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1 Introduction
In this paper we will be concerned with the numerical solution of linear
inverse problems. These are operator equations where the operator is not
continuously invertible; mostly A is a linear compact operator A : X → Y
acting between two metric spaces,

Ax = y0. (1)

Here x has to be recovered form y0. Moreover, due to measurement errors we
can just access noisy data yδ = y0 + δξ. The vector ξ will be a standardized
random element in the space Y to be specified later.

Because the inversion of (1) yields an unbounded and hence not contin-
uous operation various regularization techniques have been developed over
the last decades, we mention [1], [2] and [3]. Among these are so called
spectral methods, as Tikhonov-Phillips regularization, spectral cut-off reg-
ularization, Landweber iteration or regularization methods which explicitly
penalize certain measures of roughness of the solution of Ax = yδ, such as
BV norms or the number 1 modes [4]. Recently, also non-convex norms such
as Lp-norms for 0 < p < 1 have become popular [5] as well as regularization
in Banach spaces [6].

There is an extensive analysis of the convergence of regularization meth-
ods in the deterministic context as well as in a setting with random noise
ξ (see e.g. [1], [7] and [8]). However, most of these results are formulated
in terms of convergence rates depending on a proper choice of the regu-
larization parameter. Unfortunately these results can hardly be utilized in
practice due to the unknown information required on x, which determines
the choice of the regularization parameter and the noise level. Hence se-
lection of a proper regularization parameter is one of the most challenging
tasks when performing a particular regularization scheme in practice.

Among various parameter selection strategies which have been advocated
during the past (e.g. Morozov’s discrepancy principle [9], generalized cross-
validation [10], the L-curve method [11]) we want to emphasize the Lepskii-
balancing principle [12] which has been shown to be adaptive in the sense
that it adapts automatically within a scale of Hilbert spaces in order to select
the optimal regularization parameter in a minimax sense. We mention in
particular [13] and [14].

Nevertheless, consistency of the Lepskii principle has been only provided
in the context of Hilbert spaces and it remains unclear whether it can also
be applied for regularization schemes which habe to be formulated in a more
general context as it is required for TV or Lp with p 6= 2 penalties.

The aim of this paper is to transfer the Lepskii balancing principle to
general metric spaces where we provide a full convergence analysis for lp
spaces, p > 0.
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The paper is organized as follows: In section 2 we introduce the model,
notation and set up. In section 3 we introduce a variant of the Lepskii bal-
ancing principle and provide a convergence analysis in a general framework
of metric spaces. In section 4 wie discuss the lp spaces in detail where we
restrict ourselves to spectral cut-off regularization and a Gaussian random
element ξ.

2 Assumptions

2.1 Preliminaries and Notation

Let X a metric vector space with distance function d(·, ·). Let Y a topological
vector space. Additionally, assume x ∈ X and y ∈ Y if not stated otherwise.

Throughout this article “C�” will denote some generic constants which
may depend from use to use.

2.2 Smoothness and Noise Behavior

Assume that we have a sequence {An}n∈N of continuously invertible oper-
ators An : X → Y, the regularization operators. Define according to these
the regularized solutions

xδ
n = A−1

n yδ.

First of all we assume that the regularization method is consistent, i.e. the
regularized solutions converge to the true solution x in the noise free case.

Assumption 1 (Approximation Error). Let x the solution of (1) and as-
sume that there exists for x a monotonically decreasing continuous function
ψx : R→ R (approximation error function) with limn→∞ ψx(n) = 0 and the
approximation error is bounded as

d(x, x0
n) ≤ ψx(n). (2)

Remark 2. Although the existence of ψx is only required for the particular
x, in most situations this will be a function ψ independent of x.

In the case of Hilbert spaces (2) depends on the smoothness of x, given by
source conditions. In general, the smoother the solution x is with respect to
the operator A, the faster decays ψx. However, this is also largely influenced
by the regularization method measured in terms of the qualification number.
A detailed description of this in various contexts can be found in [13],[1] and
[8].

The next assumption guarantees that the regularization method actually
controls the error in expectation.
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Assumption 3 (Stochastic Error Behavior). Let k ∈ N. Assume addi-
tionally that Ed(x0

n, x
δ
n)k < ∞ for all n and that there is a monotonically

decreasing continuous function ρ : R→ R with limn→∞ ρ(n) = 0 and

Ed(x0
n, x

δ
n)k ≤ δk

ρ(n)k
. (3)

Furthermore assume ρ(n + 1) ≥ Cspeedρ(n) for some positive real constant
Cspeed.

Remark 4. The property ρ(n+1) ≥ Cspeedρ(n) assures that the sequence of
regularized solutions is such that subsequent regularized solutions are close
enough for our purposes. This is a technical condition required in the proof
of Lemma 8.

Definition 5 (Optimal Rate and Regularization Parameter). Define the
optimal regularization parameter as

nopt = min
{
n : ψx(n) ≤ δ

ρ(n)

}
. (4)

Define the optimal rate function OptRate : R+ → R+

OptRate(δ) = ψx((ψxρ)−1(δ)). (5)

In the sequel we require an exponential bound for d(x0
n, x

δ
n).

Assumption 6 (Exponential Bound). We assume to have positive constants
c̃ and l and a function f(·, ·), such that for all N > nopt and τ > 1

Pξ

{
max

nopt≤n≤N
d(x0

n, x
δ
n)ρ(n)δ−1 > τ

}
≤ exp

(
−2c̃τ l

)
f(nopt, N). (6)

Remark 7. The deterministic case d(x0
n, x

δ
n) ≤ δ

ρ(n) is obtained in this
stochastic setting as a special case with f(·, ·) = 0. For Gaussian noise we
will compute f(·, ·) in Section 4.

3 Rates

3.1 Optimal Rate

Knowing ψx and ρ we can choose the regularization parameter a-priorily
using the bounds (2) and (3). This is just of theoretical use and cannot be
applied in practice. However in the sequel we present a parameter selec-
tion rule which achieves an almost optimal rate of convergence without the
knowledge of ψx and hence is adaptive.
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Lemma 8. Assume (2) and (3). It holds that

Ed(x, xδ
nopt

)k ≤ Copt (OptRate(δ))k

and that this bound is rate optimal.

Proof. We have

Ed(x, xδ
n)k ≤ cX ,k

(
Ed(x, x0

n)k + Ed(x0
n, x

δ
n)k
)
≤ cX ,k

(
ψ(n)k +

δk

ρ(n)k

)
,

where ψx is a decreasing and 1/ρ an increasing real valued function. In order
to achieve a rate optimal solution we have to show that

Ed(x, xδ
nopt

)k ≤ Crate min
n

(
ψ(n)k +

δk

ρ(n)k

)
.

The intersection point of the functions ψx and δ/ρ exists by continuity and
monotonicity of ψx and ρ. It will be called (ψxρ)−1(δ) = n0. It holds

2 OptRate(δ)k = ψ(n0)k +
δk

ρ(n0)k
≤ 2 min

n

(
ψ(n)k +

δk

ρ(n)k

)
,

and hence it is sufficient to concentrate on a bound in OptRate. On the one
hand we have

ψx(nopt)ρ(nopt) ≤ δ = ψx(n0)ρ(n0),

and on the other hand

ψx(nopt − 1)ρ(nopt − 1) ≥ δ = ψx(n0)ρ(n0).

This yields

Ed(x, xδ
nopt

)k ≤cX ,k

(
ψx(nopt)k +

δk

ρ(nopt)

)
≤ 2cX ,k

δk

ρ(nopt)k

≤2cX ,k
ψx(n0)kρ(n0)k

ρ(n0 + 1)k
≤ 2cX ,kC

k
speedψx(n0)k

=Copt (OptRate(δ))k .

3.2 Balancing Principle

Now we will introduce an adapted version of the balancing principle which
is less computationally demanding than the original version (see e.g. [14]).

This algorithm is an extended version of the algorithm in [13] which
now works for general regularization methods. Note that we do not require
explicit knowledge of ψx.
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Definition 9 (Look-Ahead). Let σ > 1 a positive real number and N > nopt

a real number denoting an upper bound. Define the look ahead function by

lN,σ(n) = min{min{m|ρ(n) > σρ(m)}, N}

Remark 10. By definition we have that lN,σ(n) > n for all n < N . The
former method [14] will be obtained for setting σ to ∞.

Now we can define the balancing functional bN,σ(n):

Definition 11 (Balancing Functional). The balancing functional is defined
as

bN,σ(n) = max
n<m≤lN,σ(n)

{
4−1d(xn, xm)ρ(m)δ−1

}
.

The smoothed balancing functional is defined as

BN,σ(n) = max
n≤m≤N

{bN,σ(n)} . (7)

Remark 12. Note, that BN,σ(n) is a monotonically decreasing function.

Definition 13 (Balancing Stopping Index). The balancing stopping index
is defined as

nN,σ,κ = min
n≤N

{BN,σ(n) ≤ κ} . (8)

Figure 1: x-axis: cut-off parameter; y-axis: Balancing functional (solid line),
d(x, xδ

n)/minn d(x, xδ
n) (dotted line)

In figure 1 we display an example of the balancing functional. In this
special case we chose
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• X = Y = R200 with standard basis {uk}k∈{1,...,200}; d(·, ·) standard
l2-norm, i.e. d(x1, x2) = ‖x1 − x2‖2

• A = diag(k−3)

• The Fourier coefficients 〈x, uk〉 of x are independently drawn according
to N (0, k−5).

• The Fourier coefficients 〈ξ, uk〉 of the noise ξ are independently drawn
according to N (0, δ2); δ = 10−9.

As regularization method we used spectral cut-off. For determining the
balancing functional we assumed σ = 3. In our experience the displayed
graph is a good prototype for all balancing functionals observed in practice,
more or less independent of the regularization method or the used metric.

Lemma 14 (Balancing Lemma). Assume (2), (3) and (6). For the balanc-
ing stopping index (8) we obtain

Ed(x, xδ
nN,σ,κ

)k ≤Ctail(σ)f(nopt, N)
(

δ

ρ(N)

)k

exp
(
−c̃κl

)
+ Cmain(σ)κk OptRate(δ)k (9)

Proof. Define the random variable Ξ by

Ξ = max
nopt≤n≤N

d(x0
n, x

δ
n)ρ(n)δ−1

and define Ωκ = {ξ : Ξ ≤ κ} and its complement by Ωκ.
We will distinguish two cases

Main Behavior: (Ξ ≤ κ, i.e. ξ ∈ Ωκ)
For all (n,m) fulfilling nopt ≤ n ≤ m we have

d(xδ
n, x

δ
m) ≤ d(x, x0

n) + d(x0
n, x

δ
n) + d(x, x0

m) + d(x0
m, x

δ
m)

≤ ψ(n) +
κδ

ρ(n)
+ ψ(m) +

κδ

ρ(m)
≤ 4κδ
ρ(m)

,

and hence bN,σ(n) ≤ κ. This implies in particular that BN,σ(nopt) ≤ κ and
thus nN,σ,κ ≤ nopt (see (7) and (8)).

Now define n0 = nN,σ,κ and nk+1 = lN,σ(nk) stopping if nK > nopt or
nK = N . nK is now defined as nK = nopt. Due to the definition of nN,σ,κ

and the monotonicity of BN,σ we obtain for all 0 ≤ k ≤ K that we have
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BN,σ(nk) ≤ κ. This gives

d(x− xδ
nN,σ,κ

) ≤ d(x, xδ
nopt

) +
K−1∑
k=0

d(xδ
nk
, xδ

nk+1
)

≤ Copt OptRate(δ) +
K−1∑
k=0

4κδ
ρ(nk+1)

≤ Copt OptRate(δ) +
4κδ

ρ(nopt)

K−1∑
k=0

(σ−1)K−1−k

≤ Copt OptRate(δ) + 4κCopt
1

1− σ−1
OptRate(δ)

≤ (Cmain(σ))1/kκOptRate(δ).

Tail Behavior: (Ξ > κ, i.e. ξ ∈ Ωκ)
Like beforehand we define n0 = nN,σ,κ and nk+1 = lN,σ(nk) stopping if

nK = N . Then we have

d(x, xδ
nN,σ,κ

) ≤d(x, x0
N ) + d(xδ

N , x
0
N ) +

K−1∑
k=0

d(xδ
nk
, xδ

nk+1
)

≤ψ(N) +
Ξδ
ρ(N)

+
4κδ
ρ(N)

1
1− σ−1

≤ 6
1

1− σ−1
Ξ

δ

ρ(N)
.

(10)

Using this result we obtain:∫
Ωκ

d(x, xδ
nN,σ,κ

)kdP(ξ) ≤
(

3
1

1− σ−1

δ

ρ(N)

)k ∫
Ωκ

ΞkdP(ξ)

≤
(

3
1

1− σ−1

δ

ρ(N)

)k (∫
Ωκ

Ξ2kdP(ξ)
∫

Ωκ

1dP(ξ)
)1/2

(11)

Now we estimate the two parts separately.∫
Ωκ

Ξ2kdP(ξ) ≤−
∫ ∞

κ
τ2kd

(
exp

(
−2c̃τ l

)
f(nopt, N)

)
≤−

∫ ∞

0
τ2kd

(
exp

(
−2c̃τ l

)
f(nopt, N)

)
= −τ2k

(
exp

(
−2c̃τ l

)
f(nopt, N)

)∣∣∣∞
0

+ 2k
∫ ∞

0
τ2k−1

(
exp

(
−2c̃τ l

)
f(nopt, N)

)
dτ

=2kf(nopt, N)
∫ ∞

0
τ2k−1

(
exp

(
−2c̃τ l

))
dτ

≤Clf(nopt, N),
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and the second factor in (11) is estimated as∫
Ωκ

1dP(ξ) ≤ exp
(
−2c̃κl

)
f(nopt, N).

Hence we get∫
Ωκ

ΞkdP(ξ) ≤ Ctail(σ)f(nopt, N)
(

δ

ρ(N)

)k

exp
(
−c̃κl

)
.

This yields

Ed(x, xδ
nN,σ,κ

)k ≤ Ctail(σ)f(nopt, N)
(

δ

ρ(N)

)k

exp
(
−c̃κl

)
+ Cmain(σ)κk OptRate(δ)k.

Theorem 15. Assume (2), (3) and (6). There is a δ0 such that for all
δ < δ0 we can choose nopt ≤ N = ρ−1(δ) and have

Ed(x, xδ
nN,σ,κ

)k ≤ Ctail(σ)f(nopt, N) exp
(
−c̃κl

)
+ Cmain(σ)κk OptRate(δ)k.

Proof. As A is compact δ/OptRate(δ) → 0 as δ → 0. Hence due to ρ(n+
1) ≥ Cspeedρ(n) there is a δ0 s.t. for all δ < δ0 it always holds N = ρ−1(δ) >
nopt.

The inequality follows by insertion in (9).

Remark 16. When setting the look-ahead parameter σ to infinity all proofs
also hold provided for all x1, x2, x ∈ X

d(x1, x2)k ≤ cX ,k

(
d(x1, x)k + d(x2, x)k

)
. (12)

for some constant cX ,k. This includes lp with 0 < p < 1 with d(·, ·)p =
|| · − · ||pp.

4 The Lepskĳ Balancing Principle in lp spaces
In the following section we will restrict ourselves to a special situation. We
will assume that we are operating in separable Hilbert spaces X , Y and
(see e.g. [15]) and hence we have a singular value decomposition of the
linear compact operator A : X → Y with the corresponding basis {uk}k∈N
and {vk}k∈N and the singular values {λk}k∈N where the λk are forming
a monotonically decreasing sequence tending to zero, where It holds that
Ax =

∑∞
k=1 λk 〈x, uk〉 vk.
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4.1 Regularization Operators

In the sequel we will restrict our analysis to the spectral cut-off operators
An defined by

Anx =
n∑

k=1

λk 〈x, uk〉 vk.

4.2 Noise Model

We assume that yδ = y0 +δξ where ξ is a zero-mean weak Gaussian random
element (see e.g. [16]). This specifically means that for every element g ∈ Y
we have

〈
g, yδ

〉
= 〈g,Ax〉+ δ 〈g, ξ〉, where 〈g, ξ〉 is a centered Gaussian ran-

dom variable on a probability space (Ω,Σ,Pξ) with variance ||g||2. Hence
we have in addition E (〈g1, ξ〉 〈g2, ξ〉) = 〈g1, g2〉 for all g1, g2 ∈ Y, i.e. the
white noise element ξ is generated by a stochastic process with the iden-
tity covariance operator. In the sequel we will denote the N (0, 1) random
variables 〈ξ, uk〉 by Rk.

4.3 Norms and Expectations

As normed spaces we will now consider the subspace lp∩ l2 of the previously
defined Hilbert space l2 equipped with the p-norm (1 ≤ p ≤ ∞)

||x||p =

( ∞∑
k=1

|〈x, uk〉|p
) 1

p

.

Note that all considerations will hold for lp and not just for lp ∩ l2.
Straightforward calculation shows

E||x0
n − xδ

n||pp = δpCp

n∑
k=1

∣∣λ−1
k

∣∣p , (13)

where Cp = 2
p
2 Γ(1+p

2 )/Γ(1
2).

4.4 Probabilities

Assume that Zk are i.i.d. random variables with distribution N (0, 1). Now
we define

Sn =
n∑

k=1

|λ−1
k |p|Zk|p

Furthermore, let

S∗n =
Sn

ESn
= C−1

p

n∑
k=1

|Zk|p
|λ−1

k |p∑n
j=1 |λ

−1
j |p

=: C−1
p

n∑
k=1

|Zk|pαp
n,k. (14)
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This implies that αn,k > 0 and
∑n

k=1 α
p
n,k = 1, and because of the mono-

tonicity of the λk, additionally maxk=1,...,n αn,k = αn,n.
First we need two auxiliary lemmas

Lemma 17. Let ak positive real numbers and Wk = akZk independent
random variables where the Zk are N (0, 1) distributed. Then

E
{

max
k=1,...,n

|Wk|
}
≤
√

2 ln 2n max
k=1,...,n

|ak|. (15)

The proof follows the lines of [17] and is therefore omitted.

Lemma 18 (Borel’s inequality, see e.g. [18]). Let ak positive real numbers
and Wk = akZk independent random variables where the Zk are N (0, 1)
distributed. Then

P
{

max
k=1,...,n

|Wk| − E
{

max
k=1,...,n

|Wk|
}
> τ

}
≤ exp

(
− τ2

2 maxk=1,...,n a
2
k

)
. (16)

Lemma 19. It holds for C−1/p
p τ ≥ 1 +

√
2 ln 2N and N ≥ 1

P
{

max
nopt≤n≤N

S∗n > τp

}
≤ exp

(
−2

1

2C1/p
p

τ

)
N2.

Proof. Define

τp = C−1
p τp.

One has, using (16), (15) and
∑n

k=1 α
p
n,k = 1,

P
{

max
nopt≤n≤N

S∗n > τp

}
=P

{
max

nopt≤n≤N

n∑
k=1

|Zk|pαp
n,k > τp

}

≤P
{

max
nopt≤n≤N

max
k=1,...,n

|Zk|p > τp

}
=P
{

max
k=1,...,N

|Zk| > τ

}
=P
{

max
k=1,...,N

|Zk| − E
(

max
k=1,...,N

|Zk|
)
> τ − E

(
max

k=1,...,N
|Zk|

)}
(16)

≤ exp

(
−

(τ − E (maxk=1,...,N |Zk|))2

2

)

(15)

≤ exp

−
(
τ −

√
2 ln 2N

)2

2


≤ exp

(
−2

1

2C1/p
p

τ

)
N2.
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This yields our main theorem:

Theorem 20. Assume that we have an inverse problem in the space lp

fulfilling assumption (2) with Gaussian white noise. Furthermore assume
that it holds κ = 2C1/k

k

√
ln 2N for N = ρ−1(δ). Then it holds for a fixed

constant µ

Ed(x, xδ
nN,σ,κ

)p
p ≤ Call(σ)

(
lnOptRate(δ)−1

)k OptRate(δ)k.

Proof. Due to C
−1/p
p κ = 2

√
ln 2N ≥ 1 +

√
2 ln 2N we can apply the last

lemma and so it holds (3) and (6). Hence the requirements for Lemma 19
hold.

Using the same arguments as in [14] we obtain the above result by The-
orem 15.
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