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Abstract

We study the issue of identifiability of mixture models in the context of capture-
recapture abundance estimation for closed populations. Such models are used to take
account of individual heterogeneity in capture probabilities, but their validity was re-
cently questioned by Link (2003) [Biometrics 59, 1123–1130] on the basis of their non-
identifiability. We give a general criterion for identifiability of the mixing distribution,
and apply it to establish identifiability within families of mixing distributions that are
commonly used in this context, including finite and beta mixtures. Our analysis covers
binomial and geometrically distributed outcomes.
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1 Introduction

Capture-recapture methods are widely used in wildlife abundance estimation and also in fields
such as epidemiology and quality control. They have been developed to estimate the size of
both closed and open populations, but here, we restrict our attention to the former. For
terminology and an overview of the methods see, e.g., Seber (1982).
An important issue in this context is the fact that, in many applications, the probability of
capture/recapture differs among individuals in ways that are caused by factors that are not, or
cannot be, observed (see, e.g., Borchers, Buckland and Zucchini, 2002, Section 11.3). Ignoring
such heterogeneity can lead to substantial bias, and to inaccurate confidence intervals. One
can address this problem by regarding the capture probabilities as realizations of a random
variable, from which it follows that the number of animals captured in x out of T capture
occasions, follows a mixture distribution (Burnham, 1972; Agresti, 1994; Norris and Pollock,
1995, 1996; Pledger, 2000, 2004; Dorazio and Royle, 2003). However, the use of mixture mod-
els raises the issue of identifiability (e.g. Huggins, 2001). Indeed Link (2003) concludes “Thus
even with very large samples, the analyst will not be able to distinguish among reasonable
models of heterogeneity, even though these yield quite distinct inferences about population
size.” Furthermore he gives examples to illustrate this statement, thereby casting doubt on
the validity of using mixture models for estimating abundance in the presence of unobserved
individual heterogeneity.
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The aim of this paper is to examine the identifiability issue in more detail. In particular
we prove identifiability within the mixture families that are most commonly used in this
application. Thus, so long as the analyst is prepared to assume that the mixture distribution
belongs to a certain family then identifiability is not a problem. Of course, if the analyst is
prepared to make no assumptions about the distribution of probabilities then, as is well-known
in the context of mixture models in general, Link’s conclusion is correct.

2 Notation and preliminaries

Suppose that a closed population of unknown size N is sampled on T occasions. We assume
that the number of captures Xi of animal i is distributed as Binomial B(T, pi), where pi is
the capture probability of this animal over T independent samples. We assume that the pi’s
are distributed according to some distribution G on [0, 1]. This implies that the probability
that an individual is sampled x-times is given by

πG(x) =
(

T

x

) ∫ 1

0
px(1− p)T−x dG(p). (1)

Let n be the number of animals which were captured at least once, i.e. for which Xi > 0. Let

fx = #{i : Xi = x}, x = 1, . . . , T.

As pointed out by Link (2003), the vector (f1, . . . , fT ) is multinomially distributed with T
cells, n repetitions and cell probabilities

πc
G =

(
πc

G(1), . . . πc
G(T )

)
, πc

G(x) =
πG(x)

1− πG(0)
, x = 1, . . . , T.

The probabilities πc
G are simply the conditional probabilities of the mixture of binomial dis-

tributions given that x ≥ 1. Note that only these conditional probabilities can be estimated
from the observations fx. Consequently the problem of establishing identifiability in this
context differs from that of establishing identifiability of the mixing distribution G from the
probabilities of a binomial mixture, πG, in the classical mixture context (cf. Teicher, 1961,
1963; Lindsay, 1995). Here we need to investigate the identifiability of G from the condi-
tional probabilities, πc

G, given that x ≥ 1. Note that once this identifiability is settled, G can
be consistently estimated (within the given parametric family) by the maximum likelihood
estimator Ĝ, for example. Then πG(0) is consistently estimated by πĜ(0), and N by

N̂ =
n

1− πĜ(0)
.

By embedding the issue of identifiability in such capture-recapture models in the general
context of identifiability of finite mixtures from the binomial distribution, it is immediately
clear that G cannot be identified within the set of all distributions (for any fixed T ), since this
does not even hold for the complete (non-conditional) model (1) (cf. Teicher, 1961). However,
in this note we show that within the commonly used parametric families, G is identifiable.
Specifically, we show that within the class of finite mixtures with at most m components
(cf. Pledger, 2000), G is identifiable if and only if 2m ≤ T . Furthermore, we give a general
criterion for identifiability based on the moments of the mixing distribution. As particular
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cases, this yields the identifiability of the class of beta distributions if T ≥ 3, and of the class
of uniform distributions on [0, b], b ≤ 1, if T ≥ 2.
We stress that establishing identifiability in the context of this application is a more subtle
problem than identifiability of binomial mixtures with fixed T , since only the conditional
probabilities are available. Finally we remark that some of our results carry over to other
distributions of the Xi’s, such as the truncated geometric (cf. Norris and Pollock, 1996).

3 Theory and Examples

Definition 1. In the capture-recapture model (1) we shall call a family G of distributions on
[0, 1] identifiable if, for each G ∈ G, the vector πc

G uniquely determines G within the class G,
i.e. if for G, H ∈ G,

πc
G = πc

H ⇒ G = H. (2)

Lemma 1. Let (π0, . . . , πT ) and (ρ0, . . . ρT ) be two probability vectors on {0, . . . , T}, and let
πc and ρc be the conditional probability vectors on 1, . . . , T , given that x ≥ 1. Then

πc = ρc ⇔ ∃ A > 0 : π(x) = Aρ(x), x = 1, . . . , T.

It is known (e.g. Link, 2003) that for identifiability to be possible, 0 has to be excluded from
the support of the distributions in G. Indeed, let G be any distribution on [0, 1] and consider
H = λδ0 + (1 − λ)G, λ ∈ (0, 1). Since πδ0(0) = 1, we have that πH(x) = (1 − λ)πG(x)
for x = 1, . . . , T . From Lemma 1, it follows that πc

G = πc
H . Thus in the following we will

concentrate on distributions G with support in (0, 1].

Example 1 (Finite mixtures). Consider the class of finite mixing distributions with m
support points

Gm =
{

G =
m∑

k=1

λkδpk
, λk ≥ 0,

∑
k

λk = 1, pk ∈ (0, 1]
}

.

Theorem 1. For 2m ≤ T the class Gm is identifiable.

Pledger (2000) used finite mixtures to model population heterogeneity. She observed that the
condition 2m ≤ T is necessary for identifiability. In fact, the class Gm has 2m−1 parameters,
and these have to be identified from the T − 1 variable probabilities. Thus 2m ≤ T is a
necessary and sufficient condition. An inspection of the proof of Theorem 1 (cf. the Appendix)
shows that the same arguments apply if the outcomes Xi follow a discrete distribution which,
as a function of the parameter, is a Čebyšev system (cf. Karlin and Studden, 1966) with a
joint zero outside the interval (0, 1]. An example is the truncated geometric distribution (for
which P (Xi = x) = pi(1 − pi)x, 1 ≤ x ≤ T ) used in Norris and Pollock (1996), to model
population heterogeneity with behavorial response to capture.

We now turn to the case of continuous mixing distributions. Teicher (1961) observed that the
probabilities (1) can be expressed in terms of the moments of the mixing distribution G. In
fact, we have that

πG(x) =
(

T

x

) T∑
k=x

(−1)k−x

(
T − x

k − x

)
mG(k), x = 1, . . . , T, (3)

where mG(k) =
∫ 1
0 tk dG(t) is the kth moment of G. For our problem this implies
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Theorem 2. For two distributions G, H on (0, 1], πc
G = πc

H implies that there is an A > 0
such that

mG(x) = A mH(x), x = 1, . . . , T. (4)

Therefore if (4) does not hold for any two G, H ∈ G, then G is identifiable.

Example 2. The beta distribution B(p, q), p, q > 0 was used as a mixing distribution by
Dorazio and Royle (2003). We show that this family is identifiable if T ≥ 3. The xth moment
is given by

mp,q(x) =
(p + x− 1) · . . . · p

(p + q + x− 1) · . . . · (p + q)
.

¿From mp,q(x) = Amp′,q′(x), x = 1, 2, 3, and some A > 0, it follows that

(p + i)
(p + q + i)

=
(p′ + i)

(p′ + q′ + i)
, i = 1, 2.

Straightforward algebra now shows that p = p′ and q = q′.

Example 3. The uniform distribution on (0, b] was considered as a mixing distribution in
Pledger (2004). The first two moments are given by mb(1) = b/2 and mb(2) = b2/3. From
these expressions and Theorem 2 it is simple to see that for T ≥ 2 the uniform distribution
is identifiable.
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Appendix

Proof of Lemma 1. For x = 1, . . . , T ,

π(x)
1− π(0)

=
ρ(x)

1− ρ(0)
⇔ π(x)

ρ(x)
=

1− π(0)
1− ρ(0)

=: A.

First we prove the following lemma.

Lemma 2. If
T∑

k=1

tk px
k(1− pk)T−x = 0, x = 1, . . . , T,

for some tk ∈ R and pk ∈ (0, 1], then it follows that t1 = . . . = tT = 0.

Proof. The polynomials Px(p) = px(1− p)T−x, x = 1, . . . , T , are linearly independent because, except
for the normalization, these are the Bernstein polynomials, which are known to be linearly independent,
cf. Prautzsch et al., 2002. Therefore any linear combination has at most T roots. Since one of these
always equals 0, there are at most T − 1 roots within the interval (0, 1]. Therefore for different
p1, . . . , pT ∈ (0, 1], if

T∑
x=1

sxpx
k(1− pk)T−x = 0, k = 1, . . . , T,

it follows that s1 = . . . = sT = 0. This implies that the matrix (px
k(1− pk)T−x)k,x=1,...,T has full rank.

From this the statement of the lemma follows immediately.

Proof of Theorem 1. Suppose that G, H ∈ Gm with πc
G = πc

H . From Lemma 1, there exists an A > 0
with

m∑
k=1

λk,G px
k,G (1− pk,G)T−x = A

m∑
k=1

λk,H px
k,H (1− pk,H)T−x,

x = 1, . . . , T . Subtracting the r.h.s. from the l.h.s. and applying Lemma 2 implies that the support
points of G and H coincide, and that λk,G = Aλk,H for these k (after a permutation). But since∑

k λk,G =
∑

k λk,H = 1, A = 1. Therefore G = H.
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Proof of Theorem 2. In matrix form the identity (3) can be written as

(πG(1), . . . πG(T )) = M(πH(1), . . . πH(T )).

The matrix M is invertible, because it is upper triangular with nowhere vanishing diagonal. Therefore

πG(x) = AπH(x), x = 1, . . . , T ⇔ mG(x) = AmH(x), x = 1, . . . , T.
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