
The Annals of Statistics
2011, Vol. 39, No. 2, 1098–1124
DOI: 10.1214/10-AOS862
© Institute of Mathematical Statistics, 2011

INTRINSIC INFERENCE ON THE MEAN GEODESIC OF PLANAR
SHAPES AND TREE DISCRIMINATION BY LEAF GROWTH

BY STEPHAN F. HUCKEMANN1

Georg-August-Universität Göttingen

Dedicated to the Memory of Herbert Ziezold 1942–2008

For planar landmark based shapes, taking into account the non-Euclidean
geometry of the shape space, a statistical test for a common mean first geo-
desic principal component (GPC) is devised which rests on one of two asymp-
totic scenarios. For both scenarios, strong consistency and central limit the-
orems are established, along with an algorithm for the computation of a
Ziezold mean geodesic. In application, this allows to verify the geodesic hy-
pothesis for leaf growth of Canadian black poplars and to discriminate ge-
netically different trees by observations of leaf shape growth over brief time
intervals. With a test based on Procrustes tangent space coordinates, not in-
volving the shape space’s curvature, neither can be achieved.

1. Introduction. In this paper, the novel statistical problem of developing
asymptotics for the estimation of the mean geodesic on a shape space is consid-
ered. It is the generalization to a non-Euclidean geometry of the asymptotics for the
estimation of a straight first principal component line from multivariate data in the
Euclidean geometry. Due to curvature involved, however, methods from linear al-
gebra as employed in the Euclidean geometry cannot be used, and a new approach
has to be developed. The task at hand is more involved, yet somehow comparable
to the situation of generalizing the concept of the mean for multivariate data to a
mean for manifold valued data. For such manifold valued means pioneering work
for definitions, existence, uniqueness, algorithms and asymptotics has been done
by Gower (1975), Ziezold (1977), Kendall (1990), Goodall (1991), Hendriks and
Landsman (1996), Hendriks and Landsman (1998), Le (2001), Bhattacharya and
Patrangenaru (2003), Bhattacharya and Patrangenaru (2005) and many others. In
this work, definitions for a mean geodesic, an algorithm and asymptotics are pro-
posed and developed for data on Kendall’s space of planar shapes. In particular,
the following two different statistical scenarios are considered: asymptotics with
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respect to underlying shapes—the mean geodesic of shapes—and asymptotics with
respect to underlying sampled geodesics—the mean geodesic of geodesics.

The study of geodesics on shape spaces as the simplest model for a path of
temporal evolution of shape is of high interest in shape analysis, in particular, in
biological studies comparing growth patterns.

Unlike previous attempts in the literature [e.g., Jupp and Kent (1987), Kent et al.
(2001), Kume, Dryden and Le (2007)] building on a Euclidean tangent space lin-
earization of the shape space, the mean geodesic of geodesics defined here builds
on a Euclidean tangent space linearization of the space of geodesics of the shape
space which has been introduced in Huckemann and Hotz (2009). Hence, as a new
and abstract concept, we treat here geodesics as data points.

In application, in a joint research study on leaf growth with the Institute for
Forest Biometry and Informatics at the University of Göttingen, it turns out that it
is precisely this subtle difference of linearizing the space of geodesics and not the
shape space that successfully allows to discriminate genetically different Canadian
black poplars by observation of leaf shape growth during a short time interval of
the growing period. The research study presented here is fundamental for model
building of leaf shape growth as well as for designing effective subsequent studies
to investigate multiple endogenous and exogenous factors in leaf shape growth: for
example, since the beginning of the last century it has been well known that the leaf
shape of (genetically) identical trees varies along a climate gradient [e.g., Brenner
(1902), Bailey and Sinnott (1915), Royer et al. (2009)]. Since Wolfe (1978) this
relationship has been successfully exploited for paleoclimate reconstruction result-
ing in the “Climate Leaf Analysis Multivariate Program” [CLAMP, Wolfe (1993)].
Naturally, the underlying studies have been based on the shape of mature leaves;
little is known about the temporal evolution of shape along a climate gradient. The
research presented here indicates that a study involving only very few measure-
ments of growing leaves may allow for a fairly good reconstruction and analysis
of growth patterns, further elucidating the relationship of climate and leaf shape.

This paper is organized in a theoretical and an applied part.
The theoretical first part consisting of the following two sections establishes

the statistical theory for the two types of means. In Section 2, after a brief review
of Kendall’s space of planar shapes, the concept of a Fréchet mean is extended
to the space of geodesics while the underlying random deviates assume values in
the shape space. Strong consistency in the sense of Ziezold (1977) a well as in
the sense of Bhattacharya and Patrangenaru (2003) are established. In the Appen-
dix, it shown that the original arguments can be extended nearly one-to-one to the
general case considered here. In order to apply the central limit theorem (CLT) of
Huckemann (2011c), smoothness in geodesics of the square of the canonical dis-
tance between shapes and geodesics for geodesics close to the data is established.
Then in Section 3, smoothness is shown for the square of a metric of Ziezold type
[cf. Huckemann (2011c)] for the space of geodesics leading to the other CLT. Fi-
nally, after establishing an explicit method for optimal positioning a fast algorithm
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for the computation of a mean geodesic of geodesics is derived. An algorithm
for the mean geodesic of shapes has been derived earlier [Huckemann and Hotz
(2009)].

The applied second part introduces the leaf shape data considered, the driving
questions from forest biometry, statistical tests and some answers through the data
analysis. In Section 4, the problem of discrimination by short growth observations
is discussed. In particular, the relevance of the geodesic hypothesis from Le and
Kume (2000) is noted for the devising of statistical tests in Section 5. These are
evaluated in Section 6 showing that only the test for common geodesics can estab-
lish the validity of the geodesic hypothesis and the discrimination of genetically
different trees on the basis of observations of brief leaf shape growth. Section 7
concludes with a discussion and gives an outlook.

2. The first geodesic principal component for planar shape spaces.
Throughout this work, E(Y ) denotes the classical expectation of a random variable
Y in a Euclidean space R

D , D ∈ N. A distance δ on a topological space � is a con-
tinuous mapping δ :�×� → [0,∞) that vanishes on the diagonal {(γ, γ ) :γ ∈ �};
in contrast to a metric, δ is neither required to be nonzero off the diagonal, to be
symmetric nor to satisfy the triangle inequality.

Kendall’s planar shape spaces. In the statistical analysis of similarity shapes
based on landmark configurations, geometrical m-dimensional objects (usually
m = 2,3) are studied by placing k > m landmarks at specific locations of each
object, cf. Figure 1 on page 1109. Each object is then described by a matrix in
the space M(m,k) of m × k matrices, each of the k columns denoting an m-
dimensional landmark vector. The usual inner product is denoted by 〈x, y〉 :=
tr(xyT ) giving the norm ‖x‖ = √〈x, x〉. For convenience and without loss of gen-
erality for the considerations below, only centered configurations are considered.
Centering can be achieved by multiplying with a sub-Helmert matrix from the
right, yielding a configuration in M(m,k − 1). For this and other centering meth-
ods cf. Dryden and Mardia (1998), Chapter 2. Excluding also all configurations
with all landmarks coinciding gives the space of configurations

Fk
m := M(m,k − 1) \ {0}.

Since only the similarity shape is of concern, in particular we are not interested in
size, we may assume that all configurations are contained in the pre-shape sphere
Sk

m := {x ∈ M(m,k − 1) :‖x‖ = 1}. Then, all normalized configurations that are
related by a rotation from the special orthogonal group SO(m) form the equiva-
lence class of a shape

[x] = {gx :g ∈ SO(m)}
and the canonical quotient is Kendall’s shape space

�k
m := Sk

m/SO(m) = {[x] :x ∈ Sk
m} with canonical projection p :Sk

m → �k
m.
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In this paper, we restrict ourselves to planar configurations, that is, to the case
of m = 2. Then, complex notation comes in handy. For a detailed discussion of
the following setup, cf. Kendall (1984), Kendall (1989) as well as Kendall et al.
(1999). We take the notation from Huckemann and Hotz (2009). Identify Fk

2 with
C

k−1 \ {0} such that every landmark column corresponds to a complex number.
This means in particular that z ∈ C

k−1 is a complex row(!)-vector. With the Her-
mitian conjugate, a∗ = (akj ) of a complex matrix a = (ajk) the pre-shape sphere
Sk

2 is identified with {z ∈ C
k−1 : zz∗ = 1} on which SO(2) identified with S1 = {λ ∈

C : |λ| = 1} acts by complex scalar multiplication. Then the well-known Hopf–
Fibration mapping to complex projective space gives �k

2 = Sk
2/S1 = CP k−2.

The spaces of geodesics. Note that every geodesic can be parametrized by
unit speed, which we assume in the following. Every great circle γ (t) = x cos t +
v sin t , x, v ∈ Sk

2 , 〈x, v〉 = 0 is a geodesic on Sk
2 , the space of geodesics is de-

noted by �(Sk
2). A great circle is called a horizontal great circle if additionally

〈ix, v〉 = 0, the space of horizontal great circles is denoted by �H(Sk
2). It is well

known [e.g., Kendall et al. (1999), Huckemann and Hotz (2009)] that this space
projects to the space �(�k

2) of geodesics of the shape space via

�(�k
2) = {p ◦ γ :γ ∈ �H(Sk

2)}.
Then, with the Stiefel manifold (giving all great circles)

O2(2, k − 1) = {(x, v) ∈ Fk
2 × Fk

2 : 〈x, x〉 = 1 = 〈v, v〉, 〈x, v〉 = 0}
every tuple in the implicitly defined submanifold (additionally requiring horizon-
tality)

OH
2 (2, k − 1) := {(x, v) ∈ O2(2, k − 1) : 〈x, iv〉 = 0}

corresponds to an element in �H(Sk
2). Several tuples, however, may determine the

same geodesic. To this end, consider the action of the orthogonal group O(2) and
S1 from right and left, respectively, by (x, v) �→ ht (x, v)gφ,ε with

gφ,ε =
(

cosφ −ε sinφ

sinφ ε cosφ

)
∈ O(2), ht = eit ∈ S1,

for φ, t ∈ [0,2π) and ε = ±1 defined by

(x, v)gφ,ε = (x cosφ + v sinφ,vε cosφ − xε sinφ),

ht (x, v) = (eitx, eitv).

For a manifold M with a group K acting from the right and a group G acting from
the left, denote by

K \ M/G = {[P ],P ∈ M} where [P ] = {gPk :g ∈ G,k ∈ K}
the canonical double quotient [e.g., Terras (1988)]. With this notation, we take the
following from Huckemann and Hotz (2009).
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THEOREM 2.1. The space of point sets of all geodesics on planar shape space
can be given the canonical structure

�(�k
2) ∼= O(2) \ OH

2 (2, k − 1)/S1

of a compact manifold of dimension 4k − 10.

In analogy to the naming of the pre-shape sphere Sk
2 , call OH

2 (2, k − 1) the
space of pre-geodesics.

A simpler argument yields �(Sk
2) as the compact manifold

�(Sk
2) ∼= O(2) \ O2(2, k − 1).(1)

Distance from shapes to geodesics and between geodesics. The spherical dis-

tance r(p, γ ) = arccos
√

〈p,x〉2 + 〈p,v〉2 of a point p to the geodesic γ defined

by (x, v) ∈ OH
2 (2, k − 1) naturally defines a distance

ρ([p],p ◦ γ ) = min
eit∈S1

r(eitp, γ )

of the shape [p] to the geodesic p ◦ γ in the shape space. For a shape [p] ∈ �k
2

denote by

�
π/4
[p] =

{
γ ∈ �(�k

2) :ρ([p], γ ) <
π

4

}

the open set of geodesics closer to [p] than π/4. The proof of the following The-
orem 2.2 is deferred to Appendix B.

THEOREM 2.2. For fixed p ∈ Sk
2 the function

γ �→ ρ([p], γ )2

is smooth on �
π/4
[p] .

In order to measure the distance between geodesics equip O(2) \ OH
2 (2, k − 1)

with a suitable Riemannian structure—two of such structures are straightforward,
cf. Edelman, Arias and Smith (1998), or more simply, embed OH

2 (2, k − 1) in a
Euclidean space and consider the quotient distance w.r.t. to the corresponding ex-
trinsic metric. More precisely, we generalize a setup introduced by Ziezold (1994)
on the quotient �k

2 .

DEFINITION 2.3. The Euclidean distance

d(P,Q) :=
√

‖x − y‖2 + ‖v − w‖2
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for P = (x, v),Q = (y,w) ∈ OH
2 (2, k − 1) ⊂ Fk

2 × Fk
2 defines the canonical quo-

tient distance

δ([P ], [Q]) := min
h,h′∈O(2),

g,g′∈S1

d(gPh,g′Qh′)

for [P ][Q] ∈ �(�k
2) called the Ziezold distance on �(�k

2).

The mean geodesic of shapes. In earlier work [Huckemann, Hotz and Munk
(2010b)] establishing a general framework for geodesic principal component
analysis, the mean geodesic of shapes has been called a first geodesic principal
component.

DEFINITION 2.4. Suppose that X,X1, . . . ,Xn are i.i.d. random pre-shapes
mapping from an abstract probability space (�, A, P) to Sk

2 equipped with
its Borel σ -algebra. For ω ∈ � call the geodesics γn(ω), γ ∗ ∈ �(�k

2) the first
sample and population geodesic principal component (GPC) of the sample
[X1(ω)], . . . , [Xn(ω)] and [X], respectively, if

n∑
j=1

ρ([Xj(ω)], γn(ω))2 = min
γ∈�(�k

2)

n∑
j=1

ρ([Xj(ω)], γ )2 for all ω ∈ �,

E(ρ([X], γ ∗)2) = min
γ∈�(�k

2)

E(ρ([X], γ )2).

The random set of all sample GPCs is denoted by E
(ρ)
n (ω), E(ρ)([X]) is the set of

all population GPCs.

THEOREM 2.5 (Asymptotics for the mean geodesic of shapes). For i.i.d. ran-
dom pre-shapes X,X1, . . . ,Xn, the set of first sample GPCs E

(ρ)
n (ω) is a uniformly

strongly consistent estimator of the set of first population GPCs E(ρ)([X]) in the
sense that for every ε > 0 and a.s. for every ω ∈ � there is a number n(ε,ω) ∈ N

such that
∞⋃

j=n

E
(ρ)
j (ω) ⊂ {

γ ∈ �(�k
2) : δ

(
γ,E(ρ)([X])) ≤ ε

}
.

Moreover, if E(ρ)([X]) contains a unique element γ ∗ contained in⋂
p∈Supp(X)

�
π/4
[p]

with the support Supp(X) of X, if γn ∈ E
(ρ)
n (ω) is a measurable selection and

x = φ(γ ) ∈ R
4k−10 are local coordinates near γ ∗ with φ(γ ∗) = 0, then

A
√

nφ(γn) → N (0,�) in distribution
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with the (4k − 10)-dimensional normal distribution N (0,�) with zero mean and
covariance matrix � = COV(gradx ρ(X,γ ∗)2) and A = E(Hxρ(X,γ ∗)2)). Here,
gradx and Hx denote the gradient and Hessian of ρ2, respectively, w.r.t. the coor-
dinate x.

PROOF. The assertion of strong consistency is a consequence of the general
Theorem A.3 and Theorem A.4 in the Appendix. Since ρ([X], γ )2 is smooth in γ

as long as γ is closer to [X] than π/4, by Theorem 2.2, the assertion of the central
limit theorem (CLT) follows from the CLT of Huckemann [(2011c), Theorem A.1]
since �(�k

2) is compact. �

REMARK 2.6. For practical applications of Theorem 2.5, in a given chart A

and � could be estimated by classical numerical and multivariate methods. Alter-
natively, estimates can be obtained simply from the data’s covariance in a chart
around a sample mean. In particular, in case of nonsingular A, that covariance
tends asymptotically to A−1�(A−1)T .

Uniqueness and location of the first GPC. The hypothesis of a unique first
GPC is essential for the following framework. Clearly, that hypothesis translates
to an anisotropy condition on the random shape. For example, on the basis of
the geodesic hypothesis for biological growth as detailed in Section 4, we may
assume uniqueness in the application in Section 6. The development of a test for
specific anisotropy would certainly be of merit for other potential applications. By
definition, every first GPC will be close to the support of [X]. Data analysis and
numerical simulations show that the intrinsic mean is usually very close to the first
GPC [e.g., Huckemann and Hotz (2009), Huckemann, Hotz and Munk (2010b)].
Moreover, for sufficient concentration, the intrinsic mean is unique and contained
in a ball around the support of radius π/4 [cf. Afsari (2011), Kendall (1990), Le
(2001)]. Certainly, further research is necessary to tackle questions of uniqueness
and location.

3. The Ziezold mean of a random first GPC. We are now in the situation
of having samples of first sample GPCs and to determine their Fréchet mean w.r.t.
to some distance. In order to apply a CLT, we are aiming for a mean in a smooth
sense. It turns out that the comparatively simple Ziezold distance features the de-
sired smoothness except at cut points.

Recall that on a Riemannian manifold the cut locus C(p) of p comprises all
points q such that the extension of a length minimizing geodesic joining p with q

is no longer minimizing beyond q . If q ∈ C(p) or p ∈ C(q), then p and q are cut
points. For example, on a sphere, antipodals are cut points.

THEOREM 3.1. The following hold:

(i) the action of S1 and O(2) is isometric with respect to d , that is, d(P,Q) =
d(gPh,gQh) for all P,Q ∈ OH

2 (2, k − 1) and all g ∈ S1, h ∈ O(2);
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(ii) δ is a metric on �(�k
2) and δ2 is smooth except at cut points.

PROOF. Property (i) is easily verified, in fact, the left-action of S1 and right-
action of O(2) are even isometric on the ambient C

k−1 × C
k−1. Moreover on

Fk
2 × Fk

2 , the isotropy groups are {(g0,1, h0), (gπ,1, hπ)}. For this reason, in con-
sequence of the Principal Orbit theorem [e.g., Bredon (1972), Chapter IV.3], δ ex-
tends to the natural geodesic quotient metric on the manifold O(2)\(F k

2 ×Fk
2 )/S1.

Hence, in particular, δ2 is smooth on the embedded submanifold �(�k
2) unless

evaluated at cut points. As another consequence, since the extension of δ is a met-
ric, so is δ, yielding (ii). �

In view of the application in Section 6, we now consider samples of independent
random geodesics obtained from not necessarily independent shapes as typically
occur during observation of growth. In particular, the test for common geodesics
devised in Section 5 relies on the following Theorem 3.3.

DEFINITION 3.2 (The mean geodesic of geodesics). Call γ ∗ ∈ �(�k
2):

a population Ziezold mean geodesic of a random geodesic � if

E(δ(�,γ ∗)2) = min
γ∈�(�k

2)
E(δ(�,γ )2),

a sample Ziezold mean geodesic of random geodesics �1, . . . ,�n if

n∑
j=1

δ(�j (ω), γ ∗)2) = min
γ∈�(�k

2)

n∑
j=1

δ(�j (ω), γ )2).

The sets of population and sample Ziezold mean geodesics are denoted by E(δ)(�)

and E
(δ)
n (ω), respectively.

THEOREM 3.3 (Asymptotics for the mean geodesic of geodesics). For i.i.d.
random geodesics �,�1, . . . ,�n the set of sample Ziezold mean geodesics
E

(δ)
n (ω) is a uniformly strongly consistent estimator of the set of population Ziezold

mean geodesics E(δ)(�) in the sense that for every ε > 0 and a.s. for every ω ∈ �

there is a number n(ε,ω) ∈ N such that

∞⋃
j=n

E
(δ)
j (ω) ⊂ {

γ ∈ �(�k
2) : δ

(
γ,E(δ)(�)

) ≤ ε
}
.

If E(δ)(�) contains a unique element γ ∗, γn ∈ E
(δ)
n (ω) is a measurable selection

and x = φ(γ ) ∈ R
4k−10 are local coordinates near γ ∗ with φ(γ ∗) = 0, and if

supp(�) ⊂ {γ ∈ �(�k
2) : δ(γ,C(γ ∗)) > ε}
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for some ε > 0 with the support supp(�) of � in case of ∅ �= C(γ ∗) ⊂ �(�k
2),

then

A
√

nφ(γn) → N (0,�) in distribution

with the (4k − 10)-dimensional normal distribution N (0,�) with zero mean and
covariance matrix � = COV(gradx δ(�,γ ∗)2) and A = E(Hxδ(�,γ ∗)2)). Here,
gradx and Hx denote the gradient and Hessian of δ2, respectively, w.r.t. the coor-
dinate x.

PROOF. Since δ is a metric by Theorem 3.1, the assertion on strong con-
sistency is a consequence of Ziezold (1977) as Bhattacharya and Patrangenaru
[(2003), Remark 2.5] teach. Since δ is neither an intrinsic nor an extrinsic metric,
the CLT of Bhattacharya and Patrangenaru (2005) cannot be applied. Rather, The
assertion of the CLT follows from the more general Huckemann [(2011c), Theo-
rem A.1], since by Theorem 3.1, δ2 is smooth near γ ∗ by hypothesis and �(�k

2) is
compact. �

For practical applications of Theorem 3.3, proceed as detailed in Remark 2.6.
For P,Q ∈ OH

2 (2, k − 1), g ∈ S1 and h ∈ O(2) call gQh is in optimal position
to P , if d(P,gQh) = δ([P ], [Q]). Since both groups O(2) and S1 are compact,
given P ∈ O2(2, k − 1), every Q ∈ O2(2, k − 1), can be placed into optimal po-
sition to P . Moreover, if [P ∗] is the unique Ziezold mean geodesic of sampled
geodesics [P1], . . . , [Pn] then P ∗ is the extrinsic mean of the gjPjhj placed into
optimal position to P ∗, gj ∈ S1, hj ∈ O(2), j = 1, . . . , n, that is,

P ∗ = arg min
P∈O2(2,k−1)

n∑
j=1

min
hj∈O(2),

gj∈S1

d(P,gjPjhj ),

cf. Huckemann (2011b). The extrinsic mean then is the orthogonal projection to
OH

2 (2, k − 1) of the classical Euclidean mean in ambient M(2, k − 1) × M(2, k −
1), cf. Hendriks and Landsman (1998), Bhattacharya and Patrangenaru (2003).

In the first step, we solve the problem of optimally positioning analytically,
in the second step we compute the orthogonal projection. Based on the two, the
algorithm of Ziezold (1994) is adapted, to compute the Ziezold mean geodesic.

THEOREM 3.4. Let P = (x, v),Q = (y,w) ∈ OH
2 (2, k − 1) and define

A := 〈x, y〉 + ε〈v,w〉, B := 〈x,w〉 − ε〈v, y〉,
C := 〈x, iy〉 + ε〈v, iw〉, D := 〈x, iw〉 − ε〈v, iy〉.

Then, for gφ,ε, ht putting Q into optimal position gtQhφ,ε to P , it is necessary
that

tanφ = B + D tan t

A + C tan t
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and that t satisfies:

(i)

tan t = α ±
√

α2 + 1 with α = C2 + D2 − A2 − B2

2(AC + BD)

in case of AC + BD �= 0;
(ii) t = 0 in case of AC + BD = 0 �= A2 + B2 − C2 + D2.

−π/2 ≤ t < π/2 may be arbitrary in case of AC+BD = 0 = A2 +B2 −C2 +D2.

PROOF.

d(P,gtQhφ,ε)
2 = 4 − 2

(
cosφ(〈x, eity〉 + ε〈v, eitw〉)
+ sinφ(〈x, eitw〉 − ε〈v, eity〉))

gives

4 − d(P,gtQhφ,ε)
2

2
= A cosφ cos t + B sinφ cos t + C cosφ sin t

+ D sinφ sin t.

For fixed φ, a necessary condition for t = t (φ) to maximize the above r.h.s. is that

tan t = C cosφ + D sinφ

A cosφ + B sinφ
= C + D tanφ

A + B tanφ
.

Similarly, a necessary condition for φ = φ(t) is that

tanφ = B cos t + D sin t

A cos t + C sin t
= B + D tan t

A + C tan t
.

Letting ζ = tan t, η = tanφ, we obtain

ζ = C + Dη

A + Bη
= C(A + Cζ) + D(B + Dζ)

A(A + Cζ) + B(B + Dζ)

and, equivalently

(AC + BD)ζ 2 + (A2 + B2)ζ = (C2 + D2)ζ + (AC + BD),

yielding the assertion. �

THEOREM 3.5. Suppose that P = (x, v) ∈ Fk
2 ×Fk

2 , then (ζ, η) ∈ OH
2 (2, k −

1) is the orthogonal projection of P to OH
2 (2, k − 1) if and only if

ζ = 1

〈x, ζ 〉(x − 〈x, η〉η − 〈x, iη〉iη),

η = 1

〈v, η〉(v − 〈v, ζ 〉ζ − 〈v, iζ 〉iζ ),

ζ is arbitrary in case of 〈x, ζ 〉 = 0, and η is arbitrary in case of 〈v, η〉 = 0.
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PROOF. Apply Lagrange minimization to ‖x − ζ‖2 + ‖v − η‖2 for ζ, η ∈ Fk
2

under the constraining condition �(ζ,η) = 0 for

�(x, v) =

⎛
⎜⎜⎝

1 − 〈x, x〉
1 − 〈v, v〉

2〈x, v〉
2〈x, iv〉

⎞
⎟⎟⎠ .

�

Algorithm to obtain a pre-geodesic of a Ziezold mean geodesic. Let P1, . . . ,PJ

be a sample of pre-geodesics. Starting with an initial value (x(0), v(0)) = P (0) :=
P1, say, obtain P (n+1) = (x(n+1), v(n+1)) from P (n) = (x(n), v(n)) for n = 0,1, . . .

by putting all Pj (j = 1, . . . , J ) in optimal position P ∗
j = (y∗

j ,w∗
j ) to P (n) by

computing the corresponding φj , tj , εj from Theorem 3.4. Then set

(x, v) := 1

J

(
J∑

j=1

y∗
j ,

J∑
j=1

w∗
j

)

and let P (n+1) be the orthogonal projection of (x, v) to OH
2 (2, k − 1) from Theo-

rem 3.5.

4. Leaf growth data and problem statement.

From leaf data to shape descriptors. We consider leaf shape data collected
from two clones and a reference tree of black Canadian poplars at an experimen-
tal site at the University of Göttingen. These data are similar but different from the
data reported on in Huckemann, Hotz and Munk (2010a) and Huckemann (2011a).
They consist of the shapes of 21 leaves from clone 1 and of 11 leaves from clone 2
as well as of the shapes of 12 leaves from the reference tree, all of which have
been recorded nondestructively over several days during a major portion of their
growing period of approximately one month (the maximal number of observations
is 17, the minimal 2 with a median of 13). The top row in Figure 1 shows typical
contours of leaf growth. At each time point, from each leaf contour a quadrangular
landmark based configuration has been extracted by placing one landmark at the
petiole (where the stalk enters the leaf blade), one at the leaf tip (the endpoint of
the main leaf vein) and two, each at the maximal extensions orthogonal to the line
connecting petiole and tip, cf. the bottom image of Figure 1. These four landmarks
encode in particular the information of length, width and vertical and horizontal
assymetry. As detailed in Section 2, these landmarks additionally convey a corre-
spondence of leaves with shapes, that is, points in the shape space �4

2 . This space
is a non-Euclidean manifold and a special case of Kendall’s landmark based shape
spaces.
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FIG. 1. Top row: typical leaf growth over a growing period of a reference tree (left) and one of the
two clones (right). Bottom left: typical digitized leaf contour and landmarks of the corresponding
quadrangular configuration at petiole, tip, and largest extensions orthogonal to the connecting line.

The geodesic and parallel hypotheses for biological growth. Investigating
landmark based configurations of rat skulls, Le and Kume (2000) observed that:

the shape change due to biological growth mainly follows a geodesic in Kendall’s shape
space.

In a research modeling, the growth of tree-stem disks as well as leaf growth this
geodesic hypothesis has been corroborated by Hotz et al. (2010). Jupp and Kent
(1987), Kent et al. (2001), Kenobi, Dryden and Le (2010), Kume, Dryden and Le
(2007) have proposed more subtle models for shape growth essentially building on
polynomials in Procrustes residuals (cf. Section 5 below).

Additionally, Morris et al. (2000) observed parallel growth patterns and coined
the parallel hypothesis, stating that Procrustes residuals of related biological ob-
jects follow curves parallel in the Euclidean geometry of the tangent space at a
Procrustes mean. In view of the geodesic hypothesis, we restrict those curves to
straight lines, generally however, not mapping to geodesics (cf. Figure 2).

A brief discussion of the geodesic hypothesis. In D’Arcy Thompson’s seminal
work [Thompson (1917)], biological form and growth of form has been explained
by the invocation of the mathematical concept of force. More recently, the rela-
tionship between growth and energy minimization has been explored by Bookstein
(1978). These works have led Le and Kume (2000) to the above hypothesis, be-
ing aware that, firstly, geodesics depend on a specific geometry of a shape space,
and secondly, even though many paths of growth seem to follow geodesics, there
are examples where the geodesic fit is rather poor [e.g., Kenobi, Dryden and Le
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FIG. 2. Tangent space of the two-dimensional �3
2 (obtained from �4

2 by leaving out one landmark)
under the inverse Riemann exponential at the intrinsic mean corresponding to the extent of the overall
data (clones 1+2 and reference tree). The left top vector is the affine parallel transport of the bottom
vector in the Euclidean tangent space, the right top vector is its intrinsic parallel transplant along a
geodesic (dashed).

(2010)]. For example, for the space of planar triangles, the hyperbolic geometry of
the complex upper half plane introduced by Bookstein (1986) seems just as natural
as the spherical geometry of the complex projective space in one complex dimen-
sion [Kendall’s shape space for planar triangles; cf. Kendall (1984)]. However,
considering geodesics in Kendall’s planar shape space as a rough working hypoth-
esis, in particular for the leaf shapes in question, seems like a promising starting
point for statistical investigation in the same way that approximate linearity has
served statisticians well since the time of Gauss (or even earlier).

Problem statement. As visible in Figure 1, the shape of leaves of the clones
can usually be well discriminated from the shape of leaves of the reference tree
by visual inspection. Following the geodesic hypothesis, the shape change under
growth could be predicted from initial observations, ideally two initial observa-
tions would suffice. Since for the data at hand, the evolution of leaf contours have
been followed elaborately along several time points, then the effort for future re-
search could be cut down considerably. This leads to the following fundamental
problem.

Can leaf growth of genetically identical trees be predicted and discriminated from
growth of genetically different trees on the basis of few initial measurements?

In this research, we restrict ourselves to measuring shape by four landmarks as
detailed above.

5. Tests for shape dynamics. The precise definitions used in this section can
be found in Sections 2 and 3. For every leaf considered a first geodesic principal
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component (GPC—a generalization to manifolds of a first principal component
direction) is computed either from its first two shapes (then the GPC is just the
geodesic connecting the two, the corresponding group is called “young”) or from
the rest of the shapes (that group is called “old”) over the growing period [for an
algorithm, see Huckemann and Hotz (2009)]. For two groups (young vs. young,
young vs. old and old vs. old of different trees) to be tested for a common mean first
GPC, the procedure detailed below produces data in a Euclidean space, namely in
the tangent space of the space of geodesics at a mean geodesic. For comparison,
a classical test for equality of mean shape as well as a test for equality of mean
direction based on classical methodology described below, similarly produce data
in a Euclidean space, namely the tangent space of the shape space at a mean shape.
For all three procedures, within the respective Euclidean space, the corresponding
tests then test for a common mean via the classical Hotelling T 2-test. Note that no
two groups from the same tree are tested because of statistical dependence.

Robustness under nonnormality. Recall that the Hotelling T 2-distribution is a
generalization of a student t-distribution. As in the univariate case, the correspond-
ing test statistic follows this distribution, if the coordinate data follow a multivari-
ate normal distribution. Since the shape spaces considered are compact, obviously,
we may never assume this central hypothesis. It is well known, however, that the
corresponding statistic is robust to some extent under nonnormality, one condition
being finite higher order moments. Clearly, this condition is met on a compact
space. Even more, it is known that asymptotically the distribution of the corre-
sponding statistic is unchanged under unequal change of covariances if the ratio of
sample sizes tends to 1, for example, Lehmann (1997), page 462. The simulation
in Figure 3 illustrates robustness for fairly small sample sizes: under nonnormality
and unequal sample sizes (bottom right display), and under nonnormality and un-
equal covariances with equal sample sizes (top row). The test is not robust under
nonnormality, however, if sample sizes and covariances differ considerably (bot-
tom left display).

The test for common geodesics. Every first GPC computed above determines
a unique element in the space of geodesics �(�4

2) of �4
2 . Using the embedding

of the space of pre-geodesics OH
2 (2,3) into C

3 × C
3 as detailed in Section 3,

these elements are orthogonally projected to the tangent space of the two group’s
Ziezold mean [an element of the space of geodesics �(�4

2)] thus giving data in a
Euclidean space. The corresponding null hypothesis is then

the temporal evolution of shape for every group follows a common geodesic.

In other words, if γi are the first GPCs of leaf growth of groups i = 1,2 to be
specified later, then the null hypothesis states H0 :γ1 = γ2. This is a hypothesis on
the mean geodesic of geodesics which can be tested by use of Theorem 3.3.
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FIG. 3. Hotelling’s T 2-test under nonnormality. The cumulative distributions of the empirical test
statistics have been generated with 1,000 repetitions of two groups of sizes as displayed in the respec-
tive headers, with three-dimensional deviates uniform in a 3D cube centered at the origin, whose co-
variance matrices (which are determined by the dimensions and rotation of the interval) are constant
multiples of one another up to a random rotation (fixed for every display). The respective headers
give the corresponding constant factors.

Tests for common means. Following the classical scheme [e.g., Dryden and
Mardia (1998), Chapter 7], all shapes of the two groups considered are projected
to the tangent space of their overall Procrustes mean giving Procrustes residuals
with the null hypothesis,

the Procrustes tangent space coordinates of the temporal evolution of shape for every
leaf have the same Euclidean mean.

A theoretical note on related tests. Taking instead the Procrustes residuals at
the common Procrustes mean of the Procrustes means of every temporal evolution
of shape would give a different test. If all leaves considered have equally many
individual shapes, then this second test is very closely approximated by the first
test. Otherwise, choosing suitable weights will give a close approximation. The
goodness of the approximation can be numerically confirmed, it also follows from
the fact that only one effect is tested; cf. Huckemann, Hotz and Munk (2010b),



INFERENCE ON THE MEAN GEODESIC 1113

pages 2–4. Similar tests for static shape utilize intrinsic or Ziezold means, re-
spectively. In fact, for hypotheses on nondegenerate three-dimensional shapes one
could only test hypotheses building on intrinsic or Ziezold means [because Pro-
crustes means may lie outside the manifold part such that the CLT is not applicable,
cf. Huckemann (2011b)].

Tests for common directions. Returning to the classical scheme, following
Morris et al. (2000), we compute the Euclidean first principal component of each
set of Procrustes residuals corresponding to the shapes of a single leaf’s evolution
pointing into the direction of growth. For the analysis of the unit length directions,
we proceed as described above. Within the Procrustes paradigm, the residual tan-
gent space coordinates of these directions at their common residual mean closer to
the data are projected orthogonally to the Euclidean space of suitable dimension
[cf. Huckemann (2011b)]. The null hypothesis is then

the Procrustes tangent space coordinates of the temporal evolution of shape for every
leaf share the same first Euclidean PC.

This is the version of the parallel hypothesis for this paper. If the static mean
shapes of the two groups considered are different, then the common Procrustes
mean depends on the ratio of the two sample sizes. Moreover, even for common
static shape, the null hypothesis incorporates effects of curvature; cf. Figure 2.

6. Discriminating canadian black poplars by partial observation of leaf
growth. For the following tests, as the first groups called “young” in the fol-
lowing, the first two initial shapes from every leaf considered have been taken and
the unique geodesic joining the two has been computed. For the second groups,
called “old” in the following, for every leaf considered the first GPC of the rest
of the shapes has been computed, if the number of the rest of shapes exceeded 3.
For this reason, the number of GPCs in some of these groups is possibly smaller
then the number in corresponding groups of “young.” To the respective groups, the
three tests introduced in Section 5 have been applied. The results are reported in
Table 1 in different order, however, since the tests for common geodesics and for
common directions test for closely related concepts.

As visible in Table 1, the test for common geodesics (first data column) allows
to discriminate very well genetically different trees from genetically identical trees
by the observation of growth over restricted time intervals only. Due to curvature
(cf. Figure 2) in the first box for genetically identical trees, whenever over these
restricted time intervals the means differ (ultimate data column, that is, when the
growth of young leaves is compared to the growth of old leaves), then the direc-
tions also differ highly significantly (middle data column). For genetically different
trees (third box), all of the group means differ highly significantly (ultimate data
column) and most of the directions as well. Note that genetically different young
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TABLE 1
Displaying p-values for several tests for the discrimination of clones from the reference tree via leaf

growth (“young” denotes the dataset comprising the first initial two observations and “old” the
dataset comprising the rest of the observations). For convenience, the sample size (number of

different leaves followed over their growing period) of the corresponding data set
is reported in parentheses

Dataset 1 Dataset 2 Geodesics Directions Means

Clone 1 young (21) Clone 2 old (11) 0.75 1.6e–04 4.7e–08
Clone 1 young (21) Clone 2 young (11) 0.97 0.82 0.71
Clone 2 young (11) Clone 1 old (20) 0.066 0.0021 5.5e–07
Clone 1 old (20) Clone 2 old (11) 0.17 0.21 0.71

Correct classification of clones

At 95%-level 100.00% 50.00% 50.00%
At 99%-level 100.00% 50.00% 50.00%

Clone 1 young (21) Reference young (12) 0.0012 0.65 6.5e–06
Clone 2 young (11) Reference young (12) 0.0043 0.79 0.0015
Clone 1 young (21) Reference old (9) 0.0067 0.0077 1.9e–07
Clone 2 young (11) Reference old (9) 0.026 0.023 1.0e–05
Clone 1 old (21) Reference young (12) 0.00022 0.0013 2.4e–06
Clone 2 old (11) Reference young (12) 0.0092 0.014 0.0046
Clone 1 old (21) Reference old (9) 0.087 0.023 0.0014
Clone 2 old (11) Reference old (9) 0.021 0.018 0.0068

Correct classification of the reference tree

At 95%-level 87.50% 75.00% 100.00%
At 99%-level 62.50% 25.00% 100.00%

Correct classification: clones vs. reference tree

At 95%-level 93.75% 62.50% 75.00%
At 99%-level 81.25% 37.50% 75.00%

leaves cannot be discriminated by their directions. This can be explained by com-
parison with the bottom right display of Figure 4: leaf shapes of young leaves tend
to be comparatively close to each other.

Figure 4 depicts the first two dominating coordinates (explaining between 80%
and 90% of the total variation) of a tangent space projection of the overall dataset
(young and old) for clones and the reference tree. In contrast to the test for common
geodesics (cf. top display), almost all of the different groups (young vs. old of
clone 1, clone 2 and the reference tree) can be discriminated by the directional
data (bottom left display, e.g., the red and black crosses tend to lie on the left-
hand side, the red and black circles on the right-hand side). In all of the first two
displays (top and bottom left), for the clones, the variance of the “young” data
appears slightly larger than the variance of the “old” data. For the reference tree,
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FIG. 4. Projection of leaf shape growth from two clones (red for clone 1 and black for clone 2)
and a reference tree (green) to the dominating coordinates of the corresponding tangent space at the
overall mean as detailed in Section 5. Each cross represents a single leaf’s initial shape evolution
over two observations (young), each circle represents the rest of the leaf’s shape evolution during
its observed growing period (old). Top: GPCs projected to the tangent space at the Ziezold mean
geodesic. Bottom row: all shapes have been projected to the tangent space of the overall Procrustes
mean. Bottom left: unit directions of first Euclidean PCs. Bottom right: Euclidean means.

however, this is not the case. This effect is not visible when observing means only
(bottom right display). As discussed in Section 5, unequal covariances may be
troublesome w.r.t. to the validity of the Hotelling T 2-test employed if sample sizes
are not approximately equal. Considering in Table 1 only the samples of similar
sizes 9,11 and 12, however, comparable classification results are obtained.

Conclusion. From this study, we conclude the following.

(a) Clone and reference tree can be discriminated by partial observations of leaf
shape growth not necessarily covering the same interval of the growing period via
the test for common geodesics. This is not possible via a test for common means
(due to temporal change of shape) or common directions (due to curvature).
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(b) The “geodesic hypothesis” has been validated by use of the test for common
geodesics, notably it could not have been validated using the test for common
directions.

(c) For a statistical prediction of future leaf shape growth, two initial observa-
tions suffice.

Application. Let us elaborate on one consequence of conclusion (a). Suppose
that we have several leaf shape growth data of clones and the reference tree of short
but arbitrary time intervals (young, old, intermediate, etc.). Then most likely the
test for common means will not be able to identify the clone from the reference
tree, because the mean shapes of the different time intervals will most likely be
different even for the same leaf considered. Similarly, due to curvature the test for
common directions will fail, unless all data are jointly highly concentrated. It is
only the test for common geodesics that may furnish the desired discrimination.

7. Discussion. The geodesic hypothesis of Le and Kume (2000)—its scope
and limitations have been discussed in Section 4—has been corroborated in many
scenarios of biological growth. In this paper, a test for common geodesics for this
hypothesis has been devised and successfully applied to the problem of discrim-
inating poplar leaf growth based on two initial observations only. For computa-
tional feasibility, not the concept of an intrinsic mean geodesic but rather that of
a Ziezold mean geodesic has been employed. One can thus call the test devised a
semi-intrinsic test. The semi-intrinsic test for common geodesics has been com-
pared to a test for common directions building on directions in the space of Pro-
crustes residuals [following Morris et al. (2000)]. This is essentially a nonintrinsic
test because it linearizes the shape space and not the space of shape descriptors
tested for. It turned out that for the discrimination task at hand, curvature present
rendered this test ineffective. The author is not aware of any other test for the
geodesic hypothesis in the literature.

In this work, we have considered two types of mean first GPCs, one defined
by a sample of GPCs with underlying samples of random shapes, which—like
growth patterns—are obviously dependent. For independent sampling, the other
mean first GPC has been defined directly by the shape data. Since ρ (defining the
latter) is different from δ (defining the former, cf. Section 2)—as a manifestation of
“inconsistency” [cf. Kent and Mardia (1997), Huckemann (2011c)]—the limit of
mean random geodesic of geodesics and the population geodesic of shapes may be
different as well. Studying their relationship, however, may provide further insight.

In conclusion, let us ponder on extensions and generalizations of this research.
One may view all shape descriptors as generalized Fréchet means on suitable
spaces. For geodesics on Kendall’s planar shape spaces, we have provided an ex-
plicit framework using a Ziezold mean geodesics which can be computed fairly
easy. Straightforward but considerably more complicated is the use of intrinsic
mean geodesics. At this point, we note that the space of generalized geodesics
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on Kendall’ shape space for dimension m ≥ 3 ceases to be a manifold. Like a
shape space, it can be viewed as the quotient of a Riemannian manifold mod-
ulo a Lie group action. In contrast to Kendall’s shape spaces, the top space itself
(a submanifold of a Grassmannian) admits two canonical geometries [cf. Edelman,
Arias and Smith (1998)]. For the embedding underlying the Ziezold mean geo-
desic, we have used the simpler of the two. Possibly, this framework extends to
other one-dimensional shape descriptors, such as arbitrary circles on spheres [cf.
Jung, Foskey and Marron (2010)], or more generally, the family of constant cur-
vature curves, as well as to higher-dimensional shape descriptors [for geodesic
descriptors cf. Huckemann, Hotz and Munk (2010b), for nongeodesic descriptors
cf. Jung, Foskey and Marron (2011)]. Thus, (semi)-intrinsic inference on any of
such descriptors may be possible.

One final word of caution: even for fairly simple spaces such as the torus or
the surface of an infinite cylinder, the canonical topology of the space of geodes-
ics is non-Hausdorff [cf. Beem and Parker (1991)] and thus may not admit any
meaningful statistical descriptors.

APPENDIX A: STRONG CONSISTENCY

For this section, suppose that X,X1,X2, . . . are i.i.d. random elements mapping
from an abstract probability space (�, A, P) to a topological space Q equipped
with its Borel σ -field; (P, d) denotes a topological space with distance d .

DEFINITION A.1. For a continuous function ρ :Q × P → [0,∞), define the
set of population Fréchet ρ-means of X in P by

E(ρ)(X) = arg min
μ∈P

E(ρ(X,μ)2).

For ω ∈ �, denote by

E(ρ)
n (ω) = arg min

μ∈P

n∑
j=1

ρ(Xj (ω),μ)2

the set of sample Fréchet ρ-means.

By continuity of ρ, the mean sets are closed random sets. For our purpose
here, we rely on the definition of random closed sets as introduced and studied
by Choquet (1954), Kendall (1974) and Matheron (1975). Since their original def-
inition for P = Q,ρ = d a metric by Fréchet (1948) such means have found much
interest.

We will work with the following two definitions of strong consistency, each has
been coined as such for metrical Fréchet means by the respective authors.

DEFINITION A.2. Let E
(ρ)
n (ω) be a random closed set and E(ρ) a determinis-

tic closed set in a space with distance, (P, d). We then say that:
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(ZC) E
(ρ)
n (ω) is a strongly consistent estimator in the sense of Ziezold (1977)

of E(ρ) if for almost all ω ∈ �

∞⋂
n=1

∞⋃
k=n

E
(ρ)
k (ω) ⊂ E(ρ).

(BPC) E
(ρ)
n (ω) is a strongly consistent estimator in the sense of Bhattacharya

and Patrangenaru (2003) of E(ρ) if E(ρ) �= ∅ and if for every ε > 0 and almost all
ω ∈ � there is a number n = n(ε,ω) > 0 such that

∞⋃
k=n

E
(ρ)
k (ω) ⊂ {

p ∈ P :d
(
E(ρ),p

) ≤ ε
}
.

For quasi-metrical means on separable (i.e., containing a dense countable sub-
set) quasi-metrical spaces, Ziezold (1977) proved (ZC). For metrical means on
spaces that enjoy the stronger Heine–Borel property (i.e., that every bounded
closed set is compact), Bhattacharya and Patrangenaru (2003) proved (BPC). One
may argue from a statistical point of view that for “consistency” one would want
to have equality of points, and if not possible, at least an equality of sets [the set
of resdiual means always contains at least two antipodal points, e.g., Huckemann
(2011b)], rather than an inclusion only. Even though it would be interesting to con-
struct an example with strict inclusion, it seems that this case has no relevance in
applications.

In order to generalize Ziezold’s and the Bhattacharya–Patrangenaru Strong Con-
sistency theorem, we introduce two properties. A continuity property in the second
argument uniform over the first argument—a consequence of the triangle inequal-
ity if ρ is a quasi-metric—and a version of coercivity in the second argument—
again valid if ρ is a quasi-metric:

for every x ∈ Q,p ∈ P and ε > 0 there is a δ = δ(ε,p) > 0
such that |ρ(x,p′) − ρ(x,p)| < ε for all p′ ∈ P with d(p,p′) < δ,

}
(2)

there are p0 ∈ P and C > 0 such that P{ρ(X,p0) < C} > 0 and
that such that for every sequence pn ∈ P with d(p0,pn) → ∞
there is a sequence Mn → ∞ with ρ(x,pn) > Mn for all x ∈ Q

with ρ(x,p0) < C. Moreover, if pn ∈ P with d(p∗,pn) → ∞
for some p∗ ∈ P , then d(p0,pn) → ∞.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3)

THEOREM A.3 (Ziezold’s strong consistency). Let ρ :Q × P → [0,∞) be a
continuous function on the product of a topological space with a separable space
with distance (P, d). Then strong consistency holds in the Ziezold sense (ZC) for
the set of Fréchet ρ-means on P if:

(i) X has compact support, or if
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(ii) E(ρ(X,p)2) < ∞ for all p ∈ P and ρ is uniformly continuous in the sec-
ond argument in the sense of (2).

PROOF. Obviously under (i) for every p ∈ P and ε > 0 we may assume that
there is δ = δ(ε,p) such that |ρ(X,p′) − ρ(X,p)| < ε a.s. if d(p,p′) < δ. With
this is mind, it suffices to prove the assertion under (ii).

For ω ∈ �, p ∈ P set

Fn(p) = 1

n

n∑
j=1

ρ(Xj (ω),p)2, F (q) = E(ρ(X,p)2),

�n = inf
p∈P

Fn(q), � = infp∈P F (p),

En = {p ∈ P :Fn(p) = �}, E = {p ∈ P :F(p) = �}.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

We now follow the steps laid out in Ziezold (1977). Let p1,p2, . . . be dense
in P . From the usual Strong Law of Large Numbers in R we have sets Ak ⊂ �,

P(Ak) = 1 such that Fn(pk)
n→∞→ F(pk) for every k = 1,2, . . . and ω ∈ Ak . Set-

ting A := ⋂∞
k=1 Ak we have hence for all p = pk, k = 1,2, . . . ,

Fn(p)
n→∞→ F(p) for all ω ∈ A, P(A) = 1.(5)

Next, let p,p′ ∈ P . Setting f (q,p′,p) := ρ(q,p′) − ρ(q,p) we have then

|Fn(p
′) − Fn(p)| ≤ 1

n

n∑
j=1

(
ρ(Xj ,p

′) + ρ(Xj ,p)
)|ρ(Xj ,p

′) − ρ(Xj ,p)|
(6)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

n

n∑
j=1

(
2ρ(Xj ,p

′) + f (Xj ,p,p′)
)|f (Xj ,p,p′)|,

1

n

n∑
j=1

(
2ρ(Xj ,p) + f (Xj ,p

′,p)
)|f (Xj ,p,p′)|.

W.l.o.g. we may suppose that pk → p ∈ P . In consequence from the top line of
(6) for p′ = pk ,

1

n

n∑
j=1

ρ(Xj (ω),pk)
2 − 1

n

n∑
j=1

(
2ρ(Xj ,pk) + |f (Xj ,p,pk)|)|f (Xj ,p,pk)|

≤ 1

n

n∑
j=1

ρ(Xj ,p)2)

≤ 1

n

n∑
j=1

ρ(Xj ,pk)
2 + 1

n

n∑
j=1

(
2ρ(Xj ,pk) + |f (Xj ,p,pk)|)|f (Yj ,p,pk)|.
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Taking the expected value, that is, employing (5) at pk , by hypothesis (i) or (ii) as
explained in the beginning of the proof, for arbitrary ε > 0 we may assume that
there is a δ > 0 such that for all d(pk,p) < δ

E(ρ(X,pk)
2) − (

2E(ρ(X,pk)) + ε
)
ε

≤ lim inf
n→∞

1

n

n∑
j=1

ρ(Xj ,p)2 ≤ lim sup
n→∞

1

n

n∑
j=1

ρ(Xj ,p)2

≤ E(ρ(X,pk)
2) + (

2E(ρ(X,pk)) + ε
)
ε.

Letting ε → 0 we can choose a subsequence pki
→ p, hence, this yields the valid-

ity of (5) for all p ∈ P .
Let us now extend (5) to

Fn(pn)
n→∞→ F(p) for all sequences pn → p and ω ∈ A, P(A) = 1.(7)

Utilizing the bottom line from (6) yields

|Fn(pn) − Fn(p)| ≤ 1

n

n∑
j=1

(
2ρ(Xj ,p) + |f (Xj ,pn,p)|)|f (Xj ,p,pn)| → 0.

Hence, as desired, |Fn(pn) − F(p)| ≤ |Fn(pn) − Fn(p)| + |F(p) − Fn(p)| → 0.
Finally, let us show

if
∞⋂

n=1

∞⋃
k=n

En �= ∅ then �n → �.(8)

Note that, the assertion of the theorem is trivial in case of
⋂∞

n=1
⋃∞

k=n En = ∅.
Otherwise, for ease of notation let Bn := ⋃∞

k=n Ek , Bn ↘ B := ⋂∞
n=1 Bn, b ∈ B .

Then b ∈ Bn for all n ∈ N. Hence, there is a sequence bn ∈ Bn, bn → b. Moreover,
there is a sequence kn such that bn = pkn ∈ Ekn for a suitable kn ≥ n. Then �nk

=
Fnk

(pnk
) → F(b) ≥ � by (7). On the other hand, by (5) for arbitrary fixed p ∈ P ,

there is a sequence εn → 0 such that F(p) ≥ Fn(p) − εn ≥ �n − εn. First, letting
n → ∞ and then considering the infimum over p ∈ P yields

� ≥ lim sup
n→∞

�n.

In consequence, �n → � = F(b). In particular, we have shown that b ∈ E �= ∅ thus
completing the proof. �

THEOREM A.4 (Bhattacharya–Patrangenaru’s strong consistency). Suppose
that (ZC) (Ziezold’s strong consistency) holds for a continuous function ρ :Q ×
P → [0,∞) on the product of a topological space with a space with distance

(P, d). If additionally ∅ �= E(ρ),
⋃∞

n=1 E
(ρ)
n (ω) enjoys the Heine–Borel property

for almost all ω ∈ � and the coercivity condition (3) in the second argument is
satisfied then the property of strong consistency (BPC) in the sense of Bhattacharya
and Patrangenaru is valid.
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PROOF. We use the notation of the previous proof. Consider a sequence pn ∈
En determined by

d(pn,E) = max
p∈En

d(p,E) =: rn.

If rn �→ 0, we can find a subsequence nk such that rnk
≥ r0 > 0. In consequence,

every accumulation point of pnk
has positive distance to E, a contradiction to

strong consistency. Hence either rn → 0 or there are no accumulation points.
We shall now rule out the case that there are no accumulation points. In view of

the Heine–Borel property, this case can only occur for rn → ∞. Under condition
(3) there is p0 ∈ P , a subsequence k(n) and for given n a subsequence n1, . . . , nk(n)

of 1,2, . . . , n such that ρ(Xnj
,p0) < C for all j = 1, . . . , k(n), a.s., and

k(n)

n
→ P{ρ(X,p0) < C} > 0.

Also, by hypothesis and condition (3), d(p0,pn) → ∞. Moreover, by condi-
tion (3), there is a sequence Mn → ∞ with

�n = Fn(pn) ≥ 1

n

k(n)∑
j=1

ρ(Xnj
(ω),pn)

2 >
k(n)

n
M2

n → ∞ a.s.

On the other hand, for any fixed p ∈ E, we have the Strong Law on R, �n ≤
Fn(p) → F(p) = � a.s., yielding a contradiction. �

APPENDIX B: PROOF OF THEOREM 2.2

Consider for fixed p ∈ Sk
2 the nonnegative O(2)-invariant smooth function on

OH
2 (2, k − 1) defined by

fp(x, v) := (
arccos

√
〈p,x〉2 + 〈p,v〉2

)2
.

Then the condition

fp(ξx, ξv) = min
eit∈S1

fp(eitx, eitv) = arccos
(

max
eit∈S1

(〈eitp, x〉2 + 〈eitp, v〉2)
)

defines two smooth explicit branches ±ξ :OH
2 (2, k − 1) \ M0 → S1 [cf. Hucke-

mann and Hotz (2009), Theorem 4.3], outside the singularity set

M0 = {(x, v) ∈ OH
2 (2, k − 1) :D(x, v) = 0 = A(x, v)2 − B(x, v)2}

using the notation from Huckemann and Hotz (2009):

A(x, v)2 = 〈x,p〉2 + 〈v,p〉2,

B(x, v)2 = 〈x, ip〉2 + 〈v, ip〉2,

D(x, v) = 2(〈x,p〉〈x, ip〉 + 〈v,p〉〈v, ip〉).
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One verifies that M0 is bi-invariant, that is, invariant under the left action of S1 and
the right action of O(2). Hence, on O(2) \ (OH

2 (2, k − 1) \ M0)/S1, the square of
the distance ρ([p], [γ ]) agrees with the value of the bi-invariant function (x, v) �→
fp(ξ(x, v)x, ξ(x, v)v), hence

p ◦ γ �→ ρ2([p],p ◦ γ )

is smooth on O(2) \ (OH
2 (2, k − 1) \ M0)/S1.

Finally, we show that the geodesics in �(�k
2) determined by M0 are at least π/4

away from [p]. Obviously, geodesics determined by A(x, v)2 = 0 = B(x, v)2 have
distance π/2 to [p]. Suppose now that (x, v) ∈ M0 with A(x, v)2 > 0. W.l.o.g.
assume that 〈x,p〉 �= 0. Then

B(x, v)2 = 〈v, ip〉2

〈x,p〉2 A(x, v)2,

which implies that 〈v, ip〉2 = 〈x,p〉2. In consequence, we have also 〈v,p〉2 =
〈x, ip〉2 and, in particular, sign(〈x,p〉〈v, ip〉) = − sign(〈x, ip〉〈v,p〉) =: ε. Then,
we have for the shape distance ρ to [p] of shapes along the geodesic γ through [x]
with initial velocity v at [x] that

cosρ([p], γ (s)) = max
0≤t<2π

〈p cos t + ip sin t, x cos s + v sin s〉

= max
0≤t<2π

(〈x,p〉 cos(t − εs) + 〈v,p〉 sin(t − εs)
)

= max(|〈x,p〉|, |〈v,p〉|)
is constant, giving as desired ρ([p], γ ) ≥ π/4.
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