
Statistica Sinica (2012): Preprint 1

ASYMPTOTIC LAWS FOR CHANGE POINT ESTIMATION

IN INVERSE REGRESSION

Sophie Frick1, Thorsten Hohage2, Axel Munk1

1 Institute for Mathematical Stochastics,
2 Institute for Numerical and Applied Mathematics,

Georgia Augusta Universität Göttingen

Abstract: We derive rates of convergence and asymptotic normality for the least

squares estimator for a large class of parametric inverse regression models Y =

(Φf)(X) + ε. Our theory provides a unified asymptotic tretament for estimation of

f with discontinuities of certain order, including piecewise polynomials and piece-

wise kink functions. Our results cover several classical and new examples, including

splines with free knots or the estimation of piecewise linear functions with indirect

observations under a nonlinear Hammerstein integral operator. Furthermore, we

show that `0-penalisation leads to a consistent model selection, using techniques

from empirical process theory. The asymptotic normality is used to provide confi-

dence bands for f . Simulation studies and a data example from rheology illustrate

the results.
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1 Introduction

We consider the inverse regression model

yi = (Φf0)(xi) + εi for i = 1, ..., n, (1.1)

where X = (x1, ..., xn), n ∈ N is a (possibly random) vector of design points in a

bounded interval I ⊂ R and ε = (ε1, ..., εn) denotes the observation error, which
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is assumed to be independent of X, with mean zero. Further, Φ denotes some

integral operator Φ : L2([a, b]) −→ L2(I),

(Φf)(x) :=

∫ b

a
ϕ(x, y)f(y)dy, (1.2)

acting on a piecewise continuous function f(y) = f(y, θ), which is determined by

a parameter vector θ ∈ Θk ⊂ Rd for some d ∈ N. Here k describes the number

of (unknown) discontinuities of f . The aim is to reconstruct the true function

f0(y) = f(y, θ0) from the observations (X,Y ) = ((x1, y1), ..., (xn, yn)).

This class of models covers a large variety of important applications, ranging

from multiphase regression to piecewise polynomial splines. Model (1.1) has been

introduced in Boysen, Bruns, and Munk (2009a) for piecewise constant functions

f , where the integral kernels ϕ was restricted to the class of piecewise Lipschitz

continuous convolution kernels ϕ(x, y) = φ(x− y).

Integral equations as in (1.2) are well known to generate ill posed problems,

that is, small perturbations on the right hand side of (1.1) induce large errors in

the solution. Therefore, reconstruction of f0 from (1.1) requires appropriate reg-

ularization. In this paper we show that this can be achieved in quite generality

by an `0 penalized least squares estimator restricted to suitable compact func-

tion classes,indexed in Θk. To this end we extend the model of Boysen, Bruns,

and Munk (2009a) for piecewise constant functions with respect to the consid-

ered classes of objective functions as well as with respect to the integral kernels

ϕ. We show n−1/4 convergence rates of the least squares estimator f(y, θ̂n) of a

piecewise continuous parametric function f(y, θ0) with known number of change

points. Furthermore we obtain n−1/2 rates for the convergence of the respective

parameter estimate θ̂n of the true parameter θ0 and show that it is asymptoti-

cally multivariate normally distributed. However, we mention that the obtained

asymptotic normality together with ”model consistency” in general is not uni-

form in these models, as the kinks or jumps may degeneraty. This is well known

already from much simpler cases, see e.g. the Introduction in Boysen, Bruns,

and Munk (2009a).

The particular case, when f0 is additionally known to be continuous, i.e. f0

has no jumps but kinks, is treated in detail. In this case the continuity assumption

on f0 improves the convergence rate of the least squares estimate f(y, θ̂n). The
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improvement depends directly on the smoothness of the pieces between the kinks.

For instance, for piecewise linear kink functions, we obtain n−1/2-consistency of

f̂n := f(y, θ̂n).

In order to obtain our results, we require techniques that are substantially

different from Boysen, Bruns, and Munk (2009a). The extension of the class of

objective functions from step functions to general piecewise continuous paramet-

ric functions requires existence and uniform L2 boundedness of the first derivative

of the pieces of the objective function θ 7→ f(y, θ) for almost every y ∈ [a, b]. This

differentiability allows for a general estimate of the entropy of the class of piece-

wise continuous parametric functions, which is a main ingredient in the proof

of consistency. Moreover, we will see, that exactly this property implies contin-

uous differentiability of the mapping θ 7→ (Φf)(y, θ). This differentiability in

turn paves the way to the second order expansion of the expectation of the score

function, required for the proof of asymptotic normality. This is more straightfor-

ward and in particular more general, than the elementary expansion in Boysen,

Bruns, and Munk (2009a). Remarkably, this approach abandons the assumption

of Lipschitz continuity of y 7→ f(y, θ) and (x, y) 7→ ϕ(x, y). The generality of

the applied techniques furthermore covers the case of dependencies between the

parameter components of θ, as in the case of kinks functions.

In the case, where the number of change points of the objective function in

(1.1) is not known, we show that under the additional assumption of subgaussian

tails of the error distribution, the number of change points can be asymptotically

estimated correctly with probability one.

A key ingredient of our consistency proof is the injectivity of the integral

operator Φ in (1.2). Two main classes are discussed in detail, namely product

kernels ϕ(x, y) = φ(xy) and convolution kernels ϕ(x, y) = φ(x − y). For the

asymptotic normality to hold injectivity of the corresponding integral operator

plays an important role. To this end we introduce an injectivity condition for

general symmetric and positive definite kernels (not restricted to one of the above

classes), which is based on the theory of native Hilbert spaces and on the so

called full Müntz Theorem Borwein and Erdélyi (1995). We mention, however,

that the asymptotic results of this paper are not restricted to this selection, i.e.

they are valid for every injective integral operator Φ with certain properties (cf.
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Assumption C).

We further want to emphasize that the extension to piecewise continuous

functions, instead of piecewise constant functions covers several interesting ex-

amples, including splines. Moreover, we show that our method can even be ap-

plied to specific nonlinear integral operators, namely the Hammerstein integral

operators (see e.g. Hammerstein (1930))

f 7−→
∫ b

a
ϕ(·, y)L(f(y), y)dy,

where the additional operator Lf(y) := L(f(y), y) is injective and satisfies certain

smoothness conditions to preserve essential properties of f as e.g. the differen-

tiability for Lf . This allows, to provide estimators and confidence bands for

the time relaxation spectra of polymer melts reconstructed from their dynamic

modul (see Roths, Maier, Friedrich, Marth, and Honerkamp (2000)).

Finally, we apply the asymptotic results in two examples: the estimation of

a step function from the noisy image of an integral operator with convolution

kernel, i.e. inverse two phase regression, and the estimation of a piecewise linear

kink function from the noisy image of an integral operator with product kernel,

i.e. inverse multiphase regression. In both cases, we calculate confidence bands

of the reconstructed function, which give an impression of the reliability of the

estimate.

We stress, that our results in this paper substantially differ from ”truly non-

parametric” kink models which have been the topic in a series of paper in the last

two decades, including Korostelev (1987), Neumann (1997), Raimondo (1998),

Goldenshluger, Tsybakov, and Zeevi (2006), Goldenshluger, Juditsky, Tsybakov,

and Zeevi (2008b), Goldenshluger, Juditsky, Tsybakov, and Zeevi (2008a) for

independent error, and recently Wishart (2010, 2011) for long range dependent

error. In the present paper f is modeled as a piecewise ”parametric” function,

which is
√
n estimable between kinks, leading to asymptotic normality and a

parametric rate of convergence. It is easily seen that this rate is minimax for

bounded kernels ϕ in (1.2), and can be even improved for singular kernels (see

Boysen, Bruns, and Munk (2009a)). This is in contrast to the afore mentioned

papers, where piecewise (nonparametric) smooth functions are treated which re-

quires a different estimation technique and analysis. This also leads to different

rates of convergence which are additionally deteriorated by the smoothness be-
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tween discontinuities. Roughly speaking, the situation treated here can be viewed

as a limiting case, when the degree of smoothness tends to infinity.

This paper is structured as follows. Section 2 gives some basic notation and

the main assumptions. The estimator and its asymptotic properties are given in

Section 3. Section 4 discusses injectivity of the considered integral operators. In

Section 5 we show how the asymptotic normality can be used for the construction

of confidence bands for the case of jump and kink functions, respectively. The

finite sample performance of the asymptotic distribution is briefly investigated in

a simulation study. The proofs of the asymptotic results from Section 3 and the

injectivity statements from Section 4 are given in a supplement to this paper.

2 Definitions and assumptions

2.1 Notations

For functions g, f : I → R, we denote by ‖f‖L2(I) the L2-norm and by 〈f, g〉L2(I)

the corresponding inner product. The essential supremum is denoted by ‖f‖∞,

the empirical norm and the empirical inner product by

‖f‖2n =
1

n

n∑
i=1

f(xi)
2 and 〈f, g〉n =

1

n

n∑
i=1

f(xi)g(xi),

where x1, ..., xn are given design points. Accordingly, the empirical measure is

Pn := n−1
∑n

i=1 δxi . For vectors θ, θ1, θ2 ∈ Rd, we use the Euclidean norm |θ|2
and the maximum norm |θ|∞ and by (θ1, θ2) ⊂ Rd we denote the segment between

θ1 and θ2, that is (θ1, θ2) := {θ ∈ Rd | θ = θ1 + t(θ2 − θ1), for t ∈ (0, 1)}.

2.2 Piecewise continuous parametric functions

We start by introducing the class of functions f to be estimated in model (1.1).

Throughout this paper we assume that a, b ∈ R, a < b and r, k ∈ N \ {0}.

Definition 2.1. Assume that Ψ ⊂ Rr is convex and compact and choose M > 0

such that |ϑ|∞ ≤M for all ϑ ∈ Ψ. Let

f : [a, b]×Ψ −→ R

be a function f(y, ϑ) satisfying the following conditions:
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i) f is continuous and continuously differentiable with respect to ϑ.

ii) For all open subintervals I ⊂ [a, b] the mapping FI : Ψ → C(I), FI(ϑ) :=

f(·, ϑ)|I is injective, and its derivative F′I [ϑ] : Rr → C(I) is also injective

for all ϑ ∈ Ψ. Here C(I) denotes the set of continuous functions on I.

Then, F := {f(·, ϑ) | ϑ ∈ Ψ} is called a family of continuous parametric

functions with parameter domain Ψ.

For example, this includes the following two families.

Example 2.2 (Constant functions). If Ψ = [−M,M ] and f(y, ϑ) := ϑ we obtain

FT := {ϑ1[a,b] | |ϑ| ≤M},

Example 2.3 (Linear functions). If Ψ = [−M,M ]2 and f(y, ϑ) := ϑ1 + yϑ2 we

obtain

FL := {ϑ1 + ϑ2• | |ϑ1|, |ϑ2| ≤M}.

These functions from a known family F will now constitute the building

blocks for the class of functions in the next definition.

Definition 2.4. Let F = {f(·, ϑ) : ϑ ∈ Ψ} be a family of continuous paramet-

ric functions on the interval [a, b] in the sense of Definition 2.1. A function

f ∈ L∞([a, b]) is called a parametric piecewise continuous function (pc-

function) generated by F if there exists a partition a = τ0 < τ1 < ... < τk+1 = b

and parameter vectors ϑ1, .., ϑk+1 ∈ Ψ such that

f =
k+1∑
j=1

f(·, ϑj)1[τj−1,τj) . (2.1)

The function above will also be denoted by f(·, ϑ1, τ1, ..., ϑk, τk, ϑk+1). We call

the elements of the set

J (f) := {τi | i ∈ {1, ..., k} such that ϑi 6= ϑi+1 and τi < τi+1}

change points of the function f ∈ Fk and denote its cardinality by ]J (f). The

set of all parametric piecewise continuous functions with at most k change points

generated by F is denoted by Fk[a, b] (or shortly by Fk). Using the notation

[f ](τ) := lim
ε↘0

(f(τ + ε)− f(τ − ε)),
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we say that f has a jump at τ if [f(·, θ)](τ) 6= 0, and that f has a kink at τ if τ

is a change point and [f(·, θ)](τ) = 0. Moreover, we say that f is a kink function

(or jump function) if it has kinks (or jumps) at all change points.

Note that θ := (ϑ1, τ1, .., ϑ
k, τk, ϑ

k+1) lies in the convex and compact param-

eter set Θk ⊂ Rd, d = (r + 1)k + r where

Θk = {(ϑ1, τ1, .., ϑk, τk, ϑk+1) ∈ (Ψ× [a, b])k ×Ψ | a ≤ τ1 ≤ ... ≤ τk ≤ b} . (2.2)

Thus Fk = {f(·, θ) | θ ∈ Θk}. Accordingly we define

F∞[a, b] =
∞⋃
k=1

F k[a, b].

Example 2.5. Continuing Examples 2.2 and 2.3 above, the families FT and FL
generate sets of step functions Tk and piecewise linear functions Lk, respectively,

in the sense of Definition 2.4.

Note that for functions f ∈ Fk with less than k change points there is more

than one parameter vector in Θk generating f . In other words, the implication

f(·, θ) = f(·, θ0) ⇒ θ = θ0 is true if and only if ]J (f) = k. If uniqueness of

the parameter vector is required, we have to confine ourselves to functions in Fk

with precisely k change points. To illustrate, again we continue Example 2.2 and

2.3 and consider the subset of T̃k ⊂ Tk, with precisely k jumps, i.e.

T̃k := {f = f(·, θ) ∈ Tk | [f ](τi) 6= 0, τi−1 < τi, i = 1, · · · , k + 1} (2.3)

and the subset L̃k ⊂ Lk of piecewise linear functions with precisely k kinks, i.e.

L̃k := {f ∈ Lk | ϑi1 = ϑi−11 −(ϑi−12 −ϑ
i
2)τi−1, and ϑi−12 6= ϑi2, τi−1 < τi i = 2, ..., k+1}.

(2.4)

As in the case of kinks there may occur dependencies among the parameter

components such that actually the number of parameters which determine f(·, θ)
is smaller than the dimension of θ. Therefore we define a so called reduced

parameter domain.

Definition 2.6. Θk ⊂ Rd denote the parameter domain of a family Fk of pc

functions in the sense of Definition 2.4. If Θ̃ ⊂ Rd̃ is convex and compact and
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if there exists a continuously differentiable function h : Θ̃ → Θk such that the

mapping

Θ̃→ Fk, θ̃ 7→ f(·, h(θ̃))

and its derivative δθ̃ 7→ ∂f
∂θ (·, h(θ̃))δθ̃ are injective, then Θ̃ is called a reduced

parameter domain of F̃k := {f(·, h(θ̃)) | θ̃ ∈ Θ̃}, and the elements θ̃0 ∈ Θ̃ are

called reduced parameter vectors of the functions f(·, h(θ̃)) ∈ F̃k.

Note that if we consider a class of pc-functions Fk as in Definition 2.4,

which is generated by a parametric class F as in Definition 2.1 and if moreover

(y, ϑ) 7→ f(y, ϑ) is continuously differentiable, then the condition [f(·, θ)](τ) = 0

often implies local existence of a function h as in Definition 2.6 by the implicit

function theorem. More precisely, if f(y, θ0) is a kink function in such a space,

the function

F : Θk −→ Rk

θ 7−→ F (θ) :=
(
f(τ1, ϑ

1)− f(τ1, ϑ
2), ..., f(τk, ϑ

k)− f(τk, ϑ
k+1)

)>
vanishes in θ0. Due to the differentiability of the map θ 7→ F (θ), the implicit

function theorem implies that there exists a function h and a reduced parameter

domain Θ̃ as in Definition 2.6, with Θ̃ ⊂ (Θl)l∈I ⊂ Rd−k, where I ⊂ {1, ..., d} if

the Jacobian ∂/(∂θl)l /∈IF (θ0) is invertible.

Consider for example the set L̃1 in (2.4). There we have ϑ21 = ϑ11+(ϑ12−ϑ22)τ1
and choosing the reduced parameter vector θ̃ = (ϑ11, ϑ

1
2, τ1, ϑ

2
2) and the function

h(θ̃) = (ϑ11, ϑ
1
2, τ1, ϑ

1
1+(ϑ12−ϑ22)τ1, ϑ22) the conditions of Definition 2.6 are satisfied.

2.3 Assumptions on the model

Assumption A (Assumptions on the error). Throughout this paper we assume

that

A1: the vector ε = (ε1, ..., εn) consists of independent identically distributed

random variables with mean zero for every n and E(ε21) = σ2 <∞.

In some situations, the error is additionally needed to satisfy the following

sub-gaussian condition.

A2: ε satisfies A1 and there exists some α > 0 such that E(eε
2
1/α) <∞.
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Assumption B (Assumptions on the design). There exists a function s : I →
[su, sl] with 0 < su < sl <∞ and

∫ b
a s(x)dx = 1, such that

i

n
=

∫ x(i)

a
s(x)dx+ δi

with νn := maxi=1,...,n |δi| = op(1). Here x(i) denotes the i-th order statistic of

x1, ..., xn. Moreover, the design points x1, ..., xn are independent of the error

terms ε1, ..., εn.

The above assumption covers random designs. If the design points x1, ..., xn

are nonrandom, the op(1) term above is to be understood as o(1). We will not

pursue this situation further, however, we mention that with a slight change of

technicalities all subsequent results hold analoguously.

2.4 Integral operator

The integral operator Φ in (1.2) acts on F k ⊂ L2([a, b]), hence it can be consid-

ered as a map, acting on the parameter space Θk, for x ∈ [a, b], by

θ 7−→ Φf(·, θ) :=

∫ b

a
ϕ(·, y)f(y, θ)dy. (2.5)

In the following we will require the Frechet differentiability of Φ to ensure iden-

tifiability of the parametrization in (2.5). To this end we introduce the space

M([a, b]) of all signed Borel measures µ on [a, b] of the form µ = f +
∑n

j=1 γjδxj

with f ∈ L1([a, b]), n ∈ N, xj ∈ [a, b] and γj ∈ R and define

(Φµ)(x) :=

∫ b

a
ϕ(x, y) dµ(y) =

∫ b

a
ϕ(x, y)f(y) dy +

n∑
j=1

γjϕ(x, xj), x ∈ I

(2.6)

for µ ∈M as above. In the following we denote by L(X ,Y) the space of bounded

linear operators of a normed space X into a normed space Y. Moreover, we

denote by C0,1(I) the space of uniformly Lipschitz continuous functions with

norm ‖f‖C0,1 := ‖f‖∞ + supx 6=y |f(x)− f(y)|/|x− y|.

Assumption C (Assumptions on the integral operator). The operator Φ in (1.2)

satisfies the following conditions:

i): Φ ∈ L
(
L∞([a, b]), C0,1(I)

)
and Φ ∈ L

(
L1([a, b]), L∞(I)

)
.
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ii): The mapping [a, b] → L2(I), y 7→ ϕ(·, y) is continuous, so in particular Φ

is well defined on M([a, b]) by (2.6). Moreover, Φ : M([a, b]) −→ L2(I) is

injective.

Conditions ii) is essential for the consistency proof for the estimator of f0

in the following chapters. Condition i) especially will be needed to estimate the

L2-norm of Φf by means of the empirical norm. In Section 4 we introduce some

special classes of operators satisfying Assumption C.

Moreover, we want to mention that the results of this paper can also be

formulated for Φ : L2([a, b]) → L2(I), with an interval I ⊂ R which does not

need to coincide with the interval [a, b], but for ease of notation we only discuss

the case I = [a, b].

3 Estimate and asymptotic results

3.1 Known number of jumps

Estimate. Estimating f for given k and F k can be performed using the least

squares estimator f̂n, which is defined such that Φf̂n minimizes the empirical

distance to the observations Y in (1.1) with respect to the space F k. That is,

f̂n ∈ Fk and

‖Φf̂n − Y ‖2n ≤ min
f∈Fk

‖Φf − Y ‖2n + oP (n−1). (3.1)

Note, that this estimator implicitely depends on k and F k, of course. However,

we supress this dependence in the notation whenever no confusion is expected.

It then follows from Definition 2.4 that there exists a parameter vector θ̂n ∈ Θk,

such that

f̂n(y) = f(y, θ̂n) =
k+1∑
i=1

f(y, ϑ̂i)1[τ̂i−1,τ̂i).

Note further, that the parameters ϑ̂i and τ̂i also depend on the index n.

It is easy to see that the minimum on the right hand side of (3.1) always is

attained, because the candidate set F k is closed and compact. Note, that the

minimum does not need to be unique. Furthermore, we mention that in (3.1)

it is not required that f̂n minimizes the functional ‖Φf − Y ‖2n exactly, but only
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up to a term of order oP (n−1). This allows for numerical approximation of the

minimizer and gives an intuition of the required precision for the asymptotic

results to be valid.

Consistency and asymptotic results. Now we present the main results of

this paper, i.e. the asymptotic behavior of the least squares estimator in (3.1),

for the case, where the true function f0 ∈ Fk has precisely k change points, that

is ]J (f0) = k and for the case where the number of change points is not known.

We require some more notation. Let Λ : Θk → L2([a, b]) denote the mapping

Λθ := Φf(·, θ) . (3.2)

We will show in the supplement that Λ is differentiable and denote by Λ′[θ] ∈
L2([a, b])d its gradient at θ. With this, we define the d× d matrix Vθ by

(Vθ) =

∫ b

a
Λ′[θ](Λ′[θ])ts(x)dx, (3.3)

where s is as in Assumption B.

Theorem 3.1. Suppose that Assumptions A1, B and C are satisfied and let

f̂n(y) = f(y, θ̂n) be the least squares estimator of the true function f0 = f(·, θ0) ∈
Fk as in (3.1), with ]J (f0) = k. If the matrix Vθ0 is nonsingular, then

(i)
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1θ0
),

(ii) |θ0 − θ̂n|2 = OP (n−
1
2 ),

(iii) ‖f0 − f̂n‖Lp([a,b]) = OP (n
− 1

2p ) for any p ∈ [1,∞) and,

(iv) ‖Φf0 − Φf̂n‖L∞([a,b]) = OP (n−
1
2 ).

If f0 depends on a reduced parameter vector θ̃ as in Definition 2.6, the deriva-

tive of θ̃ 7→ Λ(h(θ̃)) can be calculated by the chain rule, due to the differentiability

of the function h (cf. Definition 2.6) and we have the following corollary.

Corollary 3.2. Suppose that Assumptions A1, B and C as in Theorem 3.1 are

satisfied and that the true function f0(y) = f0(y, h(θ̃)) can be parameterized by

a reduced parameter domain as in Definition 2.6. Then Vθ̃ is nonsingular, and

the results of Theorem 3.1 are valid with θ0 and θ̂n substituted by the reduced

parameter vector θ̃0 and its estimator θ̃n.
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Non singularity of the covariance matrix Vθ0 is essential for Theorem 3.1 to

hold. The next proposition gives a characterization of this property in terms of

the partial derivatives ∂
∂ϑi

f(y, ϑi0), i = 1, ..., k+ 1, for the case, where f(·, θ0) has

precisely k jumps. Moreover, it states that Vθ0 is always singular if f(y, θ0) has

a kink in some change point.

Proposition 3.3. Suppose that Assumptions B and C are satisfied and f(·, θ) =∑k+1
i=1 f(·, ϑi)1[τi−1,τi) ∈ Fk (cf. Definition 2.4) has k change points. Then the

matrix Vθ as defined in (3.3) is nonsingular if and only if f(·, θ) has jumps in all

change points.

Hence, if the true function f0 is known to be a kink function, Proposition 3.3

implies that Theorem 3.1 can not be applied, since the condition of non singu-

larity of Vθ is violated. So this case requires restriction to a reduced parameter

set Θ̃ as in Definition 2.6. In this case, it is even possible to improve the rate of

convergence of f̂n, which depends on the modulus of continuity of the considered

function class F defined as

ν(F , δ) := sup
f∈F

sup
|y1−y2|≤δ

|f(y1)− f(y2)|. (3.4)

Corollary 3.4. Assume that the conditions of Corollary 3.2 are satisfied, but

the true function f0(y, h(θ̃)) with h as in Definition 2.6 is a kink function and

let ν be defined as in (3.4). Then the results of Corollary 3.2 are valid, with the

improved rate

‖f0 − f̂n‖Lp([a,b]) = OP (n−
1
2 + n

− 1
2p ν(F , n−

1
2 )) for p ∈ [1,∞). (3.5)

For example, in Subsection 5.3 we obtain rates of order n−1/2 if f ∈ L̃2 as in

(2.4). More generally, if F consists of Hölder continuous functions with exponent

0 < α ≤ 1, Equation (3.5) yields rates of order n−(1+α)/4.

We finally comment on the asymptotic optimality of Theorem 3.1 and Corol-

lary 3.4. As mentioned in the Introduction it is straight forward to see that the
√
n rate in Theorem 3.1 (i), (ii) is minimax under a normal error for bounded,

continuous integral kernels as considered Assumtion C. To this end a similar

argument as in the proof of Theorem 1 in Wishart (2011) can be employed by

means of estimating the Kullback Leibler divergence between the distributions
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of different (Y,X) and applying Theorem 2.2.(iii) in Tsybakov (2009). Again,

in a normal model, we claim the the asymptotic variance V −1θ0
appearing in 3.1

(and analogue V −1
θ̃

in Corollary 3.4) is asymptotically optimal in Le Cam sense,

provided the experiment is differentiable in quadratic mean (see van der Vaart

(1998)).

Albeit the ill posedness of the problem is not reflected in the rate of conver-

gence it is reflected in the asymptotic varianceV −1θ0
as can be seen from (3.3). The

variance becomes large when Λ′(θ) becomes small, i.e. the gradient of Φf(·, θ0) is

flat. Loosely speaking, this happens when kinks or jumps in the signal are only

weakly propagated through the operator Φ and hence hard to detect.

We finally mention that we believe that the rates in Theorem 3.1 (iii) and

(iv) and in Corollary 3.4 are minimax but we do not have a proof for this which

might be interesting for further investigations.

3.2 Unknown number of jumps

If we do not know the number of change points of the objective function, we can

use the above introduced least squares estimator f̂n penalized by the number of

change points ]J (f̂n). More precisely, we consider the `0-minimizer f̂λn :

‖Φf̂λn − Y ‖2n + λn]J (fλn) ≤ min
f∈F∞

‖Φf − Y ‖2n + λn]J (f) + oP (n−1) (3.6)

where λn is some smoothing parameter converging to zero and ]J (f) is assumed

to be nonzero. Otherwise take ]J (f) + 1 instead for technical reasons. In the

following result we show that for a large range of parameters (λn)n∈N, the correct

number of change points is estimated with probability tending to one. That

means, for large enough n, the estimators f̂n in (3.1) and f̂λn in (3.6) coincide.

Theorem 3.5. Suppose that Assumptions A2, B and C are satisfied. Let f0 ∈
F∞ and choose {λn}n∈N such that

λn −→ 0 and λnn
1

1+ε −→∞,

for some ε > 0. Then, the minimizer f̂λn of (3.6) satisfies

P
(
]J (f̂λn) = ]J (f0)

)
−→ 1.
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Thel last theorem can be viewed as a model consistency result, i.e. eventually

for n large enough the correct number of junps/kinks is selected. In this sense, the

resulting nonlinear least squares estimator is a post model selection estimator.

It is well known that the model selection step may affect the distributional limit

from the post model selection estimator in general and in accordance to this in

Theorem 3.1 (i) the the normal approximation can become unreliable (Leeb and

Pötscher (2006). In fact, the convergence in 3.5 is nonuniform in the sense that

this probabilty will depend on the true underlying function f .

We did not succeed to prove or disprove whether λn ∼ log n/n would give

model consistency as well, the penailzation rate required in Theorem 3.5 is

stronger. The choice of λn ∼ log n/n would correspond to the classical BIC

criterion. The practical choice of λn in the last theorem is a subtle task and

we will not address this here in detail. In general, (generalized) cross validation

methods could be employed (see e.g. Mao and Zhao (2003) in the context of

splines) or residual based multiresolution techniques following the lines in Boy-

sen, Kempe, Liebscher, Munk, and Wittich (2009b). We finally mention, that

in general a severe computational burden is given in models with many kinks

because the computation of the estimator f̂n often leads to a difficult nonlinear

optimization problem, a well known problem in nonlinear regresison. We will not

pursue this issue further.

3.3 Examples

Example 3.6 (Hammerstein integral equations). The structure of the function

set F k[a, b] allows extension of the results in Theorem 3.1 and Corollaries 3.2

and 3.4 to a prominent class of nonlinear integral operators of the form

Hf(x) =

∫ b

a
ϕ(x, y)L(f(y), y)dy , (3.7)

which are known as Hammerstein integral operators. To be more precise, we

assume that L has the following properties:

1.) L is continuously differentiable with respect to the first variable and con-

tinuous with respect to the second variable.
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2.) The following operator L : L2([a, b])→ L2([a, b]) is injective:

(Lf)(y) := L(f(y), y), y ∈ [a, b]

3.) For any f ∈ C([a, b]) the derivative L′[f ] : L2([a, b])→ L2([a, b]) is injective,

i.e. the function ∂L
∂f (f, ·) ∈ C([a, b]) does not vanish on any open subsets.

For a specific application from rheology we refer to Subsection 5.3.

It is straightforward to verify that if L satisfies conditions 1.) - 3.) and if

F is a continuous parametric family in the sense of Definition 2.1, then the

image L(F) is a continuous parametric family with f replaced by fL(y, ϑ) :=

L(f(y, ϑ), y). Moreover, L(F k[a, b]) is again a set of pc-functions in the sense of

Definition 2.4. That means L preserves the properties of f ∈ F k[a, b] and all

results from the preceding section also hold for Hammerstein integral equations

of the first kind. This is due to the fact that for f ∈ F k[a, b] we can consider

Hf = Φf̃ as a linear operator, where f̃ is an element of the transformed function

space L(F k[a, b]). Since estimating a function f̃(·, θ0) ∈ L(F k[a, b]), under the

conditions of Theorem 3.1, or Corollary 3.2 or 3.4 respectively, yields an estimator

for θ0, we obtain an estimator for f(·, θ0) simultaneously.

Example 3.7 (Free knot splines). Misspecification of the model, i.e. the ques-

tion, what happens if the true function f in (1.1) is not an element of Fk, has

been treated already in Boysen, Bruns, and Munk (2009a, Lemma 3.3). In anal-

ogy to this lemma, under certain conditions on the design, the minimizer of (3.1)

converges to a pc function f̄ ∈ Fk such that Φf̄ is the best approximation of Φf .

If Fk is the set of piecewise polynomial functions, this offers an interesting

connection to distributional asymptotics for splines. According to the Curry and

Schoenberg Theorem (cf. De Boor (2001, Chapter VIII, (44))), for fixed change

points, we have that the set of piecewise polynomials of degree p is equal to

the B-spline space of order p with knots in {τ0, ..., τk+1} with multiplicity p, in

the case of jumps and at most p − 1 in the case of kinks. Thus, in this case,

misspecification of the model, could be considered as spline approximation of

f0 and thus leads to the well known “spline-regularization”. Results concerning

spline-regularization with fixed knots and its relationship to inverse problems as

in (1.1) is a classical topic and can be found e.g. in Cardot (2002). Here, we
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actually have to deal with free-knot splines, i.e. the knots are free parameters

and not known in advance. This is a serious difference to fixed knot splines,

such as B-splines, starting with the fact that those spaces are no longer linear.

It has long been known that approximation of a function by splines improves

dramatically if the knots are free (Rice (1969), Burchard (1973/74)), although

stable and effective computation of optimal knots in general is a challenging task

(see e.g. Jupp (1978)). For a general discussion on free knot spline spaces in the

context of approximation theory, we refer to De Boor (2001, Chapter XII §4). In

the context of regression the optimal knot number and the optimal density for

the knot distribution minimizing the asymptotic IMSE has been characterized

by Agarwal and Studden (1980). Note that our results do not only yield an

asymptotic expression for the variance of the estimated parameters including

knot locations (which yields the MSE and can be optimized following the lines

of Agarwal and Studden (1980)), but also show that they are asymptotically

multivariate normally distributed, which can be used for cofidence bands (see also

Mao and Zhao (2003)). Finally, Theorem 3.5 gives model selection consistency of

knot penalisation in F∞. This has never been shown before to our knowledge, e.g.

in Mao and Zhao (2003) a GCV criterion is suggested for selection of λn without

giving a proof of model selection consistency. In other words, from Theorem 3.5

it follows that for a large range of regularization parameters λn (which should

converge to zero slower than O(n−1)) penalization with the number of knots picks

asymptotically the right number of knots eventually in the entire set of free knot

splines, i.e. the space F∞.

Example 3.8. (Confidence bands) Statement (i) in Theorem 3.1 implies that

the quadratic form

nσ−2(θ̂n − θ0)Vθ0(θ̂n − θ0)>

is asymptotically distributed according to a χ2-distribution with d degrees of

freedom. This is still true if σ and Vθ0 are replaced by consistent estimators σ̂n

and Vθ̂n , respectively. Hence we are now able to determine a (1− α)-confidence

ellipsoid for θ̂n in Rd by

n(σ̂n)−2(θ̂n − θ0)(Vθ̂n)(θ̂n − θ0)> ≤ χ2
d(1− α). (3.8)

Here χ2
d(1−α) denotes the (1−α)-quantile of the χ2-distribution with d degrees
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of freedom. By maximizing and minimizing f(y, θ) for θ inside this confidence

ellipsoid, we obtain simultaneous confidence bands for f̂n. Of course, any of the

common methods for approximate confidence sets, namely Bonferroni, Scheffée

or studentized maximum modulus statistics (for details see e.g. Miller (1966))

can be applied as well. In fact, some simulation studies show (not presented)

that for functions with discontinuities including jump functions as treated in this

paper, the studentized statistic is the least conservative of them, even for a small

number of parameters as long as these are less than the number of observations.

Moreover, if we consider the surface area of the respective bands as a further

criterion, simulations show that for increasing number of parameters the bands

corresponding to the studentized statistic outperform in terms of smaller surface

area even the exact bands obtained from the elliptic confidence set. Therefore, we

confine ourselves in Section 5.2 to the maximum modulus statistics. Note, that

this extends the pointwise confidence intervals for free knot splines constructed

in Mao and Zhao (2003) (see the previous example) in a simple way to bands.

4 Injectivity and mapping properties for some classes

of integral operators

The following theorems give conditions on two classes of kernels ϕ, namely prod-

uct and convolution kernels, that assure L2 injectivity and range inclusions for

the corresponding linear integral operator Φ in (1.2) as required in Assumption

C.

We start with a theorem, which establishes a connection between injectivity

of an integral operator with product kernel ϕ(x, y) = φ(xy) and the expansion of

φ. The main argument in the proof is given by the Full Müntz Theorem proven

by Borwein & Erdélyi Borwein and Erdélyi (1997, Thm 6.2):

Lemma 4.1 (Full Müntz-Theorem). Suppose that J ⊂ N and that 0 < a < b.

Then, span({yj : j ∈ J}), is dense in C([a, b]) with respect to the maximum norm

if and only if ∑
j∈J

j−1 =∞. (4.1)
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Theorem 4.2 (product kernels). Assume that 0 < a < b and 0 ≤ c < d and that

ϕ(x, y) = φ(xy) for some piecewise continuous function φ ∈ L∞([ac, bd]). Then

part i) and ii) of Assumption C are satisfied under the following conditions:

Ci): We have Φ ∈ L
(
L1([a, b]), L∞([c, d])

)
. Moreover, Φ ∈ L

(
L∞([a, b]), C0,1([c, d])

)
if φ ∈ BV ([ac, bd]), the space of functions of bounded variation on [ac, bd].

Cii): Suppose there exists an interval [ρ1, ρ2] ⊂ [ac, bd] with ρ1
a < ρ2

b , such that φ

has an absolutely convergent expansion

φ(z) =
∞∑
j=0

αjz
j with αj ∈ R for all j ∈ N, z ∈ [ρ1, ρ2] (4.2)

and the set J := {j ∈ N : αj 6= 0} satisfies the Müntz-condition (4.1). Then

Φ : B([a, b]) −→ L2([a, b]) is injective on the space B([a, b]) of signed Borel

measures on [a, b]. If ρ1 = ac and ρ2 = bd, then (4.1) is also necessary for

injectivity of Φ on B([a, b]).

One example of such a kernel occurs in the example from rheology, which will

be discussed in detail in Section 5.2. The Gaussian kernel φ(x) = (2πσ2)−1/2e−(x/σ)
2/2,

mentioned above, is another well known example for a function satisfying the as-

sumptions of Theorem 4.2.

Theorem 4.3 (positive definite convolution kernels). Assume that ϕ(x, y) =

φ(x − y) for all x, y ∈ [a, b] for some function φ ∈ C(R) ∩ L1(R). Then part i)

and ii) of Assumption C are satisfied under the following conditions:

Ci): If φ ∈ BV ([a − b, b − a]), then Φ ∈ L
(
L∞([a, b]), C0,1([a, b])

)
and Φ ∈

L
(
L1([a, b]), L∞([a, b])

)
.

Cii): If the Fourier transform φ̂ is integrable and strictly positive a.e. on R, then

Φ :M([a, b])→ L2([a, b]) is injective.

Examples of kernels satisfying the assumptions of Theorem 4.3 include the

Laplace kernel φ(x) = 1
2e
−|x| and kernels of the type φ(x) = max(1− |x|, 0))p for

p = 2, 3, . . ..

Theorem 4.4 (analytic convolution kernels). Assume that ϕ(x, y) = φ(x − y)

for all x, y ∈ [a, b] for some analytic function φ ∈ L2(R) and that the Fourier
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transform φ̂ vanishes at most on a set of Lebesgue measure 0. Then the operator

Φ satisfies Assumption C.

5 Simulations and Data Example

5.1 Example: Inverse two phase regression

In order to evaluate the speed of convergence and quality of the approximation by

the asymptotic law given in Theorem 3.1, we perform a simulation study for the

case where the true function is a step function with one jump, that is f0 ∈ T̃1

(cf. Example 2.2 and (2.3)), given by the parameter vector θ0 = (b1, τ, b2) =

(−3, 12 , 3). Therefore we generate the observations Y by

Yi = Φ
(
−3 · 1[0, 1

2
) + 3 · 1[ 1

2
,1]

(
i
n

))
+

1

2
εi, i = 1, ..., n, (5.1)

where (Φf)(x) =
∫ 1
0 1[0,∞](x−y)f(y)dy and ε ∼ N(0, 1) for i = 1, ..., n. Theorem

3.1 yields
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1θ0
)

where the covariance in (3.3) in calculated as

σ−2Vθ0 =


12
τ3

−6
(b1−b2)τ2 0

−6
(b1−b2)τ2

4
(b1−b2)2(1−τ)τ

−6
(b1−b2)(1−τ)2

0 −6
(b1−b2)(1−τ)2

12
(1−τ)3

 ,

with detVθ0 = 16 > 0, which implies existence of the inverse V −1θ0
. In particular

for the jump location we obtain

√
n(τ̂ − τ)

D−→ N

(
0,

4σ2

(b1 − b2)2(1− τ)τ

)
.

This has been used to calculate confidence intervals for τ̂ . Figure 5.1 shows the

empirical and the asymptotic distribution of τ̂ for different sample sizes n.

The quality of approximation by the asymptotic law is reflected in the em-

pirical coverage of the confidence bands for τ̂ as displayed in Figure 5.2. As

described in Subsection 3.8 we can also calculate confidence bands for the esti-

mated function f̂n as well as for its image Φf̂n. Figure 5.3 shows two simulated

data sets, including their 95%-confidence regions for n = 100 and n = 1000.
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n = 102 n = 103 n = 104
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Figure 5.1: Asymptotic and finite sample size distribution of the jump location for

different sample sizes n. 105 simulation runs with data generated according to (5.1)

were performed. The finite sample size distribution is given by the black line and the

asymptotic distribution by the gray line.
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Figure 5.2: Empirical coverage probability for different sample sizes n of confidence

bands for the estimated jump location. 105 simulation runs with data generated accord-

ing to (5.1) were performed. The x-axis shows the nominal and the y-axis the empirical

coverage.
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Figure 5.3: Simulated data examples and confidence bands for the two phase regression

with n = 100 (left) and n = 1000 (right) observations. The first row displays the

observations and the reconstruction in the image space, and the second row shows the

estimate for the signal f . The gray line represents the true function and the solid black

line the estimate. The dashed lines show the confidence bands for the function and the

gray dots the observations. The ellipses in the second row show the confidence sets for

(τ, b1) and (τ, b2), respectively.
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5.2 Example: Inverse multiphase regression

In this subsection we are going to discuss an application of Corollary 3.4 to

a problem from rheology. The aim here is the determination of the so called

relaxation time spectrum (see Roths, Maier, Friedrich, Marth, and Honerkamp

(2000)). The relaxation time spectrum is a characteristic quantity used in rheol-

ogy which describes the viscoelastic properties of polymer solutions and polymer

melts. Given this spectrum, it is very easy to convert one material function into

another one. Additionally, many theories are based on the spectrum or provide

predictions about its character (see for example Ferry (1970)). The relaxation

time spectrum is not directly accessible by experiment and has to be inferred

from dynamic stress moudli. It is common to assume that these are observed

(with gaussian noise) under a nonlinear integral transform as follows (see Roths,

Maier, Friedrich, Marth, and Honerkamp (2000)).

Definition 5.1. Let 0 < a < 1 < b < ∞ and c 6= 0. The relaxation time

spectrum transform is given as

H : L∞([a, b]) −→ L2([a, b])

f 7−→ Hf(x) :=

∫ b

a

x2y

1 + x2y2
ecf(y)dy.

Note that this is a Hammerstein integral H = Φ ◦ L, where L : L∞([a, b])→
L2([a, b]) and Φ : L2([a, b])→ L2([a, b]) are defined by

(Lf)(y) := y−1ecf(y)

(Φg)(y) :=

∫ b

a

x2y2

1 + x2y2
g(y)dy.

Note that the exponential operator L satisfies the assumptions claimed in Exam-

ple 3.6. Furthermore, the integral operator Φ satisfies Assumption C by virtue

of Theorem 4.2.

The function f describing the relaxation time spectrum is known to have the

interpretation f(·, θ) = f̃(log(·), θ) such that f̃(·, θ) is continuous and piecewise

linear with two kinks (see Prince (1953)). This means that f̃ is an element of L̃2

as defined in (2.4) with reduced parameter vector θ̃ = (ϑ11, ϑ
1
2, τ1, ϑ

2
2, τ2, ϑ

3
2) (cf.

Definition 2.6). For simplicity we rename θ̃ as θ = (b0, b1, τ1, b2, τ2, b3). Then we
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have

L̃2 = {f̃ ∈ L2([log(a), log(b)]) | f̃(y, θ) = b0+b1y+b2(y−τ1)++b3(y−τ2)+, θ ∈ Θ2},

where Θ2 is assumed to be compact. Then, the true function f0(y) = f(y, θ0),

we intend to estimate, is an element of the set

Llog := {f(y, θ) = f̃(log(y), θ) | f̃ ∈ L̃2},

which obviously satisfies the conditions of Definition 2.4. In Roths, Maier,

Friedrich, Marth, and Honerkamp (2000) it is assumed that the observation model

coincides with (1.1) with f0 substituted by Lf0, namely

yi = Hf(xi, θ0) + ε = ΦLf(xi, θ0) + εi for i = 1, ..., n,

where Assumptions A1 and B on error and design are fulfilled. Figure 5.4 shows

a sample of stress moduli measurements on a log-scale performed at the Center

of Material Sciences at Freiburg for a certain polymer melt (see Roths, Maier,

Friedrich, Marth, and Honerkamp (2000) for details). For estimation we use the

least squares estimator defined in (3.1). Then, application of Corollary 3.4 yields

√
n(θ̂n − θ0)

D−→ N(0, σ2V −1θ0
), (5.2)

where σ2 = E(ε2) if Vθ0 is regular. By the chain rule the derivative of the

mapping Λ : R6 → L2([a, b]), Λθ := ΦLf(·, θ0) is given by

(Λ′[θ0]h)(x) = Φ

(
∂

∂θ
[Lf(·, θ0)]h

)
(x) = c

∫ b

a

x2y

1 + x2y2
ecf(y,θ0)

(
h>df(y, θ0)

)
dy,

(5.3)

where

df(y, θ) =



1

log(y)

−b21[eτ1 ,b]

(log(y)− τ1)1[eτ1 ,b]

−b31[eτ2 ,b]

(log(y)− τ2)1[eτ2 ,b]


.

Remembering that b2 6= 0 6= b3 and τ1 < τ2 by Definition 2.4, it is easy to see

that the components of df(·, θ0) are linearly independent. Together with the
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Figure 5.4: A log− log- plot of the ω frequency of harmonic stress (x-axis) against the

dynamic stress moduli of a polymer melt.
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Figure 5.5: From l.t.r.: 0.95- and 0.80-confidence bands for the estimated kink function

f̂n of the log relaxation time spectrum with two (typical) kinks plotted on a log scale

injectivity of Φ, it follows that Λ′[θ0] is injective, and hence Vθ0 ∈ R6×6 defined

as in (3.3) is nonsingular.

Moreover, the results of Theorem 3.1 hold with the improved rate

‖f0 − f̂n‖L2[a,b] = OP (n−
1
2 ), (5.4)

which for comparison is the square of the rate in (iv) in Theorem 3.1. Note that

Equation (5.4) directly follows from Corollary 3.4, since linear functions with

bounded slopes i.e. functions in FL (c.f. (2.3)), are Lipschitz continuous, with

uniform Lipschitz constant. Hence, for the modulus of continuity it holds that

ν(FL, n−1/2) = O(n−1/2).

Figure 5.5 shows the estimated kink function for the polymer melt data of

the relaxation time spectrum from dynamic moduli (see Roths, Maier, Friedrich,

Marth, and Honerkamp (2000)) with 95%- and 80%-confidence bands, calculated

by using a studentized maximum modulus statistic as discussed in Subsection

3.8 (for details see also pp.70 in Miller (1966)). Finally, as in Subsection 5.1, we

evaluated the accuracy of the normal approximation from (5.2) in this special

example, by performing a simulation study (see Figure 5.6). Here we used the

operator in (5.1) acting on the space of kink functions with two kinks. A com-

parison of Figure 5.2 and 5.6 illustrates that increasing complexity of the kernel

in Subsection 5.2 reduces the finite sample accuracy of the empirical coverage

probability.
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Figure 5.6: Empirical coverage probability (grey lines) of confidence bands for the esti-

mated kink function for normal observations with σ2 = 0.01 for different sample sizes.

From l.t.r.: n = 100, 1000, 5000, and 104 simulations each. The x-axis shows the nominal

and the y-axis the empirical coverage probability. The black line x = y is for comparison,

it shows perfect coincidence of empirical and nominal coverage.
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Supplementary Material

In this supplement the proofs of the results of the paper are collected.

S1 Proofs of Theorem 3.1, Proposition 3.3, and Corol-
laries 3.2 and 3.4

This section is dedicated to the proof of Theorem 3.1 and Corollaries 3.2 and 3.4 in
Section 3. The proof is separated in four parts. We start with some technical results,
then we calculate the entropy numbers of the considered function spaces, which yield
the basic arguments to show consistency of the estimator in (3.1). Finally, we give the
proof of the asymptotic results given in Theorem 3.1 and Corollaries 3.2 and 3.4. This
section is dedicated to the proof of Theorem 3.1 and Corollaries 3.2 and 3.4 in Section
3. The proof is separated in four parts. We start with some technical results, then we
calculate the entropy numbers of the considered function spaces, which yield the basic
arguments to show consistency of the estimator in (3.1). Finally, we give the proof of
the asymptotic results given in Theorem 3.1 and Corollaries 3.2 and 3.4.

S1.1 Some technical lemmata

Before we give the proofs of the main results in Section 3, we need some technical
lemmata.

Lemma S1.1. For p ∈ [1,∞) the mapping F : (Θk, | · |∞)→ (Fk, ‖ · ‖Lp), θ 7→ f(·, θ) is
Hölder continuous with index 1/p, and there exists a constant L independent of k such
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that for all θ(1), θ(2) ∈ Θ the following estimate holds true:∥∥∥F(θ(2))− F(θ(1))
∥∥∥
Lp
≤
(
L(k + 1)

∣∣∣θ(2) − θ(1)
∣∣∣
∞

)1/p

.

Proof. Let θ(1) = (ϑ
(1)
1 , τ

(1)
1 , . . . , ϑ

(1)
k ), θ(2) = (ϑ

(2)
1 , τ

(2)
1 , . . . , ϑ

(2)
k ) ∈ Θk and consider the

mapping λ : [0, 1]→ L1([a, b]),

λ(t) := f(·, θ(1) + t(θ(2) − θ(1))) .

Setting ϑi(t) := ϑ
(1)
i +t(ϑ

(2)
i −ϑ

(1)
i ) for i = 1, . . . , k+1 and and τi(t) := τ

(1)
i +t(τ

(2)
1 −τ

(1)
i )

for i = 0, . . . , k + 1 we get from the integral form of the mean value theorem that

∥∥∥F(θ(2))− F(θ(1))
∥∥∥p
Lp

= ‖λ(1)− λ(0)‖pLp ≤
k+1∑
i=1

∫ τi(t)

τi−1(t)

∫ 1

0

∣∣∣∣(ϑ(2)
i − ϑ

(1)
i

)> ∂f

∂ϑ
(y, ϑi(t))

∣∣∣∣p dtdy

+

k∑
i=1

∫ 1

0

∣∣∣[f(τi(t), θ(t))]
∣∣∣p dt ∣∣∣τ (2)

i − τ (1)
i

∣∣∣
≤ (1 + k)C

∣∣∣θ(2) − θ(1)
∣∣∣
∞

with the constant C := supϑ∈Ψ,y∈[a,b] max((2|f(y, ϑ)|)p, (b− a)diam∞(Ψ)p−1| ∂f∂ϑ (y, ϑ)|p1),
which is finite since Ψ is compact.

Lemma S1.2. Suppose that Assumption C holds true. Then Λ : Θk → L2(I) is contin-
uously differentiable and the derivative is given by

(Λ′[θ]ei)(x) =


∫ b

a

ϕ(x, y) ∂
∂θi
f(y, θ)dy i 6= 0 mod (r + 1) ,

ϕ(x, τ i
r+1

) [f(·, θ)] (τ i
r+1

) i = 0 mod (r + 1) .

(S1.1)

Proof. We show that the mapping Λ0 : Ψ× [a, b]2 → L2(I)

Λ0(ϑ, τ1, τ2) :=

∫ τ2

τ1

ϕ(·), y)f(y, ϑ) dy

is continuously differentiable with derivative

Λ′0[ϑ, τ1, τ2](δϑ, δτ1, δτ2) =

∫ τ2

τ1

ϕ(·), y)
∂f

∂ϑ
(y, ϑ)δϑdy

− ϕ(·, τ1)f(ϑ)(τ1, ϑ) δτ1 + ϕ(·, τ2)f(ϑ)(τ2, ϑ) δτ2

(S1.2)

from which the assertion follows immediately. We write Λ0 = Φ0 ◦ F as the composition
of the mappinng F : Ψ×[a, b]2 → C([a, b])×[a, b]2, F(ϑ, τ1, τ2) := (f(·, ϑ), τ1, τ2)>, which is
continuously differentiable with derivate F′[ϑ, τ1, τ2](δϑ, δτ1, δτ2) = ( ∂f∂ϑ (·, ϑ)δϑ, δτ1, δτ2)>

by the first property in Definition 2.1, and the integral operator Φ0 : C([a, b])× [a, b]2 →
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L2(I), (Φ0(g, τ1, τ2))(x) :=
∫ τ2
τ1
ϕ(x, y)g(y) dy which is continuously differentiable with

derivative Φ′0[g, τ1, τ2](δg, δτ1, δτ2) = Φ0(δg, τ1, τ2)−ϕ(·, τ1)g(τ1)δτ1 +ϕ(·, τ2)g(τ2)δτ2 by
the fundamental theorem of calculus and Assumption C. Now (S1.2) follows from the
chain rule Λ′0[θ̄](δθ̄) = Φ′0[F(θ̄)]F′[θ̄](δθ̄) with θ̄ := (ϑ, τ1, τ2).

Corollary S1.3. Suppose that Assumptions B and C are met. Then, uniformly for all
f ∈ Fk([a, b]), it holds

oP (1) + sl‖Φf‖2n ≤ ‖Φf‖2L2([a,b)] ≤ su‖Φf‖
2
n + oP (1)

with constants sl, su depending on the design density (cf. Assumption B), only.

Proof. The claim follows from Boysen, Bruns, and Munk (2009, Lemma 4.3) together
with Assumption Ci).

S1.2 Entropy results

In order to show consistency of the least squares estimator f̂n in (3.1), we apply uniform
deviation inequalities from empirical process theory. To this end, it is necessary to
calculate the entropy of the space of interest, which is defined in the following way.

Definition S1.4. Given a subset G of a linear space G, a semi-norm ‖ · ‖ : G→ [0,∞),
and a real number δ > 0, the δ-covering number N(δ,G, ‖ ·‖) is defined as the smallest
value of N such that there are functions g1, . . . , gN with

min
1≤j≤N

‖g − gj‖ ≤ δ for all g ∈ G.

Moreover, the δ-entropy H and the entropy integral J of G are defined as

H(δ,G, ‖ · ‖) = logN(δ,G, ‖ · ‖) and

J(δ,G, ‖ · ‖) := max

(
δ,

∫ δ

0

H1/2(u,G, ‖ · ‖)du

)
,

respectively.

We are interested in the entropy of the set

Gk := {Φf ∈ L2(I) | f ∈ F k[a, b]}, (S1.3)

where Φ is a known integral operator with kernel ϕ as defined in (1.2). In order to

deduce consistency of f̂n, additionally we have to know the entropy of the set F k. By
definition, all functions f ∈ F k are determined by a parameter vector θ. Thus the core
of the problem reduces to determination of the entropy of the parameter set Θk.
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Lemma S1.5. Let Fk and d = (k + 1)r + k be as in Definition 2.4. Then there exists
a constant TF , T̃F > 0 depending only on the considered function class F in Definition
2.1, such that

H (δ,Fk, ‖ · ‖L1) ≤ d log

(
(k + 1)TF + δ

δ

)
, (S1.4)

H (δ,Gk, ‖ · ‖n) ≤ d log

(
(k + 1)T̃F + δ

δ

)
. (S1.5)

Proof. Note that the diameter of Θk with respect to the maximum norm is bounded by
a constant M independent of k and recall that F : (Θk, | · |∞)→ (Fk, ‖ · ‖L1), θ 7→ f(·, θ)
is Lipschitz continuous with constant L(k + 1) (cf. Lemma S1.1). Hence, (S1.4) with
TF := 2ML follows from the fact that the number of balls with radius δ/(L(k + 1))
which are needed to cover a subset of Rd with diameter bounded by M can be estimated
by (2ML(k+ 1) + δ)d/δd (cf. del Barrio, Deheuvels, and van de Geer (2007, Lem. 2.5)).
Analogously, we obtain (S1.5) with T̃F := 2ML‖Φ‖L1→L∞ .

S1.3 Consistency

Theorem S1.6. Let Φ be an operator satisfying Assumption C and f0 = f(·, θ0) ∈ Fk.

Furthermore, assume that Assumption A1 and B are met. Then, for f̂n = f(·, θ̂n), the
least squares estimator in (3.1), it holds that

‖Φf̂n − Φf0‖n = oP (1).

Proof. Due to Inequality (3.1) we have

‖Φf̂n − Y ‖2n ≤ ‖Φf0 − Y ‖2n + op(n
−1).

Inserting Y = Φf0 + ε leads to

‖Φf̂n − Φf0‖2n − 2〈Φf̂n − Φf0, ε〉n + ‖ε‖2n ≤ ‖ε‖2n + op(n
−1)

which implies

‖Φf̂n − Φf0‖2n ≤ 2〈Φf̂n − Φf0, ε〉n + op(n
−1)

= 2(〈Φf̂n, ε〉n − 〈Φf0, ε〉n) + op(n
−1)

≤ 4 sup
g∈Gk

|〈g, ε〉n|+ op(n
−1).

Lemma S1.5 gives boundedness of the entropy H (δ,Gk, Pn) uniformly in n, for all
δ > 0 and so n−1H (δ,Gk, Pn)→ 0 as n→∞. With this result it follows directly from
van de Geer (2000, Theorem 4.8) that supg∈Gk

|〈g, ε〉n| = oP (1).
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Corollary S1.7. Under the assumptions of Theorem S1.6 one has

‖Φf̂n − Φf0‖L2(I) = oP (1).

Proof. Since the design in Definition (1.1) is assumed to satisfy Assumption B the claim
follows directly from Theorem S1.6 and Corollary S1.3.

Lemma S1.8. Under the assumptions of Theorem S1.6 it holds that

‖Φf̂n − Φf0‖L2(I) = op(1) implies ‖f(·, θ0)− f(·, θ̂n)‖L2([a,b]) = op(1).

Proof. The operator Φ : (Fk, ‖ · ‖L2([a,b])) −→ (L2(I), ‖ · ‖L2(I)) is linear and bounded
and hence continuous. According to Assumption Cii) it is injective and it follows from
Lemma S1.5 that the set (Fk, ‖ · ‖L2([a,b])) is totally bounded. Since it also contains
functions with less than k change points, it is additionally closed and therefore compact.
Hence Φ : Fk −→ {Φf ∈ L2(I) : f ∈ Fk} is a bijective continuous mapping from a
compact set to a Hausdorff space, hence a homeomorphism (see tom Dieck (2008, Prop
1.5.3)).

Lemma S1.9. Assume that f0 = f(·, θ0) ∈ Fk with ]J (f0) = k and let {f(·, θn)}n∈N be
a sequence in Fk. Then

‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) implies |θ0 − θn|∞ = o(1).

Proof. Due to the definition of J (·) in Subsection 2.2, the assumption ]J (f0) = k
implies that f(·, θ0) has precisely k change points. That means, f(·, θ0) ≡ f(·, θ) implies
θ = θ0, i.e. for all θ0 6= θ ∈ Θk we have ‖f(·, θ0) − f(·, θ)‖L2([a,b]) > 0. Now assume
that ‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) but that there exist a subsequence {θkn}n∈N and
a constant c1 > 0, such that |θ0 − θkn |∞ > c1 for all n ∈ N. Since Θk is compact, we

can choose a further subsequence of this subsequence, which converges to some θ̂ ∈ Θk.
W.l.o.g we assume limn→∞ |θ̂ − θkn |∞ = 0. By construction |θ0 − θ̂|∞ > c1 and so

uniqueness of θ0 implies ‖f(·, θ0)− f(·, θ̂)‖L2([a,b]) > c2 > 0 for some constant c2. Since
the mapping θ 7→ ‖f(·, θ) − f(·, θ0)‖L2([a,b]) is continuous by Lemma S1.1, there exists
some n0 ∈ N, such that for all n ≥ n0 we have

‖f(·, θ0)− f(·, θkn)‖L2([a,b]) >
1

2
c2 > 0.

This is a contradiction to ‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) and the claim follows.

Corollary S1.10. Under the assumptions of Theorem S1.6 it holds that

‖f(·, θ0)− f(·, θ̂n)‖L2([a,b]) = oP (1).

Moreover, if the true function f0 has exactly k change points it also holds that

|θ0 − θ̂n|∞ = oP (1).

Proof. This follows from Theorem S1.6 by application of Lemma S1.8 and S1.9.
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S1.4 Asymptotic normality

In this subsection we show asymptotic normality of the least squares estimator θ̂n in (3.1).

Therefore, we focus on the stochastic process ‖Y −Φf̂n‖2n = n−1
∑n
i=1(yi−Φf̂n(xi))

2 for
the random observations (Y,X) as in (1.1), which henceforth we write as the empirical
expectation

Enm(·, ·, θ) := n−1
n∑
i=1

m(xi, yi, θ),

with m defined as
m(x, y, θ) := (y − (Λ(θ))(x))2. (S1.6)

Hence, θ̂n the least squares estimator is the minimizer of θ 7−→ Enm(·, ·, θ). Let Eε1 = 0
and Eε2

1 = σ2 then expectation of m(·, ·, θ) can be calculated as

Em(·, ·, θ) = E(Φf(·, θ0)− Φf(·, θ))2 + σ2

= E(Φf(·, θ0)− Φf(·, θ))2 + Em(·, ·, θ0). (S1.7)

By Lemma S1.2, the function θ 7→ m(·, y, θ) is differentiable with derivative ∂/∂θm(·, y, θ) =
2(Λ(θ)− y)Λ′[θ] such that for all h1, h2 ∈ Rd

E

(
∂m

∂θ
(·, ·, θ0)h1

) (
∂m

∂θ
(·, ·, θ0)h2

)
= 4σ2E(Λ′[θ0]h1)(Λ′[θ0]h2) = 4σ2h>1 Vθ0h2.

(S1.8)

Classical conditions for asymptotic normality of θ̂n require that the function θ 7→ m(x, y, θ)
is twice differentiable, which is not the case on our situation. Therefore, we follow a dif-
ferent route according to Theorem 5.23 (Chapter 5.3) in van der Vaart (1998) where a
second order expansion of the expectation θ 7→ Em(·, ·, θ) instead of the function m itself
is sufficient to obtain the desired normality.

Theorem S1.11. For each θ in an open subset of Euclidean space let (x, y) 7→ m(x, y, θ)
be a measurable function such that θ 7→ m(x, y, θ) is differentiable at θ0 for P-almost
every (x, y) and such that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable
function ṁ with Eṁ2 <∞

|m(x, y, θ1)−m(x, y, θ2)| ≤ ṁ(x, y)|θ1 − θ2|∞. (S1.9)

Furthermore, assume that the map θ 7→ Em(·, ·, θ) has the asymptotic behavior

Em(·, ·, θ) = Em(·, ·, θ0) +
1

2
(θ − θ0)>V (θ − θ0) + o(|θ0 − θ|2∞), as |θ0 − θ|∞ → 0

(S1.10)

at a point of minimum θ0 with a nonsingular symmetric matrix V . If Enm(·, ·, θ̂n) ≤
infθ Enm(·, ·, θ) + oP (n−1) and θ̂n

P→ θ0, then

√
n(θ̂n − θ0) = −V −1 1√

n

n∑
1=1

∂m

∂θ
(xi, yi, θ0) + oP (1).

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix V −1E∂m
∂θ (·, ·, θ0)∂m∂θ (·, ·, θ0)>V −1.
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Proof. Along the lines of the proof of van der Vaart (1998, Thm 2.23).

Proof. (of Theorem 3.1) We show that the assumptions of Theorem S1.11 are satisfied:
It follows from Lemma S1.1 and the assumed boundedness of Φ : L1([a, b])→ L∞(I) that
Λ = Φ · F : (Θ, | · |∞) → (L∞, ‖ · ‖L∞) is Lipschitz continuous, which implies condition
(S1.9) is satisfied with constant ṁ. Moreover, (S1.10) with V = Vθ0 follows from Lemma

S1.2. According to this theorem, together with (S1.8), the sequence
√
n(θ̂n − θ0) is

asymptotically normal with mean zero and covariance matrix σ2V −1
θ0
, which proves (i).

Part (ii) follows from van der Vaart (1998, Cor. 5.53). Part (iii) is now a consequence
of part (ii) and Lemma S1.1. Finally, part (iv) follows from part (iii) with p = 1 and the
boundedness of Φ : L1([a, b])→ L∞(I).

Proof. (of Corollary 3.2) Due to the differentiability of h in Definition 2.6 Lemma S1.1
and S1.2 hold analogously for the reduced parameter domain by the chain rule. More-
over, the mapping δθ̃ 7→ Λ′[h(θ̃]h′[θ̃]δθ̃ is injective by Assumption C and the injectivity
assumption in Definition 2.6, and hence Vθ̃ is nonsingular. Therefore, the proof of the
corollary is completely analogous to the proof of Theorem 3.1.

Proof. (of Corollary 3.4) Statements (i) - (iv) from Theorem 3.1 are valid for the reduced
parameter vectors θ̃0 and θ̃n by Corollary 3.2. In order to show (3.6), we skip the
dependencies of the parameter components, for the sake of simplicity and consider the
pieces f(y, ϑi) instead of f(y, ϑi(θ̃)) for all i = 1, ..., k + 1, keeping in mind that for all
occurring derivatives we actually need to apply the chain rule.

Now f has a kink in τi for all i = 1, ..., k. W.l.o.g. we assume that τi > τ̂i, then we
have∫ τ̂i

τi

(
f(y, ϑi+1)− f(y, ϑ̂i)

)p
dy ≤

∫ τ̂i

τi

(
|f(y, ϑi+1)− f(τi, ϑ

i+1)|

+ |f(τi, ϑi+1)− f(τi, ϑ
i)|+ |f(τi, ϑi)− f(τi, ϑ̂

i)|+ |f(τi, ϑ̂i)− f(y, ϑ̂i)|
)p

dy.

By the mean value theorem we have |f(τi, ϑi) − f(τi, ϑ̂
i)| = O(|ϑi − ϑ̂i|). The term

|f(τi, ϑi+1) − f(τi, ϑ
i)| vanishes because there is a kink at τi. Finally, remembering the

definition of the modulus of continuity ν in (3.5), we get

sup
y∈[τi,τ̂i]

(|f(y, ϑi+1)− f(τi, ϑ
i+1)|, |f(τi, ϑ̂i)− f(y, ϑ̂i)|) = ν(F , |τi − τ̂i|) .

Hence, it follows from (ii) that∫ τ̂i

τi

(
f(y, ϑi+1)− f(y, ϑ̂i)

)p
dy = O(|τi − τ̂i|)(ν(F , |τi − τ̂i|) + |ϑi − ϑ̂i|)2

= OP (n−
1
2 (ν(F , n− 1

2 )p + n−p/2)).

Since this holds for all i = 1, ..., k, this proves (3.6).
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S1.5 Proof of Proposition 3.3

Proof. (Proposition 3.3) It is obvious from the definition (3.4) that the matrix Vθ is
symmetric and positive semi-definite, so we have to study under which conditions it is

positive definite. Since h>Vθh =
∫ b
a
|Λ′[θ0]h|2s dy for h ∈ Rd, it follows from Assumption

B on s that that h>Vθh = 0 is equivalent to Λ′[θ]h = 0. Hence, Vθ0 is non-singular if
and only if Λ′[θ] is injective. It follows from Lemma S1.2 that Λ′[θ] = Φ ◦ F′[θ] is the
composition of the integral operator Φ :M→ L2(I), which is injective by Assumption
Cii) and the formal derivative F′[θ0] : Θk →M, of the mapping Fθ := f(·, θ) given by

F′[ϑ1, τ1, ϑ2, . . . , τk, ϑk+1](δϑ1, δτ1, δϑ2 . . . , δτk, δϑk+1)

:=

k+1∑
j=1

(δϑj)
> ∂f

∂ϑj
(·, ϑj)1[τj−1,τj) +

k∑
j=1

[f(·, θ)] (τj)δτj .

Since the mappings F′[τj−1,τj)
[ϑj ]δϑj = (δϑj)

> ∂f
∂ϑj

(·, ϑj) are assumed to be injective (see

Definition 2.1) F is injective if and only if [f(·, θ)](τj) 6= 0 for j = 1, . . . , k, i.e. if and
only if f(·, θ) has jumps at all change points.

S2 Proof of Theorem 3.5

From Inequality (3.2) we obtain the basic inequality

‖Φf̂λn − Φf0‖2n ≤ 2〈Φf0 − Φf̂λn , ε〉n + λn(]J(f0)− ]J(f̂λn)) + o(n−1). (S2.11)

Again we have to consider the behavior of the empirical process 〈Φf0 − Φf̂λn , ε〉n, and
therefore the entropy of the respective function space to gain a bound for this process.
We use the results from Boysen, Bruns, and Munk (2009).

Lemma S2.1. Suppose that Assumptions A and A1 are satisfied. Then, for all Φf ∈
G∞ = {Φf ∈ L2(I) | f ∈ F∞}, we have

|〈Φf, ε〉n| = OP (n−
1
2 )‖Φf‖1−εn (]J(f))

1
2 (1+2ε),

for any ε > 0.

Proof. For fixed number of jumps k, we find from Lemma S1.5 that

H(δ,Gk, Pn) ≤ d log

(
T̃F
√
k + 1 + δ

δ

)
,

with d = (k + 1)r+ k and a constant T̃F , which is independent of k. Using this entropy
bound, it follows along the lines of the proof of Lemma 4.18 in Boysen, Bruns, and Munk
(2009) that

sup
g∈Gk, ‖g‖n≤δ

|〈g, ε〉n|
√
kδ
(

1 + log
(
T̃F
√
k+δ
δ

)) = OP (n−
1
2 ),



ASYMPTOTIC LAWS FOR CHANGE POINT ESTIMATION S9

holds uniformly for all k. For all Φf ∈ G∞ this implies

|〈Φf, ε〉n|√
]J(f)‖Φf‖n

(
1 + log

(
T̃F
√
]J(f)+‖Φf‖n
‖Φf‖n

))
≤ sup

g∈G]J(f),

‖g‖n≤‖Φf‖n

|〈g, ε〉n|√
]J(f)‖Φf‖n

(
1 + log

(
T̃F
√
]J(f)+‖Φf‖n
‖Φf‖n

)) = OP (n−
1
2 ).

Analogously to the proof of Corollary 4.19 in Boysen, Bruns, and Munk (2009), this
directly yields the claim.

Lemma S2.2. Let f0 ∈ F∞ and {fn}n∈N a sequence in F]J(f0),D, with

‖f0 − fn‖L2([a,b]) = o(1).

Then, there exists an n0 ∈ N, such that for all n ≥ n0

]J(f0) = ]J(fn).

Proof. W.l.o.g let ]J(f0) = 1. Now we assume that there exists a subsequence fkn with
no jumps, i.e. fkn ∈ F 0,D for all n. Furthermore fkn is a subsequence of a converging
sequence, and thus converges to the same limit function f0. As shown in the proof of
Lemma S1.8, the set F 0,D is compact thus the limit function of fkn has to be contained
in F 0,D, which leads the contradiction

f0 ∈ F 0,D.

Now we are prepared for the proof of Theorem 3.5.

Proof. (of Theorem 3.5) Throughout the proof w.l.o.g we assume that ε ≤ 1. From
Lemma S2.1 and (S2.11), it follows that

‖Φf̂λn − Φf0‖2n ≤ OP (n−
1
2 )‖Φf̂λn − Φf0‖

1− 1
2 ε

n (]J (f̂λn − f0))
1
2 (1+ε)

+λn(]J (f0)− ]J (f̂λn)) + o(n−1)

≤ OP (n−
1
2 )‖Φf̂λn − Φf0‖

1− 1
2 ε

n ]J (f̂λn)
1
2 (1+ε) − λn]J (f̂λn) + λn]J (f0),

where we took into account that λn is assumed to converge slower than n−1 and that
we have ]J (f0) <∞, which implies that ]J (f̂λn − f0) = OP (]J (f̂λn)).

Choosing f ≡ 0 on the right hand side of Equation (3.2) implies λn]J (f̂λn) ≤
‖Y ‖2n = OP (1) and hence, we have

]J (f̂λn) = OP (λ−1
n ). (S2.12)
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We assumed that λ−1
n n−1/(1+ε) → 0, for n→∞, which gives

n−1 = o(λ1+ε
n ). (S2.13)

By compactness of Ψ we have that supf∈F∞ ‖f‖∞ ≤ R and thus

sup
f∈F∞

‖Φf‖n ≤ ‖ϕ‖∞R <∞ (S2.14)

Inserting (S2.14), (S2.12) and (S2.13) into (S2.12), we obtain

‖Φf̂λn − Φf0‖2n ≤ oP (λ
1+ε
2

n )OP (λ
1−ε
2

n )‖Φf̂λn − Φf0‖
1− 1

2 ε
n ]J (f̂n)− λn]J (f̂λn) + λn]J (f0)

= (op(λn)− λn)]J (f̂λn) + λn]J (f0). (S2.15)

Since op(λn)− λn becomes negative for increasing n, this implies

‖Φf̂λn − Φf0‖2n = OP (λn)

and with Corollary S1.3,

‖Φf̂λn − Φf0‖2L2(I) = OP (λn) + oP (1) = oP (1). (S2.16)

Again considering Equation (S2.15) we find that this is equivalent to

0 ≤ (op(λn)− λn)]J (f̂λn) + λn]J (f0),

which means
(1− oP (1))]J (f̂λn) ≤ ]J (f0).

Because ]J (f0) and ]J (f̂λn) are integers, this implies P (]J (f̂λn) ≤ ]J (f0)) → 1. For

]J (f̂λn) ≤ ]J (f0) in turn, it holds that f0, f̂λn ∈ F ]J (f0) and Lemma S1.8 together with
(S2.16), yields

‖f0 − f̂λn‖L2([a,b]) = oP (1).

Using Lemma S2.2 this implies that limn→∞ P
(
]J (f0) = ]J (f̂λn)

)
= 1, which is the

claim.

S3 Proofs of the Theorems 4.2, 4.3 and 4.4

Proof. (Theorem 4.2) ad Ci): It is straightforward to show that ‖Φf‖L∞ ≤ ‖φ‖L∞‖f‖L1 ,
so φ ∈ L

(
L1([a, b]), L∞([c, d])

)
. Since φ ∈ BV ([ac, bd]) there exist monotonically increas-

ing and bounded functions φ1, φ2 such that φ = φ1 − φ2. Setting ϕi(x, y) := φi(xy) for
i = 1, 2 we obtain for x, x+ δ ∈ [a, b] with δ > 0

|(Φf)(x)− (Φf)(x+ δ)| =

∣∣∣∣∣
∫ b

a

(ϕ1(x, y)− ϕ1(x+ δ, y)− ϕ2(x, y) + ϕ2(x+ δ, y))f(y)dy

∣∣∣∣∣
≤ ‖f‖∞

[∫ b

a

|ϕ1(x+ δ, y)− ϕ1(x, y)|dy +

∫ b

a

|ϕ2(x+ δ, y)− ϕ2(x+ δ, y)|dy

]
(S3.17)

= ‖f‖∞

[∫ b

a

(ϕ1(x+ δ, y)− ϕ1(x, y)) dy +

∫ b

a

(ϕ2(x+ δ, y)− ϕ2(δ, y)) dy

]
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using the monotonicity of φi in the last line. The integrals on the left hand side can be
estimated by∫ b

a

[φi((x+ δ)y)− φi(xy)] dy =
1

x+ δ

∫ b(x+δ)

a(x+δ)

φi(u)du− 1

x

∫ bx

ax

φi(u)du

=

(
1

x+ δ
− 1

x

)∫ bx

ax

φi(u)du+
1

x+ δ

(∫ b(x+δ)

bx

φi(u)du−
∫ a(x+δ)

ax

φi(u)du

)

≤
(
b− a
x+ δ

δ +
δb− δa
x+ δ

)
‖φi‖∞ ≤

b− a
a

2δ‖φi‖∞ ,

so |(Φf)(x)− (Φf)(x+ δ)| ≤ b−a
a 2δ(‖φ1‖∞ + ‖φ2‖∞) ‖f‖∞.

ad Cii): Assume that the Müntz condition (4.1) holds true and that

(Φµ)|[ρ1
a ,

ρ2
b

] ≡ 0

for some Borel measure µ ∈ B([a, b]). Since xy ∈ [ρ1, ρ2] if x ∈ [ρ1a ,
ρ2
b ] and y ∈ [a, b] and

since the series expansion of φ converges absolutely and hence uniformly on the compact
interval [ρ1, ρ2], integration and summation may be interchanged, and we obtain

(Φµ)(x) =

∫ b

a

φ(xy)dµ(y) =

∞∑
j=0

xj
∫ b

a

αjy
jdµ(y) =

∞∑
j=0

cjx
j , x ∈

[ρ1

a
,
ρ2

b

]
with cj := αj

∫ b
a
yjdµ(y). In order to see that the power series

∑∞
j=0 cjx

j converges

absolutely and uniformly for x ∈ [ρ1a ,
ρ2
b ], note that |cj | ≤ |µ|([a, b])|αj |bj , so

∞∑
j=0

∣∣cjxj∣∣ ≤ |µ|([a, b]) ∞∑
j=0

|αj |ρj2 <∞, x ∈
[ρ1

a
,
ρ2

b

]
.

Since a power series with positive radius of convergence vanishes identically if and only
if all its coefficients vanish, we obtain∫ b

a

yjdµ(y) = 0 for all j ∈ J.

By the Müntz-Theorem 4.1 this implies that
∫ b
a
g(y)dµ(y) = 0 for all g ∈ C([a, b]), so

µ ≡ 0, i.e. Φ : B([a, b])→ L2([a, b]) is injective.

If the Müntz condition (4.1) is violated, then the converse implication of the full
Müntz Theorem 4.1 entails that the closure of span({yj : j ∈ J}) does not coincide
with C([a, b]), and as a consequence of the Hahn-Banach theorem (cf. Yosida (1995,
§IV.6)) there exists a functional µ0 6= 0 in the dual space C([a, b])′ which vanishes on
span({yj : j ∈ J}). By the Riesz representation theorem (cf. Rudin (1987, Thm 6.19))

µ0 can be expressed by a (signed) Borel measure µ0 ∈ B([a, b]) via µ0(g) =
∫ b
a
gdµ0, and

our previous computations show that Φµ0 = 0.
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Proof. (Theorem 4.3) ad Ci): Obviously, ‖Φf‖L∞ ≤ ‖φ‖L∞‖f‖L1 , so φ ∈ L
(
L1([a, b]), L∞([a, b])

)
.

As in the proof of Theorem 4.2, we can write φ = φ1 − φ2 with bounded, monotonically
increasing functions φ1, φ2, and define ϕi(x, y) := φi(x − y) such that eq. (S3.17) holds
true. Here the integrals on the left hand side of (S3.17) can be estimated by∫ b

a

(φi(x+ δ − y)− φi(x− y)) dy = −
∫ x−b+δ

x−b
φi(u)du+

∫ x−a+δ

x−a
φi(u)du ≤ 2|δ|‖φi‖∞,

and we obtain |(Φf)(x)− (Φf)(x+ δ)| ≤ 2δ(‖φ1‖∞ + ‖φ2‖∞)‖f‖∞ .

ad Cii): Take µ = f +
∑
j=1 γjδxj ∈M([a, b]) and assume that

(Φµ)(x) =

∫ b

a

φ(x− y)f(y) dy +

n∑
j=1

γjφ(x− xj) = 0, for all x ∈ [a, b].

Extending f by 0 on R \ [a, b], it follows from the Plancherel theorem and the Fourier
convolution theorem that

0 =

∫ ∞
−∞

f(x)(Φµ)(x) dx+

n∑
k=1

γk(Φµ)(xk)

=

∫ ∞
−∞

f(x)

∫ ∞
−∞

φ(x− y)f(y) dy dx+

n∑
j=1

γj

∫ ∞
−∞

f(x)φ(x− xj) dx

+

n∑
k=1

γk

∫ ∞
−∞

φ(xk − y)f(y) dy +

n∑
k=1

n∑
j=1

γkγjφ(xj − xk)

=

∫ ∞
−∞

∣∣∣∣∣∣f̂(ξ) +

n∑
j=1

γje
−2πiξxj

∣∣∣∣∣∣
2

φ̂(ξ) dξ .

Using the assumption φ̂ > 0 a.e., we find that f̂(ξ) +
∑n
j=1 γje

−2πiξxj = 0 for a.e.

ξ ∈ R. Since lim|ξ|→0 f̂(ξ) = 0 by the Riemann-Lebesgue lemma, this implies f̂ = 0 and
γ1 = · · · = γn = 0, so µ = 0.

Proof. (Theorem 4.4) ad Cii): This follows from the first part of Theorem 4.3 since
analytic functions are of bounded variation.

ad Cii): Assume that Φµ = 0 for µ = f +
∑
j=1 γjδxj ∈ M([a, b]). Since φ is

analytic, it has a holomorphic extension to a neighborhood U of R in C. By a compactness
argument U0 :=

⋂
y∈[a,b] U − y is also a neighborhood of R in C. Define

g(z) :=

∫ b

a

φ(z − y)f(y) dy +

n∑
j=1

γjφ(z − xj), z ∈ U0.

Interchanging differentiation and integration, it follows that g is holomorphic, and g(x) =
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(Φµ)(x) = 0 for x ∈ [a, b]. Hence, g vanishes identically. Therefore,

0 =

∫ ∞
−∞

e−2πiξxg(x) dx = φ̂(ξ)

f̂(ξ) +

n∑
j=1

γje
2πiξxj

 , ξ ∈ R.

Since we have assumed that φ̂ 6= 0 a.e., it follows that the term in parenthesis vanishes
a.e., and hence µ = 0.
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