1)

‖Ψ2(x(n),v(n))−〈Ψ2(x(n),v(n)),x(n+1)〉 x(n+1)−〈Ψ2(x(n),v(n)),ix(n+1)〉 ix(n+1)‖ .

Note that, additionally to the ambiguity due to the action of O(2) there is also
an ambiguity due to the action of S1. This can be overcome by bringing x(n+1)

into optimal position eitx(n+1) to x(n) in every iteration step. Additionally then,
according to (5), the tangent vector v(n+1) at x(n+1) has to be rotated by the
same amount to the tangent vector eitv(n+1) at eitx(n+1) so that (x(n+1), v(n+1))
and (eitx(n+1), eitv(n+1)) determine the same geodesic in shape space.

5.2 The Second PCG

Having found a horizontal great circle γ1 = γx,v determined by x, v ∈ Õ2

(
2(k−

1)
)

projecting to a first principal component geodesic on Σk
2 suppose that γ2(t) =

γy,w(t) = y cos t+w sin t with y = y(τ) = x cos τ+v sin τ for some suitable τ ∈ R

projects to a second principal component geodesic. Let us denote the velocity
of γ1 at y by

z = z(τ) = v cos τ − x sin τ .

The objective function to be minimized is now

F (τ, w) :=

N∑

j=1

d(qj , γy(τ),w)2

=

N∑

j=1

arccos2
√
〈y, qj〉2 + 〈w, qj〉2

14



where, of course, qj = qj(τ, w) ∈ [pj ] is in optimal position to γy(τ),w. Obviously
〈y, w〉 = 0 = 〈z, w〉 ⇔ 〈x, w〉 = 0 = 〈v, w〉, hence, the constraining function can
now be taken as

Φ(τ, w) :=




2〈x, w〉
2〈v, w〉

〈w, w〉 − 1
2〈iy, w〉




!
=




0
0
0
0


 .

Introducing a Lagrange multiplier λ = (λ1, λ2, λ3, λ4) the Lagrange equation
(15) rewrites to

∑N
j=1 ξj 〈w, qj〉 qj = λ1x + λ2v + λ3w + λ4iy∑N

j=1 ξj 〈y, qj〉 〈z, qj〉 = λ4〈iz, w〉

}
(19)

where now ζj :=
√
〈y, qj〉2 + 〈w, qj〉2 and ξj from (16). Introducing

Ga,b :=

N∑

j=1

ξj 〈a, qj〉 〈b, qj〉, c := cos τ, s := sin τ

we have for the Lagrange multipliers

Gw,x = λ1

Gw,v = λ2

Gw,w − λ4c〈w, ix〉 − λ4s〈w, iv〉 = λ3

Gw,ix − λ3〈w, ix〉 = cλ4

Gw,iv − λ3〈w, iv〉 = sλ4





. (20)

With this, the last line of (19) rewrites to

(c2 − s2)Gx,v + cs (Gv,v − Gx,x) = cλ4〈iv, w〉 − sλ4〈ix, w〉
= Gw,ix〈iv, w〉 − Gw,iv〈ix, w〉 . (21)

From (21) and the first line of (19) two fixed point equations for τ∗ and w∗

solving (19) and (20) can be derived. It is, however, very convenient to alter
the algorithm such that in every step, τ is set to zero, which means that x and
v are updated in every step to y and z. Then, in particular 〈ix, w〉 = 0, and,
linearizing (21), set

Ψ1(x, v, w) :=

N∑

i=1

ξi 〈w, qi〉 qi − Gw,x x − Gw,v v − Gw,ix ix ,

Ψ2(x, v, w) :=
Gw,ix〈iv, w〉 − Gx,v

Gv,v − Gx,x

,

to obtain the following algorithm:

Starting with initial values, e.g.

x(0) := x, v(0) := v, w(0) := iv,
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obtain

x(n+1), v(n+1) , w(n+1) from x(n), v(n), w(n) for n ≥ 0

by computing qj := eitj pj ∈ [pj ], 1 ≤ j ≤ N in optimal position with respect to
γx(n),w(n) according to Theorem 4.3 and by setting

τ := Ψ2(x
(n), v(n), w(n))

x(n+1) := x(n) cos τ + v(n) sin τ

v(n+1) := v(n) cos τ − x(n) sin τ

w(n+1) :=
Ψ1(x

(n+1), v(n+1), w(n+1))

‖Ψ1(x(n+1), v(n+1), w(n+1))‖
Having thus found x∗, v∗, w∗ note that x̂ := x∗ is a representative of a PM
(principal component geodesic mean) on Σk

2 . With v1 := v∗ and v2 := w∗ we
have the two horizontal geodesics

γ1 := γx̂,v1 , γ2 := γx̂,v2

mapping to a first and a second PCG on Σk
2 . For simplicity set

x := x̂.

5.3 Higher Order PCGs

Suppose that we have found horizontal great circles γx,v1 , . . . , γx,vr−1 , 3 ≤ r ≤
2k − 4 mapping to PCGs on Σk

2 . For any r-th order PCG on the shape space
there is a horizontal geodesic through x determined by a single horizontal di-
rection v that is orthogonal to all preceeding directions at x. Introducing
ζj :=

√
〈x, pj〉2 + 〈v, pj〉2 and ξj according to (16) and Lagrange multipliers

λ0, . . . , λr, λr+1 ∈ R the corresponding Lagrange equation (15) is given by

N∑

j=1

ξj 〈v, qj〉qj = λ0x +

r−1∑

s=1

λsvs + λrv + λr+1ix . (22)

Starting with a suitable v(0) we thus compute v(n+1) from v(n) by the following
algorithm which follows in a natural way from (22):

qj ∈ [pj] in optimal position to γx,v(n)

z(n+1) :=
∑N

j=1 ξ
(n)
j 〈v(n), qj〉 qj ,

λ0 := 〈z(n+1), x〉,
λs := 〈z(n+1), vs〉, 1 ≤ s < r,

λr :=
∑N

j=1 ξ
(n)
j 〈v(n), qj〉2,

λr+1 := 〈z(n+1), ix〉,

v(n+1) := sign(λr)
z(n+1)−λ0x−Pr−1

s=1 λsvs−λr+1ix

‖z(n+1)−λ0x−
Pr−1

s=1 λsvs−λr+1ix‖






.
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5.4 The Intrinsic Mean

Here we determine a pre-shape in the fiber minimizing (2). Hence we minimize

F (x) := min
t∈[0,π)N

N∑

j=1

d(eitj pj , x)2

over a single variable x ∈ Ck−1 under the constraining condition ‖x‖2 = 1. The
shape of a minimizing pre-shape is then a minimizing shape. Arguing as in
Section 5.1, rotate pj by Theorem 4.3 into optimal position qj ∈ [pj ] to x, and,

set ζj := 〈x, qj〉 and ξj =
arccos ζj√

1−ζ2
j

analogously to (16). Then, use (6) to obtain

with a single Lagrange multiplier λ ∈ R the equations

N∑

j=1

ξjqj = λx,

N∑

j=1

ξj〈qj , x〉 = λ .

Thus with Ψ(x) := sign(λ)
∑N

j=1 ξjqj we have the following algorithm for the
intrinsic mean

x(n) 7→ x(n+1)

x(n+1) = Ψ(x(n))

‖Ψ(x(n))‖

}
. (23)

For every iteration all qj ∈ [pj ] are rotated into optimal position to x(n).

We note that Le (2001) derived a general algorithm for the computation of
intrinsic means based on the Riemannian exponential map for a gradient de-
scent minimization of (2), building on the work of Karcher (1977). Setting

Ψ̃(x) :=
∑N

j=1 ξjqj − λx her algorithm for the intrinsic mean is the following:

y(n) 7→ y(n+1) = y(n) cos ‖Ψ̃(y(n))‖ +
Ψ̃(y(n))

‖Ψ̃(y(n))‖
sin ‖Ψ̃(y(n))‖ .

Of course as above, for every iteration all qj ∈ [pj ] are rotated into optimal
position to y(n). In particular, Le (2001, Theorem 4) proved convergence in dΣk

2

to the pre-shape of an intrinsic mean p if the data is contained in a geodesic
ball on Σk

2 of radius 3π
40 and center y(0).

6 Numerical Application

In the preceeding sections we have provided for a theoretical concept of PCA
based on geodesics and for methods to compute PC geodesics for planar shape
spaces. Now, PCA based on Euclidean approximations and PCA based on
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geodesics will be compared with one another.

By definition, PCs obtained by Euclidean approximation are straight lines in the
tangent space of the pre-shape sphere at a pre-shape of the EM (extrinsic mean).
These straight lines project (by the inverse projection to the tangent space) to
great circles through the pre-shape of the EM, in fact they will be almost hor-
izontal geodesics. Both methods, PCA based on Euclidean approximation and
PCA based on geodesics minimize sums of squared distances. However, the sub-
tle difference lies in the two following facts: First, the former method minimizes
only over geodesics passing through an EM. In contrast the latter method does
not preassign a mean, rather, when finding the second PC geodesic the PM
(principal component geodesic mean) is determined. Recall that, different from
both EM and PM is yet the IM (intrinsic mean). Secondly, the former method
minimizes over Euclidean projections of intrinsic distances, the latter method
minimizes over intrinsic distances itself. It is this intrinsic metric, in which the
comparison is performed. Hence, the first PC geodesic will never fit the data
worse than the projection of the first PC obtained by Euclidean approximation.
In the following the improvement of fit will be quantified.

To this end we determine for a given dataset of pre-shapes p1, . . . , pN ∈ Sk
2

the first PC based on Euclidean approximation and denote the corresponding
great circle by γe. We also determine a horizontal great circle γg that corre-
sponds to the first PC geodesic. The absolute improvement of the fit is given
by

N∑

j=1

dΣ(pj , γe)
2 −

∑

j=1

dΣ(pi, γg)
2 ≥ 0 .

We normalize this quantity by dividing by the “true” geodesic fit. The improve-
ment of fit will be measured in percent:

f = f(p1, . . . , pN) :=

(∑N

j=1 dΣ(pj , γe)
2

∑N

j=1 dΣ(pi, γg)2
− 1

)
100 . (24)

Here the distance

dΣ(pj , γx,v) = arccos2
√
〈x, eitj pj〉2 + 〈v, eitj pj〉2

is the shape distance; the optimal eitj are given by Theorem 4.3, (ii). Also, for
pre-shapes p̃, p and p̂ of the EM, IM and PM, resp., the mutual shape distances

I P = I P (p1, . . . , pN ) := dΣ(p, p̂) ,
E P = E P (p1, . . . , pN ) := dΣ(p̃, p̂) ,
I E = I E(p1, . . . , pN ) := dΣ(p, p̃)



 (25)

are investigated.
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As stated in the “prevailing conviction” (1), data concentration is expected
to be correlated with the goodness of fit obtained by Euclidean approximation.
We measure data concentration as in Dryden and Mardia (1998): Consider the
complex Hermitian (k − 1) × (k − 1) sum of squares and products data matrix

N∑

j=1

pjp
∗
j (26)

(here p∗j denotes the conjugate transpose of the complex column vector pj ∈ Sk
2 ,

pj is the pre-shape of the j-th configuration). Since pj ∈ Sk
2 , the sum of all

eigenvalues is equal to N . The data is concentrated about the fiber that is
determined by the eigenvector to the largest eigenvalue l1. This fiber is the full

Procrustes mean shape to the data. Hence,

ε := 1 − l1
N

(27)

can be used as a measure for data concentration.

6.1 Euclidean vs. Geodesic PCA for Typical Datasets

In this section the above quantities are computed for three well studied datasets
which are taken from Dryden and Mardia (1998); there a detailed discussion of
the datasets can be found. The respective values of the above quantities f , I P ,
E P , I E and ε are recorded in Table 1. These datasets reflect typical features
in distribution and landmark assessment:

Rat skulls measures cranium growth of 18 rat specimen measured at eight
specific dates in their early life. On each individual rat 8 landmarks are
assigned to anatomically specific locations on a planar cranium section.
The shapes of each individual rat strongly follow geodesics in shape space
(cf. also Le and Kume (2000) and Huckemann and Ziezold (2006)).

Mouse vertebrae comprises of 6 landmarks placed at mathematically relevant
locations (maximal extension and extremal curvature of contour) on a pla-
nar section of a single thoracic mouse vertebra. This dataset is composed
of three sub-groups: 23 small mouse specimen, 23 large mouse specimen
and 30 controls. The shapes of specimen in each of the first two groups
accumulate significantly around the mean shape of the group.

Digits 3 is a dataset containing 30 handwritten digits “three” used for postcode
recognition. 5 Landmarks have been placed at mathematically relevant
locations and 8 more (“pseudo”-)landmarks have been evenly distributed
within between on the contour. Compared to the previous datasets, these
shapes are more dispersed. Both methods of PCA reveal that 5 PCs are
required to explain approx. 90% of data variation.
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Table 1: Displaying for various datasets of respective sample size N with k
landmarks the percentage of improvement of the fit by the first PC geodesic
versus the fit based on the first PC obtained by Euclidean approximation denoted
by f , cf. (24). Also, the mutual shape distances between the various means are
shown, cf. (25). The last column records the concentration measure from (27)
for the various datasets indicating concentration about the full Procrustes mean
shape. Small values indicate high concentration.

Dataset k N f I P E P I E ε

Rat skulls 8 144 0.000211 6.66e − 05 5.2e − 05 2.19e − 05 0.0052
Mouse vertebrae 6 76 0.000267 6.72e − 05 6.08e − 05 1.57e − 05 0.0051
Digits 3 13 30 0.201 0.0095 0.0081 0.00154 0.075

We see from Table 1 that for the first two datasets, the values obtained by
PCA based on Euclidean approximation are very close to the values obtained
by PCA based on geodesics. For the third dataset, however, the difference in
values is notable. For all three datasets, similar to the observation in Hucke-
mann and Ziezold (2006), EM and IM are much closer to each other than to
the PM. Obviously, high concentration correlates with a high precision of the
Euclidean approximation. More subtly we note, that the dataset “rats skulls” is
approximated slightly better than the dataset “mouse vertebrae” even though
both sets have about the same concentration about their mean. This could be
explained by the difference in distribution type: the first dataset is strongly
anisotropically distributed along the first PCG wheras the second dataset is
more isotropically distributed. In the following investigation, the anisotropicity
of the data distribution will also be included.

6.2 Euclidean vs. Geodesic PCA for Simulated Datasets

In order to broaden the discussion, we now simulate random shapes to analyse
more carefully the distributions of the above introduced percentage of improve-
ment f and the various inter-mean distances. A prominent distribution for
simulation of planar shapes in the pre-shape sphere is the complex Bingham

distribution, proposed by Kent (1994). We briefly summarize from the exten-
sive discussion in Dryden and Mardia (1998), pp. 111: A random pre-shape Z
with density

π(z) ∝ ez∗Az, z ∈ Sk
2

is complex (k − 1)-Bingham distributed if A is a complex (k − 1) × (k − 1)
Hermitian matrix. Obviously, the density is invariant under the action of S1,
hence this distribution maps to a distribution on the shape space Σk

2 . With
z = (x1 + iy1, . . . , xk−1 + iyk−1)

T and x = (x1, y1, . . . , xk−1, yk−1)
T we see that

the complex Bingham distribution is a special case of a real (2k − 2)-Bingham
distribution:

π(x) ∝ exT Bx, x ∈ R
2k−2 , ‖x‖ = 1
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with a suitable matrix B ∈ M(2k − 2, 2k − 2). As with the complex sum of
squares and products data matrix (26) in the preceeding section, the eigenspace
to the largest eigenvalue λ of A, if simple, is the modal shape to the distribution.
Usually instead of A the matrix A − λI with eigenvalues λ1 = 0 ≥ λ2 ≥
. . . ≥ λk−1 is considered which yields the same distribution. In case of high

concentration, i.e. λ2 ≪ 0 there is a MLE (cf. Dryden and Mardia (1998), p.
116):

λ̂j ≈ − N

lj
, j = 2, . . . , k − 1 , (28)

with the eigenvalues lj of the complex Hermitian sum of squares and products
data matrix (26) of a sample of size N . Inspired by (28) and

l1 = N(1 − ε), lj = Nε a(j) for j = 2, . . . , k − 1

with
∑k−1

j=2 a(j) = 1, we let for the simulation with suitable α > 0

λ1 = 0, λj = − 1

a(j)α
for j = 2, . . . , k − 1 (29)

be the eigenvalues of A. We consider three cases (2 ≤ j ≤ k − 1):

(I) a(j) = 1
k−2 giving an isotropic distribution about the modal shape, the

resulting Bingham distribution with only two eigenvalues is called the
Watson distribution,

(II) a(j) = 2(k−j)
(k−1)(k−2) leading to a “mildly” anisotropic distribution with lin-

early decaying eigenvalues, and

(III) a(j) = 6(k−j)2

(k−1)(k−1)(2k−3) , which yields a “more strongly” anisotropic distri-

bution (quadratic decay).

In order to be able to compare over shapes with differing numbers of landmarks
we proceed as follows: For every k ∈ {3, 8, 12} and isotropicity model (I) - (III)
we choose α such that the empirical 1− l1/N ≈ ε ∈ {0.8, 0.1, 0.01}. For a small
landmark number such as k = 3 it is not possible with the Bingham distribution
to generate arbitrary low concentrations l1/N . Hence for k = 3, samples having
ε ∈ {0.4, 0.1, 0.01} have been generated instead. Of course for k = 3, all three
models (I) - (III) agree with one another. For every simulation 100 samples, each
sample containing N = 30 pre-shapes on Sk

2 have been created. For A a diagonal
matrix with descending eigenvalues λ1 = 0 ≥ λ2 ≥ . . . ≥ λk−1 as in (29) was
chosen. Then, the matrix B of the corresponding real Bingham distribution is
also diagonal with non-positive, non-increasing double eigenvalues.

As the distribution for the improvement f of the SSD of the data to the first PC
is non-symmetric with heavy tail, Table 2 records the median and the distance
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Table 2: Depicting in every row of each box the percentage of improvement f
from (24) based on 100 samples each. The first entry gives the median over the
sample, the second the distance between median and upper quartile. For every
one of the three distribution models, for every concentration value ε and for
every landmark number k, separate samples have been generated.

isotropic anisotropic
k ε (I) linear (II) quadratic (III)

3 0.4 26.4 +24.2
0.1 0.742 +0.768
0.01 0.00585 +0.00915

8 0.8 6.45 +1.71 5.36 +0.741 6.54 +0.76
0.1 0.0135 +0.00619 0.0124 +0.00943 0.114 +0.0433
0.01 0.000189 +8.07e − 05 0.000191 +0.000162 0.000537 +0.000386

12 0.8 4.46 +1.16 5.03 +1.12 5.59 +1.60
0.1 0.00661 +0.00312 0.016 +0.00615 0.121 +0.054
0.01 0.000246 +0.000139 0.00127 +0.00179 0.00832 +0.0044

Table 3: Displaying shape distances between the various means as defined in
(25). In every box the first column denotes the median of the shape distances,
the second column denotes the distance between upper quartile and median. Un-
derlying for each box is a sample of 100 shapes corresponding to configurations
with k = 8 landmarks of the respective distribution and concentration value ε.

isotropic anisotropic
ε (I) linear (II) quadratic (III)

0.8 I P 0.592 +0.0958 0.585 +0.117 0.603 +0.102
E P 0.576 +0.113 0.55 +0.142 0.567 +0.136
E I 0.0369 +0.00997 0.0374 +0.0148 0.0378 +0.0141

0.1 I P 0.00160 +0.000426 0.00199 +0.000756 0.00283 +0.00171
E P 0.00151 +0.000386 0.00188 +0.000671 0.00263 +0.00152
E I 0.000432 +8.07e − 05 0.000447 +0.000139 0.00065 +0.000237

0.01 I P 7.54e − 05 +2.83e − 05 8.12e − 05 +1.78e − 05 0.000592 +0.000141
E P 7.37e − 05 +2.25e − 05 7.85e − 05 +1.7e − 05 0.000548 +0.000138
E I 3e − 05 +6.59e − 06 1.64e − 05 +3.77e − 06 0.000114 +5.77e − 05

22



Figure 1: 12 aligned triangles with concentration ε = 0.33 (top 3 rows). In
the bottom row, the EM (extrinsic mean), IM (intrinsic mean) and the PM
(principal component mean) are shown.

of the median to the upper quartile of f for varying concentrations measures,
distribution types and landmark numbers. For the same reason Table 3 also
records for the mutual distances between the various means, the median and
the distance between median and upper quartile. As the same pattern prevails
rather independent of the number of landmarks, only results from simulations
with with k = 8 landmarks are reported.

6.3 Visualizing Triangles with Low Concentration

In a last experiment, 12 triangles with low concentration ε = 0.33 have been gen-
erated. The 12 aligned triangles together with their various means are displayed
in Figure 1. Notably EM and IM look very similar, however, the PM is different.
In Figure 2 the projection of the 12 triangles to their first PC geodesic is shown.
In contrast, Figure 3 depicts the projection to the first PC obtained by Eu-
clidean approximation. Again, the difference between PCA based on geodesics
and PCA based on Euclidean approximation is very clearly visible.
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Figure 2: The projection of the above 12 aligned triangles to the first PC geodesic.

Figure 3: The projection of the above 12 aligned triangles to the first PC obtained
by Euclidean approximation.
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6.4 Discussion

Based on the preceeding simulations a qualitative answer to the vague proposi-
tion (1) can be given. Although in Tables 2 and 3 a high volatility can be noted,
several trends are clearly visible.

• With increasing concentration, i.e. decreasing ε, the first PC obtained by
Euclidean approximation and also the extrinsic mean are moving closer to
the values obtained by PCA based on geodesics.

• For low concentrations (ε large) the error by Euclidean approximation is
notable, in particular, for k = 3 the error is huge. This last finding may
be explained by the fact, that the triangular shape space is in a way the
most curved of all planar shape spaces: it has constant Gauss curvature 4
whereas all higher dimensional planar shape spaces have Gauss curvatures
ranging from 1 to 4. Also, for low concentrations, the distance between
the various means is high (the maximal distance in shape space is π/2).

• Increasing anisotropicity increases the error by Euclidean approximation.
This effect is very well visible for higher concentrations and less visible for
low concentrations. Similarly, with increasing anisotropicity the means
move apart.

• For low concentrations, increasing the number of landmarks results in a
decrease of the error by Euclidian approximation.

• For high concentrations and a higher number of landmarks, the situation
is reversed. Increasing the number of landmarks also increases the error by
Euclidean approximation. This effect also increases with anisotropicity.

• The distance between the various means is far less sensitive to the number
of landmarks.

• In accordance with the observeration in Huckemann and Ziezold (2006) for
specials distributions on Σ3

2 we have a general trend: Intrinsic and extrinsic
mean are much closer to each other then to the principal component mean.

Secondly, the features in Figures 1 - 3 are discussed: The first PC geodesic cap-
tures notably more features than the first PC based on Euclidean approximation.
The original triangles number 5 and number 6 (first and second in second row)
are almost mirrored images of each other. This is very well reflected by the
projection to the first PC geodesic, the first PC obtained by Euclidean approx-
imation fails to capture this feature. In fact, the first PC geodesic seems to
record the width and orientation of the inscribed angle and can thus very well
discriminate between triangles, 7 and 12 (the third in the second row and the
fourth in the third row), say. In contrast, the projections of these two triangles
to the first Euclidean PC are similar. Only triangles 3 and 4 (the penultimate
and the ultimate of the first row) are obviously better captured by the Euclidean
PC. Slightly better captured are also triangles number 2 and 9 (the second of
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the first row and the first of the third row). All other triangles are far better
captured by the first PC geodesic.

We should note a difference between the (real) datasets of Section 6.1 and the
above simulated datasets. All three real datasets appear as a mixture of the
above distribution models. The first few eigenvalues of the sum of squares and
products data matrix (26) tend to decay quadratically or stronger. Higher order
eigenvalues, however, tend to decay less quickly.

In a final remark we note a limitation to the complex Bingham distribution.
With every eigenvalue of the complex Hermitian model matrix comes a pair
of eigenvalues for the corresponding real model matrix. Hence, data strongly
following a single geodesic such as the dataset “rats skulls” cannot be modeled
well using the Bingham distribution.

7 Conclusion

In this paper an algorithmic approach to perform PCA based on intrinsic
geodesics for data on Kendall’s planar shape spaces has been developed. With
this method, PCA based on geodesics and PCA based on Euclidean approxima-
tion can now be compared. We have therefore considered typical distributions
for two-dimensional shapes. The prevailing conviction (1) was empirically val-
idated for highly concentrated data: the data fit by the first PC obtained by
Euclidean approximation serves as a good estimate for the true geodesic fit. For
low concentration, as expected, the estimate based on Euclidean approximation
can be notably far away from the fit by the first PC geodesic. In particular this
is the case for data with few landmarks. For higher concentration, modeling
with the Bingham distribution, the error by Euclidean approximation increases
notably with the anisotropicity of the data and the number of landmarks.
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